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Abstract: The use of small-scale models is an important area of research today. An investigation is
conducted on the response of a small-scale model’s vibrating surface. For this model, a small-scale
surface explosion is used for loading. According to the article, the methodology includes procedures,
model development, the explosive materials used, measurement and evaluation methods, software,
and the technique used. Signal processing and response evaluation rely on a scientific method—the
backward Fourier-transform principle—for frequency filtering. In this study, the simulation results
are used to confirm the basic physical properties of the viscoelastic system. It is primarily investigated
whether wave processes are confirmed on the new material. In terms of single wave propagation,
the results summarize the characteristics of these waves (attenuation, velocity of propagation, etc.).
Conclusions are targeted at the possibility of correlating three types of results: small-scale simulations,
numerical simulations, and a real full-scale experiment.
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1. Introduction

Every building’s structure is affected by a certain type of load. In general, these can
be categorized according to three main sources. The majority of the load is generated by
gravity. It is the structure’s own deadload that has to be dealt with in this case.

Another large group is the imposed or live loads resulting from the use of the structure.
Climatic conditions also have a major influence. The last group of loads comprises the
special loads that will be dealt with in this work. Special loads typically occur irregularly
and are of significant magnitude and short duration. Dynamic loads are defined by the
character of their response [1,2].

In contrast to static loads, dynamic loads are variable in time, and the effects of inertial
forces must also be taken into consideration. When it comes to building structures, load
frequencies between 0.1 and 500 Hz play a crucial role. The major damage occurs mainly in
the frequency range from 1 to 150 Hz. The impact caused by explosions has a frequency
range from 1 to 40 Hz; therefore, attention must be given to this aspect.

One of the reasons why we have to deal with explosions is that we are unable to
fully understand how they affect objects at small distances. As long as we are capable of
clarifying the process, we may be in a position to save the lives of people around the world.
This is because we will be able to predict the behavior of this type of load and then take the
necessary precautions. A variety of fields are becoming increasingly concerned with the
effects of explosions on building structures.

The propagation of blast effects is a complex phenomenon, which is not yet well
understood. This paper presents an experimental simulation of effects of deformation
propagation due to explosions on the surface of a small-scale model [3,4].

The number of victims of terrorist attacks and explosions caused by explosives con-
tinues to increase, and we arere looking for ways to prevent these and minimize their
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consequences. The goal is to learn more about how blast waves move in order to better
protect people and buildings from this type of attack. The purpose of this paper is to give
a basic understanding of blast loading. Critical infrastructures, such as public transport
or other places where large numbers of people are likely to congregate, are especially at
risk from terrorist attacks. This is a serious issue for many countries, and is something that
needs to be taken into account in the design of buildings and of infrastructure in general.

Many researchers have studied the dynamics of shock waves after the topic was
first investigated in the early 1950s. The first analytical solution to the problem of wave
propagation from explosions was given by G. I. Taylor [5]. Much study in this field followed.
With the aid of high explosives, Jack et al. [6] simulated the effects of a blast at altitude.

2. Materials and Methods

An explosion occurs when a large amount of energy is suddenly released and turned
into power. The explosion causes a rapid increase in pressure, which is usually followed by
sound, light, and heat effects.

The blast can reach a velocity of more than 1000 m·s−1, and the result is usually the
damage to or complete destruction of nearby structures and facilities. According to the type
and source of the reaction, explosions can be classified as atomic, mechanical (physical), and
chemical. Building structures are most often threatened by explosions of a chemical nature.
The parameters of the pressure wave are also significantly affected by the environment,
whether the explosion occurs in an open or a confined space [7].

A chemical explosion is a rapid reaction or change in state. Exothermic breakdown
of a chemical produces heat, gas, and vapor. Because the reaction occurs promptly and
the reacted components do not expand instantly, the explosion products take up the space
previously occupied by the explosive as shown in Figure 1 [8].
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Figure 1. Five stages of a shallow buried detonation. (a) Detonation of the chemical explosive;
(b) interaction between detonation shock wave and expanding detonation products into the sur-
rounding soil; (c) expansion of the soil and detonation products into free air; (d) early interaction
with the target; (e) late interaction with the target [8].

The high rate of chemical transformation, the exothermic aspect of the chemical
reaction, the spontaneous propagation of the reaction, and the ability to transform thermal
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energy into mechanical energy all contribute to a chemical explosion. Substances capable
of chemical transformation are called explosives [9].

2.1. Determination of Explosion Energy

The Trinity test in New Mexico in 1945 resulted in the explosion of the first atomic
bomb as shown in Figure 2. A few years later, a popular magazine released a number of
images of the explosion along with a timeline and range scale. British scientist G. I. Taylor
calculated the explosion’s energy output from these photos. The idea behind it is to utilize
dimensional analysis to predict how the radius will change in relation to other physical
parameters [10]. The following equation, which describes the radius as a function of time,
energy, and density, is used to quantify the amount of energy in an explosion.

r = f (t; E; ρ) (1)
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Figure 2. Screenshot showing the exact time and size scale of the explosion of the first atomic bomb
taken from a video [11].

After substituting the variables and modifying the equation:

[m] = [s][kg·m2·s−2][kg·m−3] (2)

[r] = [ta·Eb·ρc] (3)

m = sa·(kg·m2·s−2)b·(kg·m−3)
c

(4)

The linear equations are solved, and the exact values are determined:

a =
2
5

; b =
1
5

; c = −1
5

(5)

These are substituted into Equation (4):

[r] =
[
t

2
5 ·E

1
5 ·ρ−

1
5

]
(6)

After the following modification:

[r] =

( t2·E
ρ

) 1
5

 (7)
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The resulting equation has the formula:

r = C·
(

t2·E
ρ

) 1
5

(8)

where:

C—based on small-scale measurements, C = 1033 represents the ratio between time
and radius;
ρ—ambient air density;
r; t—measured data.

2.2. Seismic Wave Types

As previously mentioned, explosions release a considerable amount of energy. From
the source, this spreads in several ways (Figures 3 and 4). There are four fundamental types
of waveform:

1. Longitudinal P-waves—primary. These are the fastest type of waves and reach the
accelerometers first. Both P-waves and pressure waves move in the same direction.
The material that is affected by a pressure wave moves forward and then back along
the same path as the wave when it reaches a certain point.

2. Transverse S-waves—secondary. In the case of accelerometers, they arrive as sec-
ondary signals. When the wave passes through the material, the point of propagation
moves from side to side or up and down.

3. Love waves—surface waves. Like S-waves they oscillate the surface from side to side
in the direction they propagate.

4. Rayleigh waves—the second type of surface waves. As a result, the surface moves
simultaneously in both vertical and horizontal directions. Due to their potential
for causing significant damage to buildings and other structures, these waves are
extremely dangerous [12].
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Figure 4. A simplified seismic recording that captures the primary P-wave, secondary S-wave, and
surface waves.

2.3. Explosives

Explosives are chemical compounds which, if properly activated, are capable of rapid
chemical or physical-chemical action, and can release large amounts of energy with the
associated release of large amounts of gases and accompanying light, heat, and sound
effects [9].

Black powder is the world’s earliest known explosive, having been developed in
China. It is made up of potassium nitrate (75%) (Figure 5), charcoal (15%), and sulfur (10%).
It is currently used as a timing powder, to make delay compositions, as well as powder
bodies for initiators, fuses, and pyrotechnic compositions. The properties of black powder
are variable according to its composition, grain shape and size, and the charcoal used [13].
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Explosives are classified into four categories: munitions, crackers, blasting agents, and
pyrotechnic compositions.

2.3.1. Pyrotechnic Compositions

It is a mechanical mixture of combustibles and oxidizing substances, perhaps with
additional additives to achieve the desired technical effect. Exothermic reactions are used
to produce heat, light, gas, smoke, and sound. Pyrotechnic compounds are classified
based on these properties into the following categories: light, flash, smoke, incendiary,
and special. A wide variety of oxidizing substances are used in pyrotechnic compositions,
including oxides and peroxides, nitrates, chlorates, and some crystalline salts. Furthermore,
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binders, flame coloring additives, fume colorants, special effect enhancers, phlegmatizers,
stabilizers, flame accelerators or retardants, and solvents may be used [9]. There is also
the possibility of rapid combustion escalating into an explosive phase. For a number of
purposes, including fireworks, firecrackers, smoke bombs, timers, sound effects, etc., they
are used by civilians, police, and also military forces.

2.3.2. Fireworks

The term ‘fireworks’ refers to all pyrotechnic items which contain various chemical
compounds and mixtures which, when ignited, produce sound or light effects. The majority
of sound effects produced by fireworks are composed of firecrackers, while the majority of
light effects are derived from sparklers, flares, light cascades, etc. As a result of their use,
purpose, and degree of danger, as well as the level of noise, fireworks can be divided into
four categories:

1. Category F1—this category is considered to be very low risk and noise levels are
negligible. Only persons over the age of 15 are permitted to purchase this product.
This includes, e.g., sparklers, fountains, and buzzers.

2. Category F2—represents a low level of danger and minimal noise levels. A person
must be at least 18 years of age in order to purchase this product. Among these items
are, for example, cannons, rockets, compacts, and fountains.

3. Category F3—presents a medium level of danger and the noise level is not harmful
to human health. The product is only available to persons over the age of 21. A few
examples of this type of fireworks would be firecrackers, compacts and rockets.

4. Category F4—a major level of danger is associated with this category, which includes
professional pyrotechnics that are available only to qualified users [14].

2.3.3. K01M Booming Carpet

Experimental measurements were conducted using K01M Blasting Carpet firecrackers
manufactured by Klásek Trading, s.r.o. The package contains five carpets with 70 small
firecrackers each. The firecracker is classified as F2 and the mass of the pyrotechnic
composition is 3.5 g per carpet, which is 0.05 g per single firecracker. The product is
primarily composed of a flash component based on the principle of potassium chlorate and
aluminum powder, probably in a ratio of 7:3.

Equation (9) represents an oxidation–reduction reaction in which potassium chlorate
KClO4 is the oxidizing agent and aluminum Al is the reducing agent. At the same time,
these two chemicals are reactants, and the resulting products are aluminum oxide Al2O3
and potassium chloride KCl. In order for the reaction to occur, a temperature between 600
and 700 degrees Celsius must be reached.

3KClO4 + 8Al→ 4Al2O3 + 3KCl (9)

Potassium chlorate KClO4 is used as an oxidizing agent. It is a colorless crystalline
substance that has a wide range of applications in pyrotechnics. In order to achieve the
desired lighting effects, it is most commonly mixed with sulfur, aluminum, or magnesium.

There are numerous applications for aluminum powder in various fields. In most
cases, it is used as a gas-forming additive in aerated concrete, rocket fuel, cosmetic dyes,
and pyrotechnics, where it contributes to the balance of oxygen levels and accelerates
combustion in combination with potassium perchlorate [13].

2.4. Experimental Measurement

An essential role is played by experimental analyses in verifying the results of various
studies. These measurements were conducted in order to demonstrate that all types of
waves are initiated in a small-scale explosion, and based on the measured data, we can
determine the shear wave velocity and demonstrate the presence of dispersive attenuation.
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2.4.1. Description of Measurement Equipment

An appropriate measuring apparatus was necessary in order to make the actual
measurements. Among these items are accelerometers, module, laptop, and accessories.
Additionally, a vibration calibrator was used.

Accelerometers—DeltaTron Brüel & Kjær type 4508 B 002 (Figure 6). Its high sensitivity,
light weight, and small size make this type of accelerometer ideal for modal measurements.
The frequency range is between 0.4 Hz and 8000 Hz and the coaxial connector is perpendic-
ular to the main axis that needs to be detected [15].
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Module—PULSE LAN-XI Brüel & Kjær type 3050-B-060 (Figure 7). In this module,
there are six channels that are designed to provide the widest possible coverage of applica-
tions relating to sound and vibration measurement. In terms of frequency range, it operates
between 0 kHz and 51.2 kHz [16].

Buildings 2023, 12, x FOR PEER REVIEW 7 of 22 
 

 
Figure 6. DeltaTron accelerometer Brüel & Kjær type 4508 B 002. 

Module—PULSE LAN-XI Brüel & Kjær type 3050-B-060 (Figure 7). In this module, 
there are six channels that are designed to provide the widest possible coverage of appli-
cations relating to sound and vibration measurement. In terms of frequency range, it op-
erates between 0 kHz and 51.2 kHz [16]. 

 
Figure 7. Module PULSE LAN-XI Brüel & Kjær type 3050-B-060. 

Vibration calibrator—Metra Mess VC21 (Figure 8) is used to calibrate vibration meas-
urement and control systems. It is based on the principle of generating mechanical vibra-
tions at a steady frequency. In total, there are seven frequencies ranging from 15.915 Hz 
to 1280 Hz [17]. 

 
Figure 8. Metra Mess Vibration Calibrator VC21. 

Last but not least, it is important to mention the SigView. This program is a real-time 
signal analysis software that offers a number of powerful signal analysis tools, as well as 
statistical functions and a comprehensive visualization platform [18]. 

2.4.2. Small-Scale Model 
In general, the model (Figure 9) is made up of two main components, namely the 

simulation mass and the vertical wall that prevents the reflection of acoustic waves. The 

Figure 7. Module PULSE LAN-XI Brüel & Kjær type 3050-B-060.

Vibration calibrator—Metra Mess VC21 (Figure 8) is used to calibrate vibration mea-
surement and control systems. It is based on the principle of generating mechanical vibra-
tions at a steady frequency. In total, there are seven frequencies ranging from 15.915 Hz to
1280 Hz [17].

Last but not least, it is important to mention the SigView. This program is a real-time
signal analysis software that offers a number of powerful signal analysis tools, as well as
statistical functions and a comprehensive visualization platform [18].
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Figure 8. Metra Mess Vibration Calibrator VC21.

2.4.2. Small-Scale Model

In general, the model (Figure 9) is made up of two main components, namely the
simulation mass and the vertical wall that prevents the reflection of acoustic waves. The
material chosen for this project was polystyrene for practical reasons. In relation to the
investigational simulation mass, the material of the mold was chosen to be sufficiently
rigid, and at the same time, its properties minimized the reflection of waves. In terms of
dimensions, the form was created in such a way as to separate the individual types of
waves and at the same time preserve the smallest, small-scale nature of the experimental
measurement. This created the boundary conditions for this specific type of investigation
of wave processes.
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Based on a number of literature references, kinetic sand was selected as the simulation
material. Kinetic sand is made of 98% sand and 2% polydimethylsiloxane and its properties
resemble wet sand. The polydimethylsiloxane (PDMS) gives it a moist appearance and
causes it to adhere to itself. As well as being visually clear, PDMS is generally inert, non-
toxic, and non-flammable. It is an organic polymer based on silicon and is popular for its
liquid properties. In general, the longer the polymer chain, the more flexible it becomes [19].

PDMS is viscoelastic, which means it behaves like a viscous liquid, similar to honey,
when flowing for long periods of time (or at high temperatures). However, at short time
flows (or low temperatures), it behaves as a rigid elastic solid, comparable to rubber [20].
Overall, PDMS has a low modulus of elasticity, which allows it to deform easily and leads
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to rubber-like behavior. The viscoelastic characteristics of PDMS may be determined more
precisely using dynamic mechanical analysis. The shear modulus varies according to the
conditions under which it is prepared, and it then ranges from 100 kPa to 3 MPa [21].

In addition to these mechanical properties, further research will be conducted on
cohesion and other properties of the material.

2.4.3. Measurement Methodology

In order to conduct the measurements, six accelerometers were evenly placed within
the simulation mass. They were separated by approximately 54 mm along their axis. In
the first test, the measurements were performed in the parking lot of the Faculty of Civil
Engineering of the University of Žilina. In this instance, a firecracker called DUM BUM F2
was used from Klásek Trading, s.r.o., danger category F2. As a result of this measurement,
it was determined that the firecracker was too strong and it was replaced with K01M
Booming Carpet firecrackers, which are used in all other measurements. For the purpose
of collecting and analyzing sound and vibration data, the PULSE™ Time Data Recorder
was used.

Another set of measurements was taken indoors in the laboratory of the Department
of Structural Mechanics and Applied Mathematics. Due to the strong reflections within the
confined space, the measurement was once again unacceptably inaccurate. A number of
other test measurements were conducted without the use of PULSE™. The B&K module
type 3050-B-060 is capable of recording data using Internet Explorer. Data are stored directly
on the SD card within the module. In this case, the file is saved in the WAV format; however,
this format is primarily used for audio recordings. There is no standard for how amplitude
values are recorded in terms of units. As a consequence, it was necessary to determine a
coefficient for multiplying all the measurement values. This is covered in the next chapter.

The final measurements were conducted outside to prevent the propagation of acoustic
waves. Again, a few more measurements had to be taken, which demonstrated that the
sensors still needed to be additionally covered. In total, more than 80 measurements were
obtained, of which 14 were acceptable and are presented in this paper. In essence, the
amplitude of the last accelerometer tended to increase (Figure 10). The reason for this was
probably due to the small-scale model, in which the last accelerometer was capturing waves
that were already reflected. For operational reasons, it was not possible to take measure-
ments in open space. Due to this, even though the measurements were conducted outside,
there were always nearby buildings from which the aforementioned reflected waves oc-
curred. This accelerometer was later removed from the analysis, as will be explained further
below. However, establishing this fact required multiple inaccurate measurements. It also
happened occasionally that, for unknown reasons, the amplitude started to have a rising
tendency on the 4th accelerometer (Figure 11). It can only be assumed that there was a
loose connection between the cable and the accelerometer. Afterwards, it became necessary
to make a very precise check for every single measurement. When collecting data, it is
crucial to choose a reliable measuring method. It took a process of trial and error to figure
out how to take measurements correctly (Figures 12–14). Another 20 measurements were
carried out for calibration.

2.4.4. Determination of the Scaling Coefficient

It was necessary to calculate the coefficient that multiplied all the values from the
individual measurements in order to be able to work with the measured data. Here is how
the process worked. The first record was made using a vibration calibrator on which the
accelerometer was positioned using calibration support. During a continuous recording of
the PULSE™ system, the frequencies on the vibration calibrator were changed. A frequency
of 15.92 Hz was the lowest and a frequency of 1280 Hz was the highest. The recording was
conducted at accelerations of 1 m·s−2 and 2 m·s−2. These data were then exported from the
PULSE™ system as a CSV file and analyzed in SigView software version 3.0.2.0. Second,
a B&K 3050-B-060 module was used, which produced a WAV file as the output. In order
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to determine the coefficient, the maximum amplitude at each frequency was determined.
From this value, a ratio and then an average were calculated. Tables 1–3 present all of the
gathered data.

Table 1. The maximum amplitudes obtained in the PULSE™ system.

Frequency Amplitude
1 m·s−2

Amplitude
2 m·s−2

15.92 Hz 1.1813 2.3387
40 Hz 1.4208 2.7480
80 Hz 1.4085 2.7809
0 Hz 1.3988 2.7759

320 Hz 1.3897 2.7599
640 Hz 1.4201 2.7716

1280 Hz 1.4053 2.7592
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Table 2. The maximum amplitudes obtained with the B&K module.

Frequency Amplitude
1 m·s−2

Amplitude
2 m·s−2

15.92 Hz 32.631 62.751
40 Hz 32.736 63.163
80 Hz 31.959 62.595
160 Hz 30.902 62.066
320 Hz 30.832 62.511
640 Hz 31.238 63.855

1280 Hz 31.424 62.525

Table 3. The determination of the final coefficient.

Frequency Ratio CSV/WAV
1 m·s–2

Ratio CSV/WAV
2 m·s–2

15.92 Hz 3.62018 × 10–5 3.72695 × 10–5

40 Hz 4.34018 × 10–5 4.35065 × 10–5

80 Hz 4.40721 × 10–5 4.44269 × 10–5

160 Hz 4.52657 × 10–5 4.47250 × 10–5

320 Hz 4.50733 × 10–5 4.41506 × 10–5

640 Hz 4.54607 × 10–5 4.34046 × 10–5

1280 Hz 4.47206 × 10–5 4.41295 × 10–5

Average: 4.34566 × 10–5 4.30875 × 10–5

Final coefficient: 4.3272 × 10–5

3. Results

The measured data were analyzed in the software SigView, and the graphical outputs
of SigView represent the results of the experimental measurements. The total number of
measurements has exceeded 80, but only 14 have been deemed satisfactory and remained
to be processed, as mentioned previously (Figures 15–20). Since all measurements had
similar parameters, only one record was analyzed in detail. As a result of the evaluation
of the records, it was identified that the last accelerometer, No. 6, exhibits low reflections
due to the small-scale model. Therefore, this accelerometer was excluded from the analysis,
and it was not considered further, except for measurement No. 1.
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Figure 15. Measurement No. 1—Vibration velocity time history of Accelerometer 1 with maximum
amplitude indicated.
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Figure 16. Measurement No. 1—Vibration velocity time history of Accelerometer 2 with maximum
amplitude indicated.
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Figure 17. Measurement No. 1—Vibration velocity time history of Accelerometer 3 with maximum
amplitude indicated.
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Figure 18. Measurement No. 1—Vibration velocity time history of Accelerometer 4 with maximum
amplitude indicated.
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Figure 19. Measurement No. 1—Vibration velocity time history of Accelerometer 5 with maximum
amplitude indicated.
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Figure 20. Measurement No. 1—Vibration velocity time history of Accelerometer 6 with maximum
amplitude indicated.

To begin with, the WAV file was exported to a CSV file. In MS Excel, each record was
opened and the unnecessary data before and after the actual explosion was deleted and
multiplied by the calculated coefficient. Only then was it possible to open and analyze
the data using SigView. The process was repeated for each measurement and for each
accelerometer separately, i.e., 70 times in total. A sampling frequency of 4096 Hz was
automatically selected by the module and did not need to be set manually.

Figures 21 and 22 illustrates the waveforms of all types of waves that are generated in
an explosion. In order of arrival at the accelerometers, the longitudinal P-wave arrives first,
followed by the transverse S-wave, and the surface waves reach the accelerometers last,
resulting in the most destructive effects (Figures 23–28 and Table 4). The results are also
presented in Figure 29.
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Figure 21. Scheme of the progress of waveform all types of waves during an explosion.
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Figure 22. Measurement No. 1—Vibration velocity time history of Accelerometer 1 with graphical
representation of the wave types.
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Figure 23. Measurement No. 1—Smoothed vibration velocity time history of Accelerometer 1.
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Figure 24. Measurement No. 1—Smoothed vibration velocity time history of Accelerometer 2.

Buildings 2023, 12, x FOR PEER REVIEW 16 of 22 
 

 
Figure 25. Measurement No. 1—Smoothed vibration velocity time history of Accelerometer 3. 

 
Figure 26. Measurement No. 1—Smoothed vibration velocity time history of Accelerometer 4. 

 
Figure 27. Measurement No. 1—Smoothed vibration velocity time history of Accelerometer 5. 

-40

-20

0

20

40

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10ac
ce

le
ra

tio
n

[m
·s
−2

]

time [s]

Smoothed signal waveform of vibration velocity for
Measurement No. 1 — Accelerometer 3

Original values

Values after smoothing

-20
-10

0
10
20
30

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10ac
ce

le
ra

tio
n

[m
·s
−2

]

time [s]

Smoothed signal waveform of vibration velocity for
Measurement No. 1 — Accelerometer 4

Original values

Values after smoothing

-20
-15
-10
-5
0
5

10
15

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

ac
ce

le
ra

tio
n

[m
·s
−2

]

time [s]

Smoothed signal waveform of vibration velocity for
Measurement No. 1 — Accelerometer 5

Original values

Values after smoothing

Figure 25. Measurement No. 1—Smoothed vibration velocity time history of Accelerometer 3.
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Figure 26. Measurement No. 1—Smoothed vibration velocity time history of Accelerometer 4.
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Figure 27. Measurement No. 1—Smoothed vibration velocity time history of Accelerometer 5.
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Figure 28. Measurement No. 1—Smoothed vibration velocity time history of Accelerometer 6.
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Figure 29. Cont.
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Figure 29. Attenuation curves of all 14 measurements.

A plot of the attenuation curves from all 14 measurements can be seen in Figure 30.
It is evident that none of the measurements are identical because they are impacted by a
variety of factors. In addition to the particular placement of the firecracker, no two pieces
are identical. There is sometimes more active substance, sometimes less, and even the
shape does not always match. For this reason, one measurement is insufficient, but multiple
measurements must be taken.
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Table 4. Maximum amplitudes of 14 measurements collected on Accelerometers 1–5.

Maximum Amplitude

Accelerometer 1 Accelerometer 2 Accelerometer 3 Accelerometer 4 Accelerometer 5

Measurement No.1 71.860 55.928 29.723 19.602 13.276
Measurement No.2 51.600 50.000 20.848 16.176 12.559
Measurement No.3 87.200 56.100 17.456 14.600 12.196
Measurement No.4 86.400 54.900 22.384 21.030 13.216
Measurement No.5 67.500 51.100 19.134 17.848 16.873
Measurement No.6 39.762 32.391 27.452 22.000 17.248
Measurement No.7 51.800 47.200 46.600 41.106 26.651
Measurement No.8 60.700 43.700 33.099 26.171 22.750
Measurement No.9 25.737 43.900 13.322 9.110 6.868

Measurement No.10 44.100 18.827 13.205 10.713 6.845
Measurement No.11 48.700 29.779 9.406 8.743 6.092
Measurement No.12 45.400 23.395 21.538 13.041 10.611
Measurement No.13 55.000 22.376 10.584 10.313 8.211
Measurement No.14 57.100 27.925 14.023 10.470 7.439

4. Discussion

Two main parts of the paper are presented, namely the theoretical section and the ex-
perimental section. In the theoretical section, an introduction to explosions and explosives
is provided, along with an approach of how energy is calculated in an explosion and types
of seismic waves. Experimental measurements were conducted in order to represent the ex-
plosion on a small-scale model and demonstrate the occurrence of all types of seismic waves
generated during an explosion. Additionally, in this section, the measurement equipment,
the simulation material as well as a brief description of the measurement methodology are
described. A summary of the measurements is also presented, confirming that dispersive
attenuation has occurred, and all types of waves have reached the accelerometers. Ad-
ditionally, smoothed records, which in this case were not required to be carried out, are
shown in the results chapter as an example of how to deal with the records in more detail.
Additionally, included is a further detailed figure where each wave type can be seen as it
approaches the accelerometers one after the other. As a final conclusion, all measurements
are summarized and evaluated in terms of the attenuation curve.

5. Conclusions

The following information will provide a brief overview of the experimental mea-
surement. The presented results confirmed what we already knew about the dispersive
attenuation of explosions.

The following graph (Figure 31) represents one of the measurements where dispersive
attenuation occurred. Generally, acceleration decreases with increasing distance from the
initial explosion point. The measurements confirm that there is a significant difference
in acceleration decrement between positions close to and far from an explosion. This is
because when an explosion occurs, it creates a shockwave that moves in all directions. The
closer you are to the explosion, the more intense this shockwave is.

In the future, more experimental measurements need to be carried out with a larger
amount of charge. This will help us better understand how explosives work and how we
can better protect structures and their occupants to make them safer.

The research presented in the paper achieves comparable results to research presented
in various international publications. Among the first attempts to compare experiment
and computation in the field of small-scale models and explosions is the work detailed
in [18]. However, similar research applied to RC models is presented in [19]. A detailed
analysis of a small-scale explosion site with tracking of fragments and particles scattering
can be found in the results of [20]. Another alternative small-scale explosion, the wire
explosion, was considered in [21]. Additionally, very comparable results with extensive
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theoretical-experimental analysis can be found in the scientific study published in [22],
where the authors focus on wave processes. At this point, it is still necessary to mention the
significant contribution of the publications to the practical tasks of geotechnical engineering
focusing on small-scale physical models, which are presented in [23,24]. The implications
and applicability of the significance of the presented research work can be found in the
practical studies of civil engineering in [25–27]. However, the significance of the presented
research is mainly hidden in its potential for further investigation of the presented physical
phenomena. This practical research is currently being continued and the correlation of in
situ results, numerical calculations, analytical assumptions, and actual full-scale experiment
is very interesting and will soon also be presented in a scientific publication. The presented
problem has also been addressed by experts in Ljubljana, Slovenia; their results are found
in [28–34].
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Figure 31. An attenuation curve of measurement No. 1, where the largest value of acceleration
is measured by Accelerometer 1, which is closest to the explosion location. The curve gradually
decreases until the lowest value is at Accelerometer 5.
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