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Abstract: Based on an underground structure located at a soft loess site in Xi’an as the engineering
background, this paper investigated a seismic response and damage model of subway stations at a
soft loess site using a large-scale shaking table test, considering the different characteristics of ground
motions. The quantitative analysis of the acceleration response and the seismic subsidence of the
soft loess site were subjected to different earthquake excitations; based on the experimental results
and the corresponding analysis, the development and distribution of seismic structural damage
were studied, and the damage mechanism of underground structures in a soft loess area under a
strong earthquake was explored. The results indicate that the peak accelerations of the site soil
first remained unchanged then increased significantly along the soil height, and the amplification
effect of the acceleration response was the most significant at the soil surface. The soft loess soil
underwent significant subsidence, and the underground structure was raised compared to both
sides of the cover soil; the collapsibility of the soft loess soil was sensitive to strong earthquakes
with vertical components. The underground structures in soft loess suffered heavy damage, which
rapidly entered the elastic–plastic stage. The composite effect of the collapsibility and vertical seismic
excitation impaired the load-carrying capacity of the middle columns, and the strong horizontal
seismic excitation enlarged the lateral force and accelerated structural damage development; the
underground structure reached failure when plastic damage expended most of the middle columns
and structural joints. These results are significant for the seismic design of underground structures in
adverse soil conditions.

Keywords: underground structures; model test; soft loess; dynamic response; failure mechanism

1. Introduction

With rapid urbanization, the contradiction between a high-density population and
limited ground space is becoming increasingly prominent. Accordingly, lots of attention
has been paid to underground space to relieve the pressure on the limited urban space [1–3].
Subway stations, as a kind of common underground structure in cities, play an important
role in the operation safety of urban rail transit [4]. To guarantee smooth traffic flows and
the demand for crowd gathering, subway stations possess large spaces, which could be
defined as large underground structures. It is unavoidable to build large underground
structures in seismic areas with adverse geological conditions [5–8]. The complexity of the
soil–structure interactions (SSIs) at adverse geological sites makes the seismic responses
of underground structures very distinct from their regular responses [9]. Therefore, it
is urgent to obtain the damage mechanism of large underground structures subjected to
strong earthquakes.

As a common geologic condition, soft loess is causing widespread natural hazard
around the world [10–12], which has particular movement characteristics and seismic

Buildings 2023, 13, 1710. https://doi.org/10.3390/buildings13071710 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings13071710
https://doi.org/10.3390/buildings13071710
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://doi.org/10.3390/buildings13071710
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings13071710?type=check_update&version=1


Buildings 2023, 13, 1710 2 of 17

properties [13,14]. Among them, the main characteristic of its movement is vertical sub-
sidence, which leads to varying degrees of continuous damage to many buildings and
structures [15,16]. Loess subsidence is related to groundwater activity, and the structural
damage could be reduced by controlling groundwater extraction [17,18], while the seismic
effect of soft loess on structural damage cannot be eliminated [19], which should be paid
great attention by engineers and scholars.

Numerical analyses have been widely used to investigate the seismic behaviors and
damage mechanisms of engineering structures, considering SSI effects. Maleska and
Beben [20] analyzed the impact of soil cover depth on large-span CSP bridges under seismic
excitation with the FEA numerical program; it was found that the reaction of the bridge
did not always increase with an increasing depth of soil cover. Forcellini [21] assessed the
seismic vulnerability of a 20-floor building, with consideration of SSI effects, and he found
that neglecting SSI effects would underestimate the seismic damage for structural and non-
structural members. Jalali et al. [22] investigated the seismic performance of a 5-story shear
building with semi-actively controlled MR dampers, considering SSI effects under different
earthquake records; it was concluded that the seismic responses of structures in soft soil
conditions were greater than those in other soil conditions (i.e., fixed-base and dense,
medium, and soft soil support conditions). Seismic studies of underground structures
were also carried out by some scholars. Huo et al. [23] and Parra-Montesinos et al. [24]
conducted dynamic analyses to understand the influence of a dynamic structure–soil
interaction on the seismic behavior of underground tunnels; however, the plastic damage
in the underground structures could not be simulated because the underground structures
were modeled as elastic materials. Li and Chen [25] and Ma et al. [26,27] developed 3D
FE models of the underground structures to analyze the damage pattern of Dakai station
under an earthquake, considering the elastoplastic material properties of the concrete and
steel rebars. It could be concluded that the damage pattern of Dakai station showed an “M”
mode, which was due to the collapse of the center columns.

In the past two decades, many researchers have conducted scale-model tests of the
seismic responses of underground structures in difficult site conditions. Iwatate et al. [28]
and Ohtomo et al. [29] carried out dynamic tests on an underground station and a pipeline,
and a deformation model and dynamic characteristics were obtained. Chen et al. [30,31]
studied the seismic behavior and seismic damage mechanism of a utility tunnel subjected
to non-uniform earthquake excitations by large-scale shaking table tests. Chen et al. [32,33]
and Zhuang et al. [34,35] conducted experimental and numerical studies on the dynamic
responses and failure mechanisms of underground structures in soft and liquefiable sites. It
was derived that the seismic performances of the underground structures were substantially
dominated by the deformation of the surrounding soils; the underground structures in
soft or liquefiable soils experienced greater damage than those in soils without adverse
geological conditions, which was due to the larger deformation of the soils. However, the
seismic codes of underground structures in China are unsuitable for assessing the seismic
performances of large underground structures in adverse geological conditions under
strong earthquakes [36]. In summary, the studies of the seismic responses of underground
structures in adverse site conditions were generally focused on liquefiable and soft sites.
Seismic research on underground structures at soft loess sites is still in its infancy [37],
and the seismic damage mechanism of underground structures in this condition under
strong earthquakes is not clear. Hence, it is crucial to investigate the seismic responses of
underground structures at soft loess sites.

This paper presents an experimental study on the underground structures at a
soft loess site. The seismic responses of the site’s soil and underground structure were
investigated, and the damage mechanism of the underground structures at the soft
loess site under strong earthquakes was explored. The conclusions could provide the
scientific basis for evaluating the seismic performances of large underground structures
in adverse geological conditions, which would provide a reference for the seismic design
of underground structures.
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2. Test Design
2.1. Test Setup

The test model was designed and fabricated according to a part of the actual project
of the Kangfu Road subway station. Shaking table tests were conducted in the Key Lab
of Structure Engineering and Earthquake Resistance, School of Civil Engineering, Xi’an
University of Architecture & Technology.

The shaking table tests were performed on a shaking table with dimensions of
4.1 m × 4.1 m in plane and a maximum bearing capacity of 25 tons. In addition, seis-
mic loads in three directions could be applied simultaneously by the shaking table system,
where the maximum accelerations in the longitudinal direction (X), transverse direction
(Y), and vertical direction (Z) were 1.5 g, 1.0 g, and 1.0 g, respectively. Meanwhile, a flexible
model box composed of 14 layers of rectangular steel tubes was adopted as the SSI system
container for the test (see Figure 1), which could achieve the shear deformation for site
soils subjected to earthquakes [38]. A high-damping rubber membrane and a polystyrene
foam board were arranged on the inwall of the soil container to reduce the boundary
effect. Additionally, several wood blocks were posted on the bottom of the soil container
to increase the friction between the model soil and the container. The dimensions of the
container were 3.0 m in length, 1.5 m in width, and 1.5 m in height.

Buildings 2023, 13, x FOR PEER REVIEW 3 of 17 
 

geological conditions, which would provide a reference for the seismic design of under-
ground structures. 

2. Test Design 
2.1. Test Setup 

The test model was designed and fabricated according to a part of the actual project 
of the Kangfu Road subway station. Shaking table tests were conducted in the Key Lab of 
Structure Engineering and Earthquake Resistance, School of Civil Engineering, Xi’an Uni-
versity of Architecture & Technology.  

The shaking table tests were performed on a shaking table with dimensions of 4.1 m 
× 4.1 m in plane and a maximum bearing capacity of 25 tons. In addition, seismic loads in 
three directions could be applied simultaneously by the shaking table system, where the 
maximum accelerations in the longitudinal direction (X), transverse direction (Y), and ver-
tical direction (Z) were 1.5 g, 1.0 g, and 1.0 g, respectively. Meanwhile, a flexible model 
box composed of 14 layers of rectangular steel tubes was adopted as the SSI system con-
tainer for the test (see Figure 1), which could achieve the shear deformation for site soils 
subjected to earthquakes [38]. A high-damping rubber membrane and a polystyrene foam 
board were arranged on the inwall of the soil container to reduce the boundary effect. Addi-
tionally, several wood blocks were posted on the bottom of the soil container to increase 
the friction between the model soil and the container. The dimensions of the container 
were 3.0 m in length, 1.5 m in width, and 1.5 m in height.  

 
Figure 1. Flexible model box. 

2.2. Similarity Law and Model Construction 
Based on the Buckingham π theorem, the similarity criteria for the test model were 

determined. Among them, the geometry, the dynamic shearing modulus, and the acceler-
ation were selected as the basic parameters, and other similarities were deduced, as sum-
marized in Table 1. The underground structure model was a three-story frame structure 
of the Kangfu Road project in Xi’an, which is located at a soft loess site. The subway station 
structure has a width of 20.5 m and a height of 13.21 m. The interval distances of the mid-
dle columns are 5.2 m and 9.8 m in the width and longitudinal directions. The groundwa-
ter at the site was determined to be phreatic water by drilling, and its activity was rela-
tively stable. The buried depth of the stable water level varied from 4.80 to 5.00 m, and the 
groundwater activity was neglected due to the research purpose. Based on the similarity 
coefficient of the length, the width, height, and length of the model structure were deter-
mined to be 513 mm, 330 mm, and 1040 mm, respectively. A cross-section of the model is 
shown in Figure 2. 

Figure 1. Flexible model box.

2.2. Similarity Law and Model Construction

Based on the Buckingham π theorem, the similarity criteria for the test model
were determined. Among them, the geometry, the dynamic shearing modulus, and the
acceleration were selected as the basic parameters, and other similarities were deduced,
as summarized in Table 1. The underground structure model was a three-story frame
structure of the Kangfu Road project in Xi’an, which is located at a soft loess site. The
subway station structure has a width of 20.5 m and a height of 13.21 m. The interval
distances of the middle columns are 5.2 m and 9.8 m in the width and longitudinal
directions. The groundwater at the site was determined to be phreatic water by drilling,
and its activity was relatively stable. The buried depth of the stable water level varied
from 4.80 to 5.00 m, and the groundwater activity was neglected due to the research
purpose. Based on the similarity coefficient of the length, the width, height, and length of
the model structure were determined to be 513 mm, 330 mm, and 1040 mm, respectively.
A cross-section of the model is shown in Figure 2.
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Table 1. Similitude relations.

Variables Parameters Similitude Relations

Geometry l Cl = 1/40

Strain ε Cε = Cσ/CE = 1

Density ρ Cρ = CE/(Cl ·Ca) = 4

Dynamic shearing modulus G, E CE = CG = 1/5

Stress σ Cσ = 1/5

Time t Ct = C1/2
l C−1/2

a = 0.112

Mass m Cm = Cρ·Cl
3 = 0.0000625

Acceleration a Ca = 2
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Figure 2. Dimensions of the model structure: (a) overall view; (b) primary observation section (unit: mm).

To meet the requirements of the similarity relations in the test, micro-particle
concrete and zinc-coated wires were used as the fabrication materials of the under-
ground structure model. The micro-particle concrete consisted of cement, water,
coarse sand, and lime, with a mass ratio of 1:1.2:5:0.5, and samples with dimensions
of 70.7 mm × 70.7 mm × 70.7 mm and 70.7 mm × 70.7 mm × 210 mm were fabricated
for the compressive test and elastic modulus test, respectively. Accordingly, the com-
pressive strength and elastic modulus of the micro-particle concrete were 8.3 MPa and
6.2 GPa, and the tensile strength could be estimated to be 1/10 of the compressive
strength. For the zinc-coated wires, wires with diameters of 0.7–1.2 mm were used for
beams and columns, and those with a diameter of 0.7 mm were used for plates and
side walls; after material testing, the tensile yield strength of the zinc-coated wires
was 1190 MPa, and the corresponding elastic modulus was 200 GPa. Figure 3 depicts
the fabrication procedure of the model station. It was noted that a foam board with a
thickness of 2 mm was used to seal the model structure to prevent the inflow of soil and
water during the test. This was the same as the fabrication method in reference [39].
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Meanwhile, a mixture of loess collected from the prototype site and sawdust was
selected as the material of the model soil, and the dynamic shearing modulus of the
model soil was determined using the relative stiffness for a study on the soil–structure
interaction [36]. The model soil was designed with a 1280 mm thick loess layer, and the
subway station was placed in the loess layer with around 120 mm of plain fill above the
station, as shown in Figure 4. It was noted that the dimensions of the SSI system were
scaled due to the size of the soil box and the bearing capacity of the shaking table. An
open-cut method was adopted for the model station, which was fully consistent with the
actual situation. Consequently, the structural responses for the prototype scale could be
deduced using the similarity relationship. Before the test, a series of geotechnical tests on
different soil samples were conducted to obtain the target parameters, and the designed
compaction and moisture content were determined. During the fabrication of the model
soil, the loess soil was filled and compacted layer by layer, and every compacted layer was
taken as 20 cm. The mechanical properties of the loess soil for the prototype and the model
sites were obtained via resonant column and dynamic triaxial tests, and the main material
properties are listed in Table 2.
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Table 2. Material properties of the loess soil.

Material Density (kg/m3) Water Content (%) Internal Friction
Angle (◦) Cohesion (kPa) Dynamic Shear

Modulus (MPa)

Prototype 1780 21.8 23.5 22.1 205.21

Model 1640 23.4 21.5 8.46 41.23

2.3. Instrumentation

The seismic response characteristics of the underground structure at the soft loess
site were measured with different sensors consisting of accelerometers, displacement
meters, and strain gauges. Among these sensors, accelerometers were used to record
the acceleration response of the subway station and the acceleration response of the
soil at the soft loess site. The concrete strain of the sidewalls, middle columns, and
slabs was measured with 32 strain gauges. The displacement meters were used to
analyze the horizontal and vertical displacement of the model soil. The sensor layout
is shown in Figure 5.
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2.4. Loading Protocol

To consider the effects of different frequency spectrum characteristics of ground
motions on the seismic response of the underground structure at the soft loess site, three
ground motions were used as seismic excitation inputs in the test: the Jiangyou ground
motion record (Wenchuan earthquake on 12 May 2008, Sichuan, China, Jiangyou Station),
the El Centro ground motion record (Imperial Valley earthquake on 18 May 1940, CA,
USA, El Centro Array #9 Station), and Xi’an artificial motion (synthesized based on the site
condition for the prototype underground structure). The acceleration histories and Fourier
spectra of the unscaled ground motions are shown in Figure 6.
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Figure 6. Acceleration histories and Fourier spectra of seismic motion inputs: (a) Jiangyou motion;
(b) El Centro motion; (c) Xi’an artificial motion.
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Table 3 lists the loading cases. According to the similitude relation of the time and
acceleration (see Table 1), these ground motions were scaled in amplitude and duration.
The earthquake intensities for the test varied from 0.2 g to 1.2 g (e.g., PGA varied from
0.1 g to 0.6 g on the prototype scale), and the effect of the vertical earthquake component
was considered in cases with strong earthquakes (e.g., PGA = 1.2 g on the model scale).

Table 3. Loading cases.

Working Condition
Serial Number

Input Earthquake Wave Working Condition Code
Peak Acceleration (g)

Horizontal Direction Vertical Direction

1 Flat noise F1 0.1 0.1

2 Xi’an artificial motion RG1-H 0.2 -

3 El Centro motion El1-H 0.2 -

4 Jiangyou motion JY1-H 0.2 -

5 Flat noise F2 0.1 0.1

6 Xi’an artificial motion RG2-H 0.4 -

7 El Centro motion El2-H 0.4 -

8 Jiangyou motion JY2-H 0.4 -

9 Flat noise F3 0.1 0.1

10 Xi’an artificial motion RG3-H 0.8 -

11 El Centro motion El3-H 0.8 -

12 Jiangyou motion JY3-H 0.8 -

13 Flat noise F4 0.1 0.1

14 Xi’an artificial motion RG4-H 1.2 -

15 Xi’an artificial motion RG4-HV 1.2 0.78

16 El Centro motion El4-H 1.2 -

17 El Centro motion El4-HV 1.2 0.78

18 Jiangyou motion JY4-H 1.2 -

19 Jiangyou motion JY4-HV 1.2 0.78

20 Flat noise F-5 0.1 0.1

3. Test Results and Interpretation
3.1. Acceleration Response of the Site Soil

The acceleration response of the loess soil with the soil depth was investigated through
the peak accelerations of AS1, AS2, AS3, and AS4 for different input waves, as shown in
Figures 7 and 8. For input waves at a low PGA (e.g., 0.2 g), the difference in the peak
acceleration of the site soil along the depth was not obvious. For input waves at a higher
PGA (e.g., 0.4 g), the peak accelerations first remained unchanged then increased signifi-
cantly along the height of model’s soil. With the increasing PGAs, the peak accelerations
first decreased slowly then increased significantly along the height of model’s soil. It was
noted that the accelerations of points below the soil surface were less than or close to the
input PGAs, and those of points measured at the soil surface were greater than the input
PGAs and significantly greater than other measuring points, which indicated that the soil’s
acceleration amplification effect was the most significant at the soil surface; meanwhile,
the location of the model station had an obvious influence on acceleration responses of the
site’s soil. These results were similar to the findings of previous experimental studies on
soft soils’ acceleration responses [36].
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Figure 7. Peak acceleration of the site soil with the depth: (a) Xi’an artificial motion; (b) El Centro
motion; (c) Jiangyou motion.
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Figure 8. Acceleration history curves of measuring point at ground surface under earthquake
excitation: (a) Xi’an artificial motion; (b) El Centro motion; (c) Jiangyou motion.
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In addition, the change trend of the soil’s peak accelerations with the depth was
basically consistent with and without considering the vertical earthquake component, and
the acceleration response of each measuring point in the loess soil was more intense when
the effect of the vertical earthquake component was considered.

3.2. Displacement Response of Model Soil

The lateral deformation of the model soil was investigated by comparing the peak
displacement values obtained at measuring points D1, D2, and D3 for different input
waves, as depicted in Figures 9 and 10. The peak lateral displacement of the site soil
along the height was basically unchanged when the PGA of the input waves was low
(e.g., 0.2 g and 0.4 g). As the input PGAs increased, the peak lateral displacement of
the model soil increased with the increase in model soil height. For cases with high
PGAs, the peak lateral displacement of each measuring point in the model box increased
significantly. It was also noted that the site soil exhibited a shear deformation along the
height direction, indicating that the model soil box used in this test could simulate the
shear deformation of the site soil.

Buildings 2023, 13, x FOR PEER REVIEW 9 of 17 
 

3.2. Displacement Response of Model Soil 
The lateral deformation of the model soil was investigated by comparing the peak 

displacement values obtained at measuring points D1, D2, and D3 for different input 
waves, as depicted in Figures 9 and 10. The peak lateral displacement of the site soil along 
the height was basically unchanged when the PGA of the input waves was low (e.g., 0.2 g 
and 0.4 g). As the input PGAs increased, the peak lateral displacement of the model soil 
increased with the increase in model soil height. For cases with high PGAs, the peak lat-
eral displacement of each measuring point in the model box increased significantly. It was 
also noted that the site soil exhibited a shear deformation along the height direction, indi-
cating that the model soil box used in this test could simulate the shear deformation of the 
site soil. 

  
(a) (b) 

 

 

(c)  

Figure 9. Peak lateral displacement of the site soil with the depth: (a) Xi’an artificial motion; (b) El 
Centro motion; (c) Jiangyou motion. 

  
(a) (b) 

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

 RG-H-0.2g
 RG-H-0.4g
 RG-H-0.8g
 RG-H-1.2g
 RG-HV-1.2g

 

 
M

od
el

 so
il 

he
ig

ht
 /m

Peak lateral displacement
0 5 10 15 20

0.0

0.5

1.0

1.5

 EL-H-0.2g
 EL-H-0.4g
 EL-H-0.8g
 EL-H-1.2g
 EL-HV-1.2g

 

 
M

od
el

 so
il 

he
ig

ht
 /m

Peak lateral displacement

 El1-H
 El2-H
 El3-H
 El4-H
 El4-HV

 El-H-0.2g
 El-H-0.4g
 El-H-0.8g
 El-H-1.2g
 El-HV-1.2g

0 5 10 15 20 25 30 35
0.0

0.5

1.0

1.5

 JY-H-0.2g
 JY-H-0.4g
 JY-H-0.8g
 JY-H-1.2g
 JY-HV-1.2g

 

 
M

od
el

 so
il 

he
ig

ht
 /m

Peak lateral displacement

 

0 5 10 15 20
-10

-5

0

5

10  RG-H-0.8g

 

 
D

isp
la

ce
m

en
t /

m
m

Time /s

 

0 5 10 15 20
-10

-5

0

5

10  EL-H-0.8g

 

 
D

isp
la

ce
m

en
t /

m
m

Time /s

Figure 9. Peak lateral displacement of the site soil with the depth: (a) Xi’an artificial motion; (b) El
Centro motion; (c) Jiangyou motion.

3.3. Subsidence Analysis of Model Soil

The seismic subsidence of the loess soil was investigated by comparing the peak
subsidence values obtained at measuring points J1, J2, and J3 for various loading conditions,
as shown in Figure 11. For input waves at low PGAs (e.g., 0.2 g), the peak values of
these measuring points were relatively small, and the differences in the peak subsidence
values among the different measuring points were not obvious, indicating that the seismic
subsidence of the soft loess soil was not obvious. As the PGAs of the input waves increased,
the peak subsidence values increased generally, and the differences in the values among
the different measuring points became obvious, which showed a lower value at the point
above the underground structure and higher values at other points. This indicated that the
model soil underwent significant subsidence, and the underground structure was raised
compared to both sides of the cover soil. Similar trends could be observed in experimental
studies on seismic-induced ground surface settlement performed by Tang et al. [36] and
Chen et al. [5]. The settlement values in this test were significantly less than the soil’s
depth, which indicated that the changes in the soil’s density could be negligible. As
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for cases of bidirectional input motions with a horizontal PGA of 1.2 g, the subsidence
values were significantly enlarged, and the differences in subsidence values among the
different measuring points were much larger compared to cases of single horizontal input
motions. This demonstrated that the collapsibility of the soft loess soil was sensitive to
strong earthquakes with vertical components.
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Figure 10. Histories of displacement obtained at measuring point D3 under earthquake excitations:
(a) Xi’an artificial motion; (b) El Centro motion; (c) Jiangyou motion.
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Figure 11. Subsidence of the site soil at the soil surface: (a) Xi’an artificial motion; (b) El Centro
motion; (c) Jiangyou motion.



Buildings 2023, 13, 1710 11 of 17

3.4. Acceleration Response of Model Station

Figure 12 presents the peak structural acceleration along the height for the under-
ground structure at the soft loess site, including cases with and without the vertical earth-
quake component. Figure 13 gives the acceleration histories obtained at the top floor under
earthquake excitations. For input motions with low PGAs (e.g., 0.2 g and 0.4 g), the peak
structural accelerations increased with the height of the subway station, which showed an
inverted triangle shape. For input waves with a high PGA (e.g., 0.8 g), the peak acceler-
ations of the subway station decreased first and then increased along the station height,
which showed a k-shape distribution. Overall, the underground structure moved along
with the surrounding soil subjected to earthquakes with low PGAs, causing the inverted
triangle shape for the deformation of the underground structure due to the shear defor-
mation of the surrounding soil. As for cases with high PGAs, collisions and separations
would occur at the interaction between the underground structure and the surrounding
soil; the distribution of the peak structural accelerations along the height was related to the
stiffness distribution of the underground structure at some moments, and the stiffness of
the station was larger in the top slab and the bottom slab, resulting in a k-shape distribution,
as mentioned. These trends were in good agreement with those in reference [40], which
indicated that it was easy to cause the incongruous movement of underground structures
in soft loess soil.
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Figure 12. Peak structural acceleration of the underground structure in soft loess soil: (a) Xi’an
artificial motion; (b) El Centro motion; (c) Jiangyou motion.

It can also be seen that the peak accelerations of the station were obviously amplified
when the vertical earthquake was considered by comparing the cases with and without
the vertical earthquake component. The vertical earthquake aggravated the nonlinearity
and collapsibility of loess soil, and the void area appeared easily, resulting in a weaker
SSI interaction.
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Figure 13. Acceleration histories obtained at measuring point A3 under earthquake excitations:
(a) Xi’an artificial motion; (b) El Centro motion; (c) Jiangyou motion.

3.5. Structural Strain Response

Figure 14 depicts the peak tensile strain of the structural components for the model sta-
tion subjected to Jiangyou motions, and the locations where the maximum strain occurred
are marked in red. It was noted that the limited tensile strain of the micro-particles was
about 95 × 10−6, which was also adopted in reference [38]. For horizontal input motions
with a low PGA (e.g., 0.2 g), the maximum strain occurred in the bottom beam–middle
column joint, which was obviously larger than the strain in other parts; the peak strain of
the measuring points did not exceed the limited strain, indicating that the underground
structure was in the elastic working state. As the input PGAs increased (e.g., PGA = 0.4 g
and PGA = 0.8 g), the peak tensile strain at the bottom beam–column joints (S5 and S8) and
middle plate–column joints (S22) exceed the limited tensile strain, and plastic deformation
occurred on most areas in the middle columns, while the tensile damage on the plates and
sidewalls was insignificant. For horizontal input motions with PGA = 1.2 g, the seismic
damage dramatically developed in different structural components, and the peak tensile
strain occurred at the plate near the plate–side wall joint (S20). The plate–column joints
(S22, S27, and S30) and the beam–column joints (S5, S8, and S13) all exceeded the limited
tensile strain. For bidirectional input motions with horizontal PGA = 1.2 g, plastic damage
developed in most areas in the model structure, including the plates, the plate–column
joints, and the beam–column joints.

Generally, some experimental results on plastic damage distribution were similar to
the damage distribution of the Daikai station [28]. It was noted that severe failure was
observed on the central columns of the Daikai station, while the structural members of the
underground structures in the adverse site soil suffered more severe damage than those in
common site soil under the same earthquake excitation, and the underground structure
rapidly failed in soft loess soil.
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Figure 14. Peak tensile strains of the underground structure subjected to Jiangyou seismic motions:
(a) 0.2 g; (b) 0.4 g; (c) 0.8 g; (d) 1.2 g; (e) 1.2 g-HV (unit: 10−6).

3.6. Failure Mechanism Analysis

According to the experimental analysis, the damage development process of the
underground structure in the soft loess area under a strong earthquake with horizontal and
vertical components is shown in Figure 15. The seismic damage appeared continuously
in weak structural members or regions with high stress. Then, the underground structure
rapidly entered into the elastoplastic stage. First, some plastic damage appeared in the
middle plate–bottom beam joints and middle plate–middle column joints. Subsequently,
the damaged regions developed continuously: the plastic damage appeared successively
in the top plate–top beam joints and middle plate–sidewall joints. Finally, most of the
structural members were damaged, and the structure was destroyed.

It was found that the seismic failure of the underground structures in the soft loess
region could be concluded: (1) The underground structures in soft loess suffered heavy
damage, especially the middle columns, which was due to the obvious nonlinearity and
collapsibility of loess soil under a strong earthquake. (2) They were prone to serious damage
in the transfer areas between the vertical components and horizontal components because
the structural force was loaded heavily in the joints under seismic excitation. (3) The com-
posite effect of the collapsibility and vertical seismic excitation impaired the load-carrying
capacity of the middle columns, and the strong horizontal seismic excitation enlarged
the lateral force and accelerated the structural damage development; the underground
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structure reached failure when the plastic damage expended most of the middle columns
and structural joints. Therefore, it is recommended to adopt the necessary reinforcement
measures on all the structural joints and middle columns.

Buildings 2023, 13, x FOR PEER REVIEW 14 of 17 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 15. (a–f) Damage development process of the underground structure. 

It was found that the seismic failure of the underground structures in the soft loess 
region could be concluded: (1) The underground structures in soft loess suffered heavy 
damage, especially the middle columns, which was due to the obvious nonlinearity and 
collapsibility of loess soil under a strong earthquake. (2) They were prone to serious dam-
age in the transfer areas between the vertical components and horizontal components be-
cause the structural force was loaded heavily in the joints under seismic excitation. (3) The 
composite effect of the collapsibility and vertical seismic excitation impaired the load-car-
rying capacity of the middle columns, and the strong horizontal seismic excitation en-
larged the lateral force and accelerated the structural damage development; the under-
ground structure reached failure when the plastic damage expended most of the middle 
columns and structural joints. Therefore, it is recommended to adopt the necessary rein-
forcement measures on all the structural joints and middle columns. 

4. Conclusions 
In this paper, the seismic behavior of an underground station in soft loess that is sub-

jected to strong earthquake excitations was explored by conducting shaking table tests on 
scaled SSI models. Emphasis was placed on the seismic response characteristics of loess 
soil and the influence of the soft loess soil conditions on the seismic response and damage 
model of the underground structure. Conclusions were drawn as follows: 
(1) When the PGA of the input motions was low, the differences in the peak accelerations 

of the site soil along the height were not obvious. As the PGA of the earthquake waves 
increased, the peak accelerations first remained unchanged then increased 

Figure 15. (a–f) Damage development process of the underground structure.

4. Conclusions

In this paper, the seismic behavior of an underground station in soft loess that is
subjected to strong earthquake excitations was explored by conducting shaking table tests
on scaled SSI models. Emphasis was placed on the seismic response characteristics of loess
soil and the influence of the soft loess soil conditions on the seismic response and damage
model of the underground structure. Conclusions were drawn as follows:

(1) When the PGA of the input motions was low, the differences in the peak accelerations
of the site soil along the height were not obvious. As the PGA of the earthquake
waves increased, the peak accelerations first remained unchanged then increased
significantly along the soil height, which indicated that the location of the model
station had an obvious influence on the acceleration responses of the site soil.

(2) Under strong earthquakes, the soft loess soil underwent significant subsidence,
and the underground structure was raised compared to both sides of the cover soil.
The settlement values in this test were significantly less than the soil’s depth, which
indicated that the changes in the soil’s density could be negligible. Additionally,
the collapsibility of the soft loess soil was sensitive to strong earthquakes with
vertical components.
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(3) The subway station moved along with the surrounding soil under earthquakes with
low seismic intensities. As for cases with high seismic intensities or cases with vertical
earthquakes, the peak accelerations of the subway station were obviously increased,
which indicated that it was easy to cause the incongruous movement of underground
structures in soft loess soil because the void area between the underground struc-
ture and the surrounding soils appeared easily, which weakened the underground
structure–soil interaction.

(4) Under strong earthquakes, the seismic damage of the underground structure in the
soft loess area appeared successively in the middle columns and structural joints (e.g.,
the plate–column and beam–column joints), and the structure rapidly entered the
elastic–plastic stage.

(5) The composite effect of the collapsibility and vertical seismic excitation impaired the
load-carrying capacity of the middle columns, and the strong horizontal seismic exci-
tation enlarged the lateral force and accelerated the structural damage development;
the underground structure reached failure when the plastic damage expended most
of the middle columns and structural joints.

As a consequence, this paper shows that an adverse site condition has a significant
impact on the seismic damage of underground structures, and necessary measures need to
be proposed to improve the seismic performances of underground structures (i.e., isolation
and reinforcement measures), which will form the subject of further research.
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