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Abstract: Epoxy resin concrete has superior mechanical properties compared to ordinary concrete,
and will play an increasingly important role in urban construction. In this paper, the application
effect and prospect of epoxy resin concrete in precast composite frame structures are discussed.
Taking the joint surface of the old and new concrete at the end of the composite beam as the research
object, three specimens were devised and fabricated. Subsequently, a horizontal cyclic load test was
conducted, and the seismic performance indices were analyzed. Multiple finite element models were
established to assess the influence of precast concrete strength, the diameter of the longitudinal bar
of the beam, the shear span ratio, and the epoxy resin concrete post-cast area, among other factors,
on the seismic performance of the beam end. Four findings indicate the following: Firstly, epoxy
resin concrete, characterized by its high performance attributes, can be used as a post-cast material in
precast concrete structures. Secondly, when the strength of the post-cast epoxy concrete approximates
or slightly exceeds that of the precast concrete, and the ratio of longitudinal reinforcement and
shear span ratio are appropriately balanced, the operational performance of the composite beam
frame structure is enhanced. In addition, when post-cast epoxy resin concrete is employed in the
beam-column joint area, the mechanical performance of the composite beam end in the joint area
matches or even surpasses that of the structure that was cast in situ. And subsequently, the expansion
of post-cast area resulted in better mechanical performance. Finally, when the area of post-cast epoxy
resin concrete is a non-node area, the mechanical properties of the composite beam end are worse
than the former. However, the amount of epoxy resin concrete used will be greatly reduced, and
as the precast node area expands, the bearing capacity of the beam end will increase and gradually
approach the cast-in situ structure, indicating that this construction scheme also has advantages.

Keywords: monolithic precast composite frame structure; epoxy resin concrete; beam-column joints;
seismic performance; simulation

1. Introduction

The advantages of precast structures comprise rapid production speed, consistent
component quality, high construction efficiency, reduced labor resource consumption, and
the promotion of sustainable development [1]. Therefore, they have progressively assumed
a pivotal role in the burgeoning construction industry. Simultaneously, as individuals’
demands for building functionalities continue to advance, the complexity and height of
structures have escalated, thereby imposing more stringent requirements on the safety and
reliability of building structures, including those of a precast nature.

Failures in prefabricated concrete structures frequently occur at the joints of each
prefabricated component, thus rendering joint design a key point in structural design [2]. In
recent years, numerous scholars have delved into the seismic performance of prefabricated
concrete frame joints [3–6], as well as the seismic performance of bucket arch joints [7],
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yielding a wealth of findings. Refs. [8–11] mainly study the composite frame structure from
the aspects of composite surface construction, shear resistance, and bending resistance of
composite beams. However, so far, most of the studies on prefabricated frame structures
focus on the post-cast area in beam-column joints. The non-node area is rarely involved as a
post-cast area, and this is in fact also a commonly used construction scheme in engineering.

In addition, the global development of high-performance concrete [12] has prompted
the gradual exploration of its application in precast structures. In 1993, Soubra et al. [13]
conducted a study on the mechanical properties of post-cast steel fiber concrete precast
beam-column members, revealing that the load-bearing capacity of steel fiber concrete-
connected members surpassed that of ordinary concrete-connected members. In 2005, Gus-
tavo et al. [14] employed high-performance fiber-reinforced cement composites (HPFRCC)
in the post-cast joints of earthquake-resistant structures, resulting in significantly enhanced
shear strength, ductility, and energy dissipation capacity when subjected to significant
inelastic deformation. In 2009, Zheng et al. [15] proposed the utilization of ultra-high-
performance concrete material (UHPC) for post-cast components of prefabricated members,
demonstrating the favorable integrity performance of post-cast UHPC material in the
prefabricated framework. In 2019, Deng et al. [16] substituted ordinary concrete with
high ductility concrete (HDC) in nodal sections, thereby realizing the robust-nodal design
principle and effectively enhancing the deformation and energy dissipation capacity of
frame nodes. In terms of composite frame structures, in 2023, Wang et al. [17] proposed
a new type of UHPC shear bond wet joint for connecting different prefabricated compo-
nents of the precast composite beam, and evaluated the influence of different parameters
of the UHPC shear bond on the shear performance of the wet joint through a series of
launch tests. In 2016, Liang et al. [18] studied the important seismic characteristics of
fiber-reinforced concrete (FRC) beam-column joints and RC beam-column joints under
quasi-static reciprocating loads, and the results showed that the bearing capacity and
deformation capacity of the beam-column joints were improved by post-cast FRC in the
core area of the composite beams.

Epoxy resin concrete is a high-performance concrete—a combined material comprising
epoxy resin, a curing agent, and a sand aggregate—that exhibits superior characteristics
compared to conventional silicate concrete, including enhanced tensile strength, crack resis-
tance, material uniformity, integrity, and freeze-thaw resistance [19]. Due to the illustrious
interfacial bond strength between epoxy resin and concrete, as well as its commendable
thermal stability, chemical resistance, and mechanical properties, it is commonly employed
in reinforcement projects such as concrete crack repair [20–24]. Gil-Martin et al. [25] con-
ducted a study comparing the mechanical properties of beam-column joints constructed
with epoxy resin concrete and tire-doped rubber concrete. The findings revealed that
the beam-column joints utilizing epoxy resin concrete exhibited satisfactory performance,
whereas the tire-rubber doped concrete proved unsuitable for the core area of the joints.
In addition, the mechanical properties of members of epoxy resin concrete were studied
in Refs. [26–28]. This study provided rationale and direction for the application of epoxy
concrete in building structures. However, there are very few studies on the application of
epoxy resin concrete in building structures. At the same time, because the epoxy resin base
has a good interfacial bond strength with concrete, if it is applied to the post-cast area of
the monolithic precast concrete structure, it will greatly improve the bonding quality and
shear strength of the new and old concrete bonding surface, and solve the key problems of
prefabricated structures. However, there is almost no research in this area.
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In light of the exceptional mechanical properties of epoxy resin concrete, this research
aims to employ it as the post-cast material for a monolithic precast composite frame
structure, takes the joint surface of new and old concrete at the end of the composite beam
as the research object, and adopts the method of combining test and finite element analysis
to study the influence of the type of post-cast concrete, the concrete strength, the ratio of
longitudinal reinforcement of the beam, the shear-span ratio, and the scope and location
of the post-cast area on the seismic performance of the composite beam end. Then, the
bending and shear performance of the composite beam end with post-cast epoxy resin
concrete was evaluated to provide data support for the popularization and application of
epoxy resin concrete in precast building structures.

2. Test Profile
2.1. Test Piece Design

The research focused on the beam ends of the frame edge nodes, which served as
the selected subjects for investigation. Three specimens were designed and produced,
each utilizing different post-cast materials. Table 1 presents the fundamental particulars of
these specimens. The dimensions of the (composite) beam section were b × h = 150 mm ×
300 mm, with a post-cast layer thickness of 100 mm. The column section measured 300 mm
× 300 mm. Both the beams and columns were reinforced with HRB400 longitudinal bars
and stirrups. The joint interface between post-cast concrete and precast component of
the composite beam was positioned 50 mm below the upper edge of the beam-column
joint. The horizontal bonding surface was offered with a keyway, featuring a rough texture,
while the vertical bonding surface also exhibited a rough texture. Figure 1 illustrates the
geometry and reinforcement of the specimens.

Table 1. Basic information of specimens.

Specimen
Number

Type of
Post-Cast
Concrete

Longitudinal
Reinforcement

Column
Stirrup

Beam
Stirrup

Shear Span
Ratio

Keyway
Dimension/mm Remark

WJ-RC ------
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Post-cast epoxy resin concrete.

2.2. Basic Mechanical Properties of Materials

The average cubic compressive strength of the precast concrete was measured to
be 30.9 MPa, whereas the average cubic compressive strength of the post-cast ordinary
concrete amounted to 33.6 MPa. The mix ratio of the epoxy concrete is detailed in Table 2,
with the average compressive strength of the measured cube reaching 55.4 MPa. The
average yield strength of the 16 mm steel bar was determined to be 361.1 MPa, while the
8 mm steel bar exhibited an average yield strength of 369.5 MPa. In addition, the elastic
modulus of the steel bar was measured to be 2.0 × 105 MPa.

Table 2. Mix ratio of epoxy resin concrete.

Epoxy Resin
(kg/m3)

Curing Agent
(kg/m3)

Cement
(kg/m3)

Cobble
(kg/m3)

Sand
(kg/m3)

Diluent
(kg/m3)

800 320 1200 2800 3200 80

2.3. The Production Process of the Specimens

The plywood was utilized as the formwork material. The cast-in situ specimen was
constructed in one pouring process, while the other two specimens underwent two pouring
processes. The key production process of specimens is depicted in Figure 2. Initially, the
steel framework was assembled, and the formwork was produced. Subsequently, the mold
was supported and the steel framework was positioned accordingly. At the joint of the new-
old concrete, the polyethylene partition was temporarily supported and secured. Following
this, the concrete (precast part) was poured for the first time. After the precast section
had undergone curing and solidification, the temporarily fixed polyethylene partition was
removed, and the formwork was cleansed and dried. Subsequently, a second concrete
(post-cast part) pouring was conducted. Three days later, the mold was dismantled and
stored in a cool environment for a duration of 28 days.
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2.4. Loading Device and Loading Scheme

The testing apparatus for loading is illustrated in Figure 3. The horizontal reciprocating
load was applied at the midpoint of the terminal section of the loading beam. This process
was divided into two loading stages: load control and displacement control. Prior to
the specimen reaching its yield point, load control loading was implemented. Once the
specimen had yielded, displacement control loading was employed. The load was regulated
by a multiple of the yield displacement. The load cycle for each stage was repeated three
times until the bearing capacity of the specimen declined to below 85% of the peak load,
thereby concluding the test.
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3. Test Process and Failure Characteristics of Specimen

(1) Specimen WJ-RC

Under 40 kN (push), the first horizontal crack emerges at the right side of the beam
end, positioned 12 cm above the base. When the load is increased to 50 kN (push), the
beam-column junction on the right side of the beam end experiences cracking. Upon
applying a reverse load of 50 kN (pull), an oblique crack appears at the left side of the
beam end, positioned 5 cm above the base. This crack extends diagonally towards the
lower right, passing through the left root and causing the tensile steel bar to yield. The
yield displacement, ∆y = 1.21 mm. Subsequently, displacement control loading leads to the
formation of oblique cracks at different heights along the beam end as the displacement
increases. When the beam is loaded to 3∆y (pull), the left oblique crack extends diagonally
towards the lower right, intersecting with the right oblique crack to form a cross-shaped
main crack. Additionally, a horizontal crack traverses the width of the beam section. Upon
reaching 6∆y, the peak load of 130.8 kN is achieved. During the progressive reduction in
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bearing capacity, the shear oblique crack widens, causing slight compression of the concrete
at the left root of the beam end. The right root of the beam end exhibits a slight tendency
to lift, indicating its weakness. At a load of 9∆y, the load drops to 85% of the peak load,
marking the end of the test. The failures of the specimen are depicted in Figure 4.
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(2) Specimen WJ-CC

When subjected to a load of 30kN (pull), the first crack appears along the right side
of the keyway on the horizontal bonding surface. Under a load of 40 kN (push), the right
beam-column junction experiences cracking. Upon reaching a load of 41.3 kN (pull), the
beam’s longitudinal tendons yield, resulting in a yield displacement of ∆y = 1.25 mm.
Subsequent displacement-controlled loading leads to the emergence of horizontal cracks at
various heights along the beam’s end, with oblique cracks extending towards the keyway
of the bonding surface as the displacement increases. When the beam is subjected to a load
of 3∆y (push), the horizontal cracks in the beam’s width direction become interconnected.
Conversely, when the beam is loaded to 3∆y (pull), primary cross cracks form. The peak
load is attained at 6∆y (with an average peak load of 117.5 kN in both directions), beyond
which the load reduces. Upon reaching a reverse load of 9∆y (pull), slippage occurs at the
interface between the new and old concrete, leading to crack development. Severe damage
is observed on both sides of the keyway and the vertical joint, with the post-cast concrete
on the right side of the beam experiencing near-shear failure. At a load of 11∆y, the load
decreases to 85% of the peak load, marking the conclusion of the test. The failures of the
specimen are depicted in Figure 5.
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(3) Specimen WJ-EC

When subjected to a load of 40kN (push), the initial occurrence of a crack is observed on
the left horizontal joint surface of the beam end, which subsequently propagates above the
keyway. Upon further loading to 64.5kN (push), a portion of the tensile steel bar undergoes
yielding, resulting in a yield displacement of ∆y = 1.1 mm. Subsequently, displacement
control loading is implemented, accompanied by the application of a reciprocating load.
As a consequence, inclined cracks emerge in the prefabricated section, extending towards
the keyway, while the post-cast epoxy resin concrete section remains devoid of evident
cracks. Upon reaching a load of 6∆y, a series of subtle horizontal cracks occur in the tension
area beneath the post-cast epoxy concrete on the right side of the beam end. Notably,
these cracks do not exhibit significant propagation thereafter. Conversely, the cracks in the
precast concrete, situated on the upper part of the keyway of the horizontal bonding surface,
experience an increase in both magnitude and intersection. The peak load is attained at
10∆y (with an average value of 129.1 kN in both loading directions). Subsequently, the
load gradually diminishes, resulting in severe concrete spalling above the keyway of the
horizontal bonding surface. At a load of 13∆y, the load drops to 85% of the peak load,
signifying the conclusion of the test. The failures of the specimen are depicted in Figure 6.
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In summary, flexural-shear failure was observed in all three specimens. Among them,
the integrity of cast-in situ specimens was found to be superior, exhibiting a greater number
of inclined cracks and a more uniform distribution. The weakest section was identified as
the beam end root section, which displayed characteristics of bending failure. The failure
of the two composite beam specimens primarily occurred at the joint between the old and
new concrete. In the case of specimen WJ-CC, the vertical joints and horizontal joints with
keyway suffered severe damage, with the ordinary concrete pouring layer being nearly
severed, resulting in poor integrity. Specimen WJ-EC, on the other hand, experienced
concentrated failure on the horizontal bonding surface with keyway, while the vertical
bonding plane remained largely intact. Notably, the precast part—i.e., the horizontal
bonding plane—exhibited significant damage. In the post-cast epoxy concrete area, only a
few small cracks with a uniform distribution were observed, indicating the participation
and contribution of the post-cast epoxy resin concrete to improving the overall performance
of the node area in the load-bearing process.
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4. Experimental Results and Analysis
4.1. Hysteresis Curve

Figure 7 illustrates the P-∆ hysteresis curves of the three specimens. Due to a malfunc-
tion in the displacement meter, the hysteresis curve of WJ-RC is asymmetric, and then the
negative hysteretic characteristics were observed and analyzed.
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As depicted in Figure 7, the mechanical properties of the epoxy resin concrete render
is superior to post-cast ordinary concrete specimen WJ-CC. The post-cast epoxy concrete
specimen WJ-EC exhibits a decelerated strength degradation, a more complete hysteresis
loop, and enhanced energy dissipation capacity. In addition, the hysteresis loop of WJ-EC
surpasses that of WJ-RC, albeit marginally, thereby indicating that the hysteresis perfor-
mance of composite beam frame joints in post-cast epoxy concrete is equivalent to, or even
surpasses, that of fully-cast joints.

4.2. Skeleton Curve

Figure 8 illustrates the skeleton curves for each specimen, while Table 3 presents the
measured data for each characteristic point on the skeleton curve. The following can be
seen from Figure 8 and Table 3:
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(1) During the early loading stage, the load value of the WJ-EC specimen exhibited the
most rapid increase, indicating the highest stiffness. In comparison, the stiffness of the
WJ-RC and WJ-CC specimens was slightly lower, with minimal difference between
them. After reaching the ultimate load, the WJ-EC specimen demonstrated the slowest
decrease in bearing capacity, followed by the WJ-RC specimen, while the bearing
capacity of the WJ-CC specimen exhibited a more pronounced decline.

(2) The cracking load of the WJ-CC specimen was the lowest, whereas the cracking load
of the WJ-EC specimen was marginally lower than that of the fully cast specimen,
with no significant distinction between them. The initial crack in both the WJ-CC and
WJ-EC specimens appeared on the horizontal joint surface between the old and new
concrete. The cracking displacement of the two specimens was similar and smaller
than that of the fully cast specimens.

(3) The overall trend of the skeleton curve for the WJ-EC specimen was higher, resulting
in a 10% increase in bearing capacity compared to the WJ-CC specimen. The bearing
capacity of the WJ-EC specimen was similar to that of the WJ-RC specimen, but
the ductility of the WJ-EC specimen was 1.65 times greater than that of the WJ-RC
specimen.
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Table 3. The measured data of skeleton curve feature points of each specimen.

Specimen
Number

Cracking
Load

Pcr/kN

Cracking
Displacement

∆cr/mm

Yield
Load

Py/kN

Yield
Displacement

∆y/mm

Peak
Load

Pmax/kN

Peak
Displacement

∆max/mm

Failure
Load

Pu/kN

Failure
Displacement

∆u/mm

Ductility
Coefficient
µ = ∆u/∆y

WJ-RC 42.7 0.55 97.5 3.37 130.8 9.0 118 14.71 4.36
WJ-CC 28.1 0.43 80.9 2.76 117.5 6.0 92.8 14.08 5.07
WJ-EC 41.5 0.45 87.5 2.10 129.1 10.0 113.9 15.32 7.27

In summary, considering the cracking load, bearing capacity, stiffness, and ductility,
the performance of post-cast ordinary concrete specimens is deemed the most inferior.
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Conversely, the performance of post-cast epoxy resin concrete specimens is either equivalent
to or surpasses that of all the fuiiy-cast specimens.

5. Finite Element Analysis

Modeling and finite element analysis of concrete and epoxy resin concrete can be
carried out from both micro and macro perspectives. Simulations at the micro scale are
more accurate. For example, M.M. Shahzamanian [29] simulated the representative volume
element (RVE) of a gelling system (Type I) containing fly ash (Class F) by using the voxel-
based finite element analysis (FEA) method, and analyzed the homogenized macroscopic
mechanical properties. Kamali-Bernard [30] proposed a three-dimensional multi-scale
modeling method for the mechanical properties of cement-based materials—that is, to
generate real 3D representative V-volume elements of cement-based materials at different
scales, and then analyze and calculate their mechanical properties. The macroscopic
perspective—that is, ignoring the microstructure of concrete and simulating its mechanical
properties only from the macroscopic perspective—is more suitable for the analysis of
concrete structures. In this paper, both concrete and epoxy resin concrete are simulated
from a macroscopic perspective.

5.1. Constitutive Model of Materials

For the concrete, a plastic damage model is employed, while the constitutive rela-
tionship of ordinary concrete adheres to the uniaxial stress-strain curve recommended in
the Code for Design of Concrete Structures [31]. As for epoxy resin concrete, its consti-
tutive relation is established based on the comprehensive curve equation of compressive
stress-strain, which has been fitted by our research group through tests (Equation (1)). The
stress-strain curve of the rebar follows a double broken line model.

y =

{
ax + (4.9 − 4.23a)x2 + (−4.67 + 6.67a)x3 + (−0.27 − 4.74a)x4 + (1.07 + 1.27a)x5, 0 ≤ x ≤ 1

x
b(x−1)2+x

, x > 1 (1)

a and b are undetermined parameters whose values range from:{
0 < a < 1.0
1.0 < b < 10.0

(2)

In this paper, a is 0.7 and b is 7.

5.2. Establishment of Model

The epoxy resin concrete is modeled using the C3D8R unit, while the rebar is modeled
using the T3D2 unit. The rebar is fully embedded in the concrete. The interface between
the new and old concrete is simulated using surface-to-surface contact, and the tangential
action is based on the Coulomb friction model. According to Ref. [32], combined with
EU Norms [33]: the friction coefficient µ is taken as 0.6 for new and old concrete bonding
surfaces with untreated surfaces, µ is taken as 0.7 for bonding surfaces with a roughness
not less than 3 mm and a width not less than 40 mm, and µ is taken as 0.9 for the cogging
bonding surface. The friction coefficient µ of the interface between ordinary concrete in
this paper is taken as 0.8, and after repeated calculations, the friction coefficient µ of the
interface between epoxy resin concrete and ordinary concrete is taken as 0.95. Normal
action is governed by “Hard contact”, wherein the contact pressure is unrestricted when
transmitted through the contact surface. If the contact pressure value becomes negative,
the two contact surfaces separate, and the contact constraint on the node is released. The
bottom beam is subjected to fixed constraints, and the loading mode is monotone loading.

5.3. Model Verification

The specimens WJ-RC, WJ-CC, and WJ-EC were subjected to finite element analysis
individually, enabling an approximation of the damage conditions of the model through
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the distribution of the concrete compression damage factors, as depicted in Figure 9. It
is evident from Figure 9a that the cast-in situ specimen WJ-RC exhibits superior integrity
and a more uniform distribution of damage. Conversely, Figure 9b,c reveals noticeable
differences in the damage conditions between the new and old concrete bonding surfaces.
The vertical and horizontal joints of the WJ-CC specimens suffered severe damage, while
the WJ-EC specimen primarily exhibited concentrated damage on the precast concrete of
the upper side of the horizontal bonding surfaces, with the concrete on both sides of the
vertical bonding surface remaining essentially intact. In summary, the numerical simulation
results effectively approximate the actual failure state of the specimen.
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Figure 10 and Table 4 present a comparison between the test results and the simu-
lation results of the skeleton curves for each specimen. The overall trend of the curves
demonstrates a significant similarity between the two. The simulated value deviates from
the test value of the peak load by approximately 10%, while the deviation between the
simulated value and the test value of the peak displacement amounts to roughly 20%. The
excessive initial slope of the simulated skeleton curve can be attributed to the finite element
simulation’s neglect of adverse factors such as residual stress and gap squeezing between
the test loading devices. In general, the finite element model established in this study
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adequately approximates the mechanical properties of the beam ends in the joint region of
the overlapping beams.
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Figure 10. Comparison between simulated skeleton curve and test skeleton curve.

Table 4. Comparison of experimental and simulated shear strength.

Specimen Number Pt/kN ∆t/mm Pnu/kN ∆nu/mm Pnu/Pt ∆nu/∆t

WJ-RC 130.8 9 139.0 1.2 0.90 0.67
WJ-CC 117.5 6 103.8 5.2 0.88 0.87
WJ-EC 129.1 10 139.4 8.8 1.07 0.88

Note: Pt and ∆t are the peak load and peak displacement of the test, Pnu and ∆nu are the peak load and peak
displacement of numerical simulation.

5.4. Influence of Parameter Variation on Seismic Performance of the Composite Beam

Based on specimen WJ-EC, a finite element analysis was conducted, examining param-
eters such as the strength of precast concrete, the diameter of longitudinal reinforcement in
beams and columns, the shear span ratio, and the post-cast area of epoxy resin concrete.
Certain parameters remained unchanged, including the strength of post-cast epoxy resin
concrete, the reinforcement ratio of stirrups, and the size of key slots. A total of 14 finite
element models were established in 5 groups, as detailed in Tables 5 and 6. Among them,
changing the post-cast area of epoxy resin concrete includes two cases. In the first case,
the post-cast joint area with epoxy resin concrete was expanded by modifying the distance
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y between the horizontal joint surface and the upper edge of the beam-column joint, re-
sulting in an enlarged post-cast joint area (Figure 11a), as shown in specimens WJ-EC10
and WJ-EC11. The second case aimed to retain the integrity of the precast beam-column
joints while changing the position of the precast joint area and horizontal joint surface in
the composite beam (Figure 11b). Specimens WJ-EC12, WJ-EC13, and WJ-EC14 exemplify
this scenario.

Table 5. Parameter setting of the model (The first case).

Specimen
Number

Strength Grade of
Precast Concrete

Beam and Column Longitudinal
Reinforcement Shear Span Ratio y (mm) Remark

WJ-EC C30
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WJ-EC3 C60
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(a) Specimen WJ-RC 

16 1.5 50 ---
WJ-EC4 C70
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16 1.5 50 ---
WJ-EC5 C80
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Table 1. Basic information of specimens. 

Specimen 

Number 

Type of  

Post-Cast 

Concrete 

Longitudinal 

Reinforcement 

Column 

Stirrup 

Beam Stir-

rup 

Shear Span 

Ratio 

Keyway Dimen-

sion/mm 
Remark 

WJ-RC ------  16 8@100 8@80 1.5 --- 
cast-in situ 

specimen 

WJ-CC 
Ordinary con-

crete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

WJ-EC 
Epoxy resin 

concrete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

  

 
 

(a) Specimen WJ-RC 

16 1.5 50 ---
WJ-EC6 C30
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In light of the exceptional mechanical properties of epoxy resin concrete, this research 

aims to employ it as the post-cast material for a monolithic precast composite frame struc-

ture, takes the joint surface of new and old concrete at the end of the composite beam as 

the research object, and adopts the method of combining test and finite element analysis 

to study the influence of the type of post-cast concrete, the concrete strength, the ratio of 

longitudinal reinforcement of the beam, the shear-span ratio, and the scope and location 

of the post-cast area on the seismic performance of the composite beam end. Then, the 

bending and shear performance of the composite beam end with post-cast epoxy resin 

concrete was evaluated to provide data support for the popularization and application of 

epoxy resin concrete in precast building structures. 

2. Test Profile 

2.1. Test Piece Design 

The research focused on the beam ends of the frame edge nodes, which served as the 

selected subjects for investigation. Three specimens were designed and produced, each 

utilizing different post-cast materials. Table 1 presents the fundamental particulars of 

these specimens. The dimensions of the (composite) beam section were b × h = 150 mm × 

300 mm, with a post-cast layer thickness of 100 mm. The column section measured 300 

mm × 300 mm. Both the beams and columns were reinforced with HRB400 longitudinal 

bars and stirrups. The joint interface between post-cast concrete and precast component 

of the composite beam was positioned 50 mm below the upper edge of the beam-column 

joint. The horizontal bonding surface was offered with a keyway, featuring a rough tex-

ture, while the vertical bonding surface also exhibited a rough texture. Figure 1 illustrates 

the geometry and reinforcement of the specimens. 

Table 1. Basic information of specimens. 

Specimen 

Number 

Type of  

Post-Cast 

Concrete 

Longitudinal 

Reinforcement 

Column 

Stirrup 

Beam Stir-

rup 

Shear Span 

Ratio 

Keyway Dimen-

sion/mm 
Remark 

WJ-RC ------  16 8@100 8@80 1.5 --- 
cast-in situ 

specimen 

WJ-CC 
Ordinary con-

crete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

WJ-EC 
Epoxy resin 

concrete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

  

 
 

(a) Specimen WJ-RC 

18 1.5 50 ---
WJ-EC7 C30
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In light of the exceptional mechanical properties of epoxy resin concrete, this research 

aims to employ it as the post-cast material for a monolithic precast composite frame struc-

ture, takes the joint surface of new and old concrete at the end of the composite beam as 

the research object, and adopts the method of combining test and finite element analysis 

to study the influence of the type of post-cast concrete, the concrete strength, the ratio of 

longitudinal reinforcement of the beam, the shear-span ratio, and the scope and location 

of the post-cast area on the seismic performance of the composite beam end. Then, the 

bending and shear performance of the composite beam end with post-cast epoxy resin 

concrete was evaluated to provide data support for the popularization and application of 

epoxy resin concrete in precast building structures. 

2. Test Profile 

2.1. Test Piece Design 

The research focused on the beam ends of the frame edge nodes, which served as the 

selected subjects for investigation. Three specimens were designed and produced, each 

utilizing different post-cast materials. Table 1 presents the fundamental particulars of 

these specimens. The dimensions of the (composite) beam section were b × h = 150 mm × 

300 mm, with a post-cast layer thickness of 100 mm. The column section measured 300 

mm × 300 mm. Both the beams and columns were reinforced with HRB400 longitudinal 

bars and stirrups. The joint interface between post-cast concrete and precast component 

of the composite beam was positioned 50 mm below the upper edge of the beam-column 

joint. The horizontal bonding surface was offered with a keyway, featuring a rough tex-

ture, while the vertical bonding surface also exhibited a rough texture. Figure 1 illustrates 

the geometry and reinforcement of the specimens. 

Table 1. Basic information of specimens. 

Specimen 

Number 

Type of  

Post-Cast 

Concrete 

Longitudinal 

Reinforcement 

Column 

Stirrup 

Beam Stir-

rup 

Shear Span 

Ratio 

Keyway Dimen-

sion/mm 
Remark 

WJ-RC ------  16 8@100 8@80 1.5 --- 
cast-in situ 

specimen 

WJ-CC 
Ordinary con-

crete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

WJ-EC 
Epoxy resin 

concrete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

  

 
 

(a) Specimen WJ-RC 

20 1.5 50 ---
WJ-EC8 C30
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In light of the exceptional mechanical properties of epoxy resin concrete, this research 

aims to employ it as the post-cast material for a monolithic precast composite frame struc-

ture, takes the joint surface of new and old concrete at the end of the composite beam as 

the research object, and adopts the method of combining test and finite element analysis 

to study the influence of the type of post-cast concrete, the concrete strength, the ratio of 

longitudinal reinforcement of the beam, the shear-span ratio, and the scope and location 

of the post-cast area on the seismic performance of the composite beam end. Then, the 

bending and shear performance of the composite beam end with post-cast epoxy resin 

concrete was evaluated to provide data support for the popularization and application of 

epoxy resin concrete in precast building structures. 

2. Test Profile 

2.1. Test Piece Design 

The research focused on the beam ends of the frame edge nodes, which served as the 

selected subjects for investigation. Three specimens were designed and produced, each 

utilizing different post-cast materials. Table 1 presents the fundamental particulars of 

these specimens. The dimensions of the (composite) beam section were b × h = 150 mm × 

300 mm, with a post-cast layer thickness of 100 mm. The column section measured 300 

mm × 300 mm. Both the beams and columns were reinforced with HRB400 longitudinal 

bars and stirrups. The joint interface between post-cast concrete and precast component 

of the composite beam was positioned 50 mm below the upper edge of the beam-column 

joint. The horizontal bonding surface was offered with a keyway, featuring a rough tex-

ture, while the vertical bonding surface also exhibited a rough texture. Figure 1 illustrates 

the geometry and reinforcement of the specimens. 

Table 1. Basic information of specimens. 

Specimen 

Number 

Type of  

Post-Cast 

Concrete 

Longitudinal 

Reinforcement 

Column 

Stirrup 

Beam Stir-

rup 

Shear Span 

Ratio 

Keyway Dimen-

sion/mm 
Remark 

WJ-RC ------  16 8@100 8@80 1.5 --- 
cast-in situ 

specimen 

WJ-CC 
Ordinary con-

crete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

WJ-EC 
Epoxy resin 

concrete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

  

 
 

(a) Specimen WJ-RC 

16 1 50 ---
WJ-EC9 C30
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In light of the exceptional mechanical properties of epoxy resin concrete, this research 

aims to employ it as the post-cast material for a monolithic precast composite frame struc-

ture, takes the joint surface of new and old concrete at the end of the composite beam as 

the research object, and adopts the method of combining test and finite element analysis 

to study the influence of the type of post-cast concrete, the concrete strength, the ratio of 

longitudinal reinforcement of the beam, the shear-span ratio, and the scope and location 

of the post-cast area on the seismic performance of the composite beam end. Then, the 

bending and shear performance of the composite beam end with post-cast epoxy resin 

concrete was evaluated to provide data support for the popularization and application of 

epoxy resin concrete in precast building structures. 

2. Test Profile 

2.1. Test Piece Design 

The research focused on the beam ends of the frame edge nodes, which served as the 

selected subjects for investigation. Three specimens were designed and produced, each 

utilizing different post-cast materials. Table 1 presents the fundamental particulars of 

these specimens. The dimensions of the (composite) beam section were b × h = 150 mm × 

300 mm, with a post-cast layer thickness of 100 mm. The column section measured 300 

mm × 300 mm. Both the beams and columns were reinforced with HRB400 longitudinal 

bars and stirrups. The joint interface between post-cast concrete and precast component 

of the composite beam was positioned 50 mm below the upper edge of the beam-column 

joint. The horizontal bonding surface was offered with a keyway, featuring a rough tex-

ture, while the vertical bonding surface also exhibited a rough texture. Figure 1 illustrates 

the geometry and reinforcement of the specimens. 

Table 1. Basic information of specimens. 

Specimen 

Number 

Type of  

Post-Cast 

Concrete 

Longitudinal 

Reinforcement 

Column 

Stirrup 

Beam Stir-

rup 

Shear Span 

Ratio 

Keyway Dimen-

sion/mm 
Remark 

WJ-RC ------  16 8@100 8@80 1.5 --- 
cast-in situ 

specimen 

WJ-CC 
Ordinary con-

crete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

WJ-EC 
Epoxy resin 

concrete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

  

 
 

(a) Specimen WJ-RC 

16 2.5 50 ---
WJ-EC10 C30
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In light of the exceptional mechanical properties of epoxy resin concrete, this research 

aims to employ it as the post-cast material for a monolithic precast composite frame struc-

ture, takes the joint surface of new and old concrete at the end of the composite beam as 

the research object, and adopts the method of combining test and finite element analysis 

to study the influence of the type of post-cast concrete, the concrete strength, the ratio of 

longitudinal reinforcement of the beam, the shear-span ratio, and the scope and location 

of the post-cast area on the seismic performance of the composite beam end. Then, the 

bending and shear performance of the composite beam end with post-cast epoxy resin 

concrete was evaluated to provide data support for the popularization and application of 

epoxy resin concrete in precast building structures. 

2. Test Profile 

2.1. Test Piece Design 

The research focused on the beam ends of the frame edge nodes, which served as the 

selected subjects for investigation. Three specimens were designed and produced, each 

utilizing different post-cast materials. Table 1 presents the fundamental particulars of 

these specimens. The dimensions of the (composite) beam section were b × h = 150 mm × 

300 mm, with a post-cast layer thickness of 100 mm. The column section measured 300 

mm × 300 mm. Both the beams and columns were reinforced with HRB400 longitudinal 

bars and stirrups. The joint interface between post-cast concrete and precast component 

of the composite beam was positioned 50 mm below the upper edge of the beam-column 

joint. The horizontal bonding surface was offered with a keyway, featuring a rough tex-

ture, while the vertical bonding surface also exhibited a rough texture. Figure 1 illustrates 

the geometry and reinforcement of the specimens. 

Table 1. Basic information of specimens. 

Specimen 

Number 

Type of  

Post-Cast 

Concrete 

Longitudinal 

Reinforcement 

Column 

Stirrup 

Beam Stir-

rup 

Shear Span 

Ratio 

Keyway Dimen-

sion/mm 
Remark 

WJ-RC ------  16 8@100 8@80 1.5 --- 
cast-in situ 

specimen 

WJ-CC 
Ordinary con-

crete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

WJ-EC 
Epoxy resin 

concrete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

  

 
 

(a) Specimen WJ-RC 

16 1.5 200 ---
WJ-EC11 C30
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In light of the exceptional mechanical properties of epoxy resin concrete, this research 

aims to employ it as the post-cast material for a monolithic precast composite frame struc-

ture, takes the joint surface of new and old concrete at the end of the composite beam as 

the research object, and adopts the method of combining test and finite element analysis 

to study the influence of the type of post-cast concrete, the concrete strength, the ratio of 

longitudinal reinforcement of the beam, the shear-span ratio, and the scope and location 

of the post-cast area on the seismic performance of the composite beam end. Then, the 

bending and shear performance of the composite beam end with post-cast epoxy resin 

concrete was evaluated to provide data support for the popularization and application of 

epoxy resin concrete in precast building structures. 

2. Test Profile 

2.1. Test Piece Design 

The research focused on the beam ends of the frame edge nodes, which served as the 

selected subjects for investigation. Three specimens were designed and produced, each 

utilizing different post-cast materials. Table 1 presents the fundamental particulars of 

these specimens. The dimensions of the (composite) beam section were b × h = 150 mm × 

300 mm, with a post-cast layer thickness of 100 mm. The column section measured 300 

mm × 300 mm. Both the beams and columns were reinforced with HRB400 longitudinal 

bars and stirrups. The joint interface between post-cast concrete and precast component 

of the composite beam was positioned 50 mm below the upper edge of the beam-column 

joint. The horizontal bonding surface was offered with a keyway, featuring a rough tex-

ture, while the vertical bonding surface also exhibited a rough texture. Figure 1 illustrates 

the geometry and reinforcement of the specimens. 

Table 1. Basic information of specimens. 

Specimen 

Number 

Type of  

Post-Cast 

Concrete 

Longitudinal 

Reinforcement 

Column 

Stirrup 

Beam Stir-

rup 

Shear Span 

Ratio 

Keyway Dimen-

sion/mm 
Remark 

WJ-RC ------  16 8@100 8@80 1.5 --- 
cast-in situ 

specimen 

WJ-CC 
Ordinary con-

crete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

WJ-EC 
Epoxy resin 

concrete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

  

 
 

(a) Specimen WJ-RC 

16 1.5 300 ---

Table 6. Parameter setting of the model (The second case).

Specimen
Number

Strength Grade
of Precast
Concrete

Beam and Column
Longitudinal

Reinforcement

Shear
Span
Ratio

Post-Cast
Materials

Horizontal
Seam Thickness

(mm)

y
(mm) Remark

WJ-RC ---
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In light of the exceptional mechanical properties of epoxy resin concrete, this research 

aims to employ it as the post-cast material for a monolithic precast composite frame struc-

ture, takes the joint surface of new and old concrete at the end of the composite beam as 

the research object, and adopts the method of combining test and finite element analysis 

to study the influence of the type of post-cast concrete, the concrete strength, the ratio of 

longitudinal reinforcement of the beam, the shear-span ratio, and the scope and location 

of the post-cast area on the seismic performance of the composite beam end. Then, the 

bending and shear performance of the composite beam end with post-cast epoxy resin 

concrete was evaluated to provide data support for the popularization and application of 

epoxy resin concrete in precast building structures. 

2. Test Profile 

2.1. Test Piece Design 

The research focused on the beam ends of the frame edge nodes, which served as the 

selected subjects for investigation. Three specimens were designed and produced, each 

utilizing different post-cast materials. Table 1 presents the fundamental particulars of 

these specimens. The dimensions of the (composite) beam section were b × h = 150 mm × 

300 mm, with a post-cast layer thickness of 100 mm. The column section measured 300 

mm × 300 mm. Both the beams and columns were reinforced with HRB400 longitudinal 

bars and stirrups. The joint interface between post-cast concrete and precast component 

of the composite beam was positioned 50 mm below the upper edge of the beam-column 

joint. The horizontal bonding surface was offered with a keyway, featuring a rough tex-

ture, while the vertical bonding surface also exhibited a rough texture. Figure 1 illustrates 

the geometry and reinforcement of the specimens. 

Table 1. Basic information of specimens. 

Specimen 

Number 

Type of  

Post-Cast 

Concrete 

Longitudinal 

Reinforcement 

Column 

Stirrup 

Beam Stir-

rup 

Shear Span 

Ratio 

Keyway Dimen-

sion/mm 
Remark 

WJ-RC ------  16 8@100 8@80 1.5 --- 
cast-in situ 

specimen 

WJ-CC 
Ordinary con-

crete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

WJ-EC 
Epoxy resin 

concrete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

  

 
 

(a) Specimen WJ-RC 

16 1.5 --- --- Contrast
specimen

WJ-CC C30
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In light of the exceptional mechanical properties of epoxy resin concrete, this research 

aims to employ it as the post-cast material for a monolithic precast composite frame struc-

ture, takes the joint surface of new and old concrete at the end of the composite beam as 

the research object, and adopts the method of combining test and finite element analysis 

to study the influence of the type of post-cast concrete, the concrete strength, the ratio of 

longitudinal reinforcement of the beam, the shear-span ratio, and the scope and location 

of the post-cast area on the seismic performance of the composite beam end. Then, the 

bending and shear performance of the composite beam end with post-cast epoxy resin 

concrete was evaluated to provide data support for the popularization and application of 

epoxy resin concrete in precast building structures. 

2. Test Profile 

2.1. Test Piece Design 

The research focused on the beam ends of the frame edge nodes, which served as the 

selected subjects for investigation. Three specimens were designed and produced, each 

utilizing different post-cast materials. Table 1 presents the fundamental particulars of 

these specimens. The dimensions of the (composite) beam section were b × h = 150 mm × 

300 mm, with a post-cast layer thickness of 100 mm. The column section measured 300 

mm × 300 mm. Both the beams and columns were reinforced with HRB400 longitudinal 

bars and stirrups. The joint interface between post-cast concrete and precast component 

of the composite beam was positioned 50 mm below the upper edge of the beam-column 

joint. The horizontal bonding surface was offered with a keyway, featuring a rough tex-

ture, while the vertical bonding surface also exhibited a rough texture. Figure 1 illustrates 

the geometry and reinforcement of the specimens. 

Table 1. Basic information of specimens. 

Specimen 

Number 

Type of  

Post-Cast 

Concrete 

Longitudinal 

Reinforcement 

Column 

Stirrup 

Beam Stir-

rup 

Shear Span 

Ratio 

Keyway Dimen-

sion/mm 
Remark 

WJ-RC ------  16 8@100 8@80 1.5 --- 
cast-in situ 

specimen 

WJ-CC 
Ordinary con-

crete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

WJ-EC 
Epoxy resin 

concrete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

  

 
 

(a) Specimen WJ-RC 

16 1.5 Ordinary
concrete --- --- Contrast

specimen

WJ-EC12 C30
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In light of the exceptional mechanical properties of epoxy resin concrete, this research 

aims to employ it as the post-cast material for a monolithic precast composite frame struc-

ture, takes the joint surface of new and old concrete at the end of the composite beam as 

the research object, and adopts the method of combining test and finite element analysis 

to study the influence of the type of post-cast concrete, the concrete strength, the ratio of 

longitudinal reinforcement of the beam, the shear-span ratio, and the scope and location 

of the post-cast area on the seismic performance of the composite beam end. Then, the 

bending and shear performance of the composite beam end with post-cast epoxy resin 

concrete was evaluated to provide data support for the popularization and application of 

epoxy resin concrete in precast building structures. 

2. Test Profile 

2.1. Test Piece Design 

The research focused on the beam ends of the frame edge nodes, which served as the 

selected subjects for investigation. Three specimens were designed and produced, each 

utilizing different post-cast materials. Table 1 presents the fundamental particulars of 

these specimens. The dimensions of the (composite) beam section were b × h = 150 mm × 

300 mm, with a post-cast layer thickness of 100 mm. The column section measured 300 

mm × 300 mm. Both the beams and columns were reinforced with HRB400 longitudinal 

bars and stirrups. The joint interface between post-cast concrete and precast component 

of the composite beam was positioned 50 mm below the upper edge of the beam-column 

joint. The horizontal bonding surface was offered with a keyway, featuring a rough tex-

ture, while the vertical bonding surface also exhibited a rough texture. Figure 1 illustrates 

the geometry and reinforcement of the specimens. 

Table 1. Basic information of specimens. 

Specimen 

Number 

Type of  

Post-Cast 

Concrete 

Longitudinal 

Reinforcement 

Column 

Stirrup 

Beam Stir-

rup 

Shear Span 

Ratio 

Keyway Dimen-

sion/mm 
Remark 

WJ-RC ------  16 8@100 8@80 1.5 --- 
cast-in situ 

specimen 

WJ-CC 
Ordinary con-

crete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

WJ-EC 
Epoxy resin 

concrete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

  

 
 

(a) Specimen WJ-RC 

16 1.5 Epoxy resin
concrete 70 70 ---

WJ-EC13 C30
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In light of the exceptional mechanical properties of epoxy resin concrete, this research 

aims to employ it as the post-cast material for a monolithic precast composite frame struc-

ture, takes the joint surface of new and old concrete at the end of the composite beam as 

the research object, and adopts the method of combining test and finite element analysis 

to study the influence of the type of post-cast concrete, the concrete strength, the ratio of 

longitudinal reinforcement of the beam, the shear-span ratio, and the scope and location 

of the post-cast area on the seismic performance of the composite beam end. Then, the 

bending and shear performance of the composite beam end with post-cast epoxy resin 

concrete was evaluated to provide data support for the popularization and application of 

epoxy resin concrete in precast building structures. 

2. Test Profile 

2.1. Test Piece Design 

The research focused on the beam ends of the frame edge nodes, which served as the 

selected subjects for investigation. Three specimens were designed and produced, each 

utilizing different post-cast materials. Table 1 presents the fundamental particulars of 

these specimens. The dimensions of the (composite) beam section were b × h = 150 mm × 

300 mm, with a post-cast layer thickness of 100 mm. The column section measured 300 

mm × 300 mm. Both the beams and columns were reinforced with HRB400 longitudinal 

bars and stirrups. The joint interface between post-cast concrete and precast component 

of the composite beam was positioned 50 mm below the upper edge of the beam-column 

joint. The horizontal bonding surface was offered with a keyway, featuring a rough tex-

ture, while the vertical bonding surface also exhibited a rough texture. Figure 1 illustrates 

the geometry and reinforcement of the specimens. 

Table 1. Basic information of specimens. 

Specimen 

Number 

Type of  

Post-Cast 

Concrete 

Longitudinal 

Reinforcement 

Column 

Stirrup 

Beam Stir-

rup 

Shear Span 

Ratio 

Keyway Dimen-

sion/mm 
Remark 

WJ-RC ------  16 8@100 8@80 1.5 --- 
cast-in situ 

specimen 

WJ-CC 
Ordinary con-

crete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

WJ-EC 
Epoxy resin 

concrete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

  

 
 

(a) Specimen WJ-RC 

16 1.5 Epoxy resin
concrete 70 165 ---

WJ-EC14 C30
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In light of the exceptional mechanical properties of epoxy resin concrete, this research 

aims to employ it as the post-cast material for a monolithic precast composite frame struc-

ture, takes the joint surface of new and old concrete at the end of the composite beam as 

the research object, and adopts the method of combining test and finite element analysis 

to study the influence of the type of post-cast concrete, the concrete strength, the ratio of 

longitudinal reinforcement of the beam, the shear-span ratio, and the scope and location 

of the post-cast area on the seismic performance of the composite beam end. Then, the 

bending and shear performance of the composite beam end with post-cast epoxy resin 

concrete was evaluated to provide data support for the popularization and application of 

epoxy resin concrete in precast building structures. 

2. Test Profile 

2.1. Test Piece Design 

The research focused on the beam ends of the frame edge nodes, which served as the 

selected subjects for investigation. Three specimens were designed and produced, each 

utilizing different post-cast materials. Table 1 presents the fundamental particulars of 

these specimens. The dimensions of the (composite) beam section were b × h = 150 mm × 

300 mm, with a post-cast layer thickness of 100 mm. The column section measured 300 

mm × 300 mm. Both the beams and columns were reinforced with HRB400 longitudinal 

bars and stirrups. The joint interface between post-cast concrete and precast component 

of the composite beam was positioned 50 mm below the upper edge of the beam-column 

joint. The horizontal bonding surface was offered with a keyway, featuring a rough tex-

ture, while the vertical bonding surface also exhibited a rough texture. Figure 1 illustrates 

the geometry and reinforcement of the specimens. 

Table 1. Basic information of specimens. 

Specimen 

Number 

Type of  

Post-Cast 

Concrete 

Longitudinal 

Reinforcement 

Column 

Stirrup 

Beam Stir-

rup 

Shear Span 

Ratio 

Keyway Dimen-

sion/mm 
Remark 

WJ-RC ------  16 8@100 8@80 1.5 --- 
cast-in situ 

specimen 

WJ-CC 
Ordinary con-

crete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

WJ-EC 
Epoxy resin 

concrete 
16 8@100 8@80 1.5 

Width 90 mm, 

depth 30 mm 
--- 

  

 
 

(a) Specimen WJ-RC 

16 1.5 Epoxy resin
concrete 70 260 ---
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(a) Case 1: Expand the area of the post-cast node (b) Case 2: Retain the precast node area 

Figure 11. The model diagram of change of epoxy concrete post-cast area. 

5.4.1. Influence of Precast Concrete Strength 
The stress nephogram and concrete compression damage factors distribution map of 

the typical model are presented in Figure 12. It is evident that the strength of the precast 
partial concrete exerts a minimal influence on the failure pattern of joints. In the limit state, 
the peak stress points of all specimens all appear near the joint surface of the precast sec-
tion and the post-cast section, with the post-cast portion contributing significantly to the 
stress distribution. The P-Δ curve of each specimen is depicted in Figure 13. It is observed 
that the initial stiffness of the specimen remains largely unaffected by the concrete 
strength, whereas the bearing capacity exhibits a noticeable dependence on it. Specifically, 
when the concrete strength grade is elevated from C30 to C40, the bearing capacity of the 
specimen increases from 139.4 kN to 144.6 kN, corresponding to a growth rate of 3.7%. 
Subsequently, as the concrete strength grade is further increased from C40 to C50, the 
bearing capacity rises from 144.6 kN to 153.3 kN, exhibiting a growth rate of 6.0%. Simi-
larly, when the concrete strength grade is raised from C50 to C60, the bearing capacity 
increases from 153.3 kN to 160.0 kN, demonstrating a growth rate of 4.0%. However, be-
yond this point, the rate of increase in bearing capacity reduces gradually with the en-
hancement of concrete strength. In summary, the optimal working performance of the 
specimen is achieved when the strength of the post-cast epoxy resin concrete is approxi-
mately equal to or slightly higher than that of the precast partial concrete. The main reason 
is that in this case, the interaction ability of the new and old concrete of the bonding sur-
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5.4.1. Influence of Precast Concrete Strength

The stress nephogram and concrete compression damage factors distribution map of
the typical model are presented in Figure 12. It is evident that the strength of the precast
partial concrete exerts a minimal influence on the failure pattern of joints. In the limit state,
the peak stress points of all specimens all appear near the joint surface of the precast section
and the post-cast section, with the post-cast portion contributing significantly to the stress
distribution. The P-∆ curve of each specimen is depicted in Figure 13. It is observed that
the initial stiffness of the specimen remains largely unaffected by the concrete strength,
whereas the bearing capacity exhibits a noticeable dependence on it. Specifically, when the
concrete strength grade is elevated from C30 to C40, the bearing capacity of the specimen
increases from 139.4 kN to 144.6 kN, corresponding to a growth rate of 3.7%. Subsequently,
as the concrete strength grade is further increased from C40 to C50, the bearing capacity
rises from 144.6 kN to 153.3 kN, exhibiting a growth rate of 6.0%. Similarly, when the
concrete strength grade is raised from C50 to C60, the bearing capacity increases from
153.3 kN to 160.0 kN, demonstrating a growth rate of 4.0%. However, beyond this point,
the rate of increase in bearing capacity reduces gradually with the enhancement of concrete
strength. In summary, the optimal working performance of the specimen is achieved when
the strength of the post-cast epoxy resin concrete is approximately equal to or slightly
higher than that of the precast partial concrete. The main reason is that in this case, the
interaction ability of the new and old concrete of the bonding surface including the shear
bond is equivalent, and its overall working performance is the most fully exerted.
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5.4.2. Effect of the Longitudinal Reinforcement Ratio of the Composite Beam

Figure 14 presents the stress nephogram and concrete compression damage factors
distribution map for each specimen of the composite beam, featuring varying longitudinal
bar diameters. Figure 15 displays the P-∆ curves for each specimen. It is evident that the
reinforcement ratio of the longitudinal reinforcement in the composite beam has a minimal
influence on the failure pattern of the joint area, but significantly impacts the bearing
capacity. During the initial loading stage, the P-∆ curves of all specimens exhibit significant
overlap, indicating similar initial stiffness. As the plastic stage is reached, an increase
in the longitudinal reinforcement ratio leads to an elevation in peak load, a reduction in
peak displacement, and a steeper declining section of the curve, thereby accelerating the
degradation of bearing capacity after reaching the peak. For instance, when the diameter of
the longitudinal reinforcement increases from 16 mm to 18 mm, the bearing capacity rises
from 139.4 kN to 153.2 kN, reflecting a growth rate of 9.8%. Similarly, when the diameter
of the longitudinal reinforcement increases from 18 mm to 20 mm, the bearing capacity
increases from 153.2 kN to 157.2 kN, with a growth rate of 2.6%. These findings demonstrate
that at lower reinforcement ratios, the bearing capacity experiences a significant increase,
with an increased reinforcement ratio. However, at higher reinforcement ratios, the bearing
capacity growth slows down, and the ductility experiences a significant decrease. The main
reason is that with the increase in the reinforcement ratio of longitudinal reinforcement,
the shear bearing capacity of the joint surface gradually depends on the strength of the
concrete, and the brittle failure property is also gradually obvious.
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5.4.3. The Influence of Shear–Span Ratio

Figure 16 presents the stress nephogram and concrete compression damage factors
distribution map for each specimen, varying in shear–span ratio. Figure 17 displays the
P-∆ curves for each specimen. It is evident that the damage observed on both sides of
the joint surface in the three specimens is similar. Specifically, the prefabricated side
exhibits more severe damage, while the after-cast epoxy concrete side experiences relatively
lighter damage. As the shear–span ratio decreases, the shear failure characteristics of
the specimen become more pronounced, and the right side of the vertical joint surface
demonstrates a greater contribution to the shear force, thus enhancing the bearing capacity.
Notably, specimens with a shear to span ratio of 2.5 exhibit a lower bearing capacity, with
the right side of the post-cast section of the vertical joint plane exhibiting minimal force
participation, while the left side of the prefabricated section displays evident bending
failure characteristics. The bearing capacities of specimens with shear span ratios of 1.0, 1.5,
and 2.5 are recorded as 195.7 kN, 139.4 kN, and 91.3 kN, respectively. Thus, an increase
in the shear span ratio leads to a decrease in the specimen’s bearing capacity, an increase
in the peak displacement, a deceleration in the falling section, and an enhancement in
deformation capacity. The main reason is that the shear-span ratio reflects the ratio of
bending moment and shear force on the cross-section of the specimen, the shear force has
an obvious effect when the shear-span ratio is small, and it has the characteristics of shear
brittleness failure during failure. However, when the shear-span ratio is large, the bending
moment has an obvious effect, and the ductile failure characteristics are obvious.
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5.4.4. The Effect of the Epoxy Resin Concrete Post-Cast Area

(1) Case 1: Expand the area of the post-cast node

Premised on specimen WJ-EC, the post-cast area was expanded—specifically, the
horizontal bonding surface with a keyway was positioned at distances of 200 mm and
300 mm above the beam-column joint edge, denoted as models WJ-EC10 and WJ-EC11,
respectively (Figure 11a). The stress nephogram and concrete compression damage factors
distribution map of each specimen are depicted in Figure 18. Additionally, Figure 19
illustrates the P-∆ curves for each specimen.
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As observed in Figure 18, the enlargement of the post-cast area resulted in an increased
contribution of the post-poured epoxy concrete, with an excellent mechanical properties
section for the specimen’s stress, hence leading to a significant enhancement in its bearing
capacity. The damage in all three specimens was predominantly concentrated in the precast
section, characterized by lower material strength. Figure 19 reveals that the bearing capacity
and initial stiffness of the specimen experienced a significant increase with the subsequent
expansion of the post-cast area. Moreover, the declining section of the curve exhibited a
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slightly steeper slope, indicating a minor reduction in the specimen’s deformation ability,
albeit not significantly. The bearing capacities of specimens WJ-EC, WJ-EC10, and WJ-EC11
were determined to be 139.4 kN, 199.6 kN, and 267.0 kN, respectively. Therefore, compared
to specimen WJ-EC, specimen WJ-EC10 exhibited a 43% increase in bearing capacity, while
specimen WJ-EC11 demonstrated a remarkable 91% increase.

(2) Case 2: Reserve the precast node area

To ensure the integrity of the precast beam-column joints, the distance y from the joint
surface of the precast node area and the composite beam to the edge of the node was set at
70 mm, 165 mm, and 330 mm, respectively. This resulted in an incremental increase in the
precast joint area for specimens WJ-EC12, WJ-EC13, and WJ-EC14. The steel bar connection
at the horizontal joint of each specimen was mechanically connected. Considering the
sleeve length and construction requirements, the thickness of the horizontal joint was set
at 70 mm (Figure 11b). The simulation results of these three specimens were compared
with those of WJ-RC and WJ-CC. The stress nephogram and concrete compression damage
factors distribution map of each specimen are shown in Figure 20, while the P-∆ curves of
each specimen are presented in Figure 21.

As depicted in Figure 20, the stress distribution and damage distribution of the cast-
in situ specimen WJ-RC were found to be the most uniform. The post-cast epoxy resin
concrete played a significant role in bearing the stress of the specimen, with its contribution
increasing as the y value increased. In contrast, the damage in the other specimens was
concentrated in the precast ordinary concrete. With the expansion of the precast joint
area, the participation degree and damage degree of the post-cast epoxy resin concrete
increased, leading to an increase in the bearing capacity of the specimens. Figure 21
demonstrates that the bearing capacities of specimens WJ-RC, WJ-EC12, WJ-EC13, and
WJ-EC14 were 139.0 kN, 117.0 kN, 125.0 kN, and 134.4 kN, respectively. It is worth noting
that the bearing capacity of the specimens increased with the expansion of the precast joint
area, but remained smaller than that of the cast-in situ specimens. This can be attributed
to the fact that the post-cast epoxy resin concrete compromised the overall performance
of the specimen, and its volume was relatively small, thereby underutilizing the superior
mechanical properties of epoxy resin concrete. In addition, the bearing capacity of specimen
WJ-CC was 103.8 kN, which was lower than that of the cast-in situ specimen and the post-
cast specimen with epoxy resin concrete. This indicates that the prefabricated construction
scheme, which preserves the integrity of the precast joint area, is advantageous.
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6. Conclusions and Prospects
6.1. Conclusions

In this paper, ordinary concrete and epoxy resin concrete were utilized as post-cast
materials for the purpose of conducting bending and shear performance tests, finite element
simulation, and parameter analysis on the composite beam end of precast composite frame
structures. The conclusions obtained can provide reference for the further application of
epoxy resin concrete in urban construction.

(1) The composite beam frame structure, specifically in the beam-column joint area
featuring post-cast epoxy resin concrete, exhibits a structural behavior that is essen-
tially identical to that of the cast-in situ reinforced concrete frame structure. More-
over, it demonstrates superior load-bearing capacity and deformation performance.
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Conversely, the composite beam frame structure with post-cast ordinary concrete
in the joint area exhibits inadequate mechanical properties. Therefore, epoxy con-
crete, as a high-performance concrete, holds potential for applications in precast
concrete structures.

(2) In the case of the composite beam frame structure with post-poured epoxy resin
concrete in the joint area, an increase in the strength of precast concrete leads to an
enhancement in the beam end’s load-bearing capacity and ensures stable deformation
performance. Notably, when the strength of post-cast epoxy concrete approaches
or slightly surpasses that of precast concrete, the load-bearing capacity experiences
the most significant improvement. In addition, an increase in the longitudinal rein-
forcement ratio results in an increase in the beam end’s load-bearing capacity, albeit
with a slight decrease in deformation performance. Conversely, as the shear span
ratio decreases, the beam end’s load-bearing capacity increases, but the deformation
performance deteriorates significantly. Therefore, it is necessary to avoid excessively
small shear–span ratios for composite beams, such as those lower than 1.5. Addi-
tionally, the expansion of the post-cast area allows for the full utilization of epoxy
resin concrete’s superior mechanical properties, leading to a significant increase in the
beam end’s load-bearing capacity and initial stiffness, albeit with a slight decrease in
deformation capacity.

(3) The composite beam frame structure, which preserves the integrity of the precast
joint area and is infused with epoxy resin concrete, exhibits an enhanced load-bearing
capacity at the beam end due to the expansion of the prefabricated joint area. How-
ever, this capacity remains inferior to that of the cast-in situ reinforced concrete frame
structure. Therefore, the aforementioned composite beam frame structure, as dis-
cussed in Conclusion (2), demonstrates superior mechanical properties. Nevertheless,
it necessitates a substantial quantity of epoxy resin concrete, resulting in high costs.

(4) In contrast, the composite beam frame structure, which maintains the integrity of
the precast joint area and is filled with ordinary concrete, exhibits enhanced load-
bearing capacity and deformation performance at the beam end compared to the
composite beam frame structure filled with ordinary concrete in the joint area. As
the precast joint area expands, the load-bearing capacity at the beam end increases
and gradually approaches that of the cast-in situ reinforced concrete frame structure.
This observation highlights the advantages of the precast construction scheme that
preserves the integrity of the precast joint area.

6.2. Prospects

From the perspective of mechanical properties, there is good bond strength between
epoxy resin concrete and ordinary concrete, which is suitable for the connection joints of
precast concrete structures. But other properties, such as durability, chemical stability, atmo-
spheric stability, temperature effect, environmental protection, construction convenience,
etc., need to be further studied, and the engineering applicability of epoxy resin concrete
in construction engineering should be fully and comprehensively analyzed to promote its
engineering application.
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