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Abstract: Passive energy dissipation systems and devices are helpful in mitigating the danger of
earthquake damage to structures. Metallic slit dampers (MSDs) are one of the most efficient and
cost-effective solutions for decreasing seismic energy intake. The potential importance of MSDs in
managing vibrations and limiting structural fatigue continues to grow as research advances and new
materials and designs are introduced. This study evaluated the seismic performance of single-plate
MSDs (SPMSDs) through a combination of numerical simulation and assessment of experimental
results. ABAQUS software was used to create an assembly consisting of endplates, bolts, and SPMSDs.
A real-world earthquake scenario was simulated using cyclic loads based on ASCE/SEI standards,
and displacement-measuring devices such as strain gauges and LVDT were employed to record
the behavior of the SPMSDs. The results of the experiment are used to assess the compliance of
the SPMSDs and discuss their behavior as they undergo minimum and maximum displacements
due to minimum and maximum applied forces. The energy dissipation capabilities of the dampers
are presented by analyzing and comparing the area of their hysteresis loops, equivalent viscous
damping, and their damping ratios. Actual failure modes are identified and shown to describe the
limitations and potential vulnerability of the dampers. The relative error between the lowest and
greatest recorded forces from experimental data and numerical simulation ranges from 4.4% to 5.7%
for SPMSD 1 and from 1.6% to 2.1% for SPMSD 2, respectively. These deviation values represent
a satisfactory level of precision, demonstrating that the numerical simulation accurately predicts
the actual performance and behavior of the dampers when subjected to cyclic stress. The topology
optimization performed in this study yielded an improved geometry of the SPMSD suited for a
corresponding maximum considered earthquake (MCER) displacement of ±33 mm. This research
also suggests practical implementations of the investigated and improved SPMSDs.

Keywords: passive energy dissipation device; single-plate metallic slit damper (SPMSD); cyclic load;
ABAQUS simulation; topology optimization; maximum considered earthquake (MCER)

1. Introduction

Engineers and architects must remain vigilant in designing buildings that are able to
withstand the loads caused by earthquakes. Numerous studies have produced distinct
methods to design, manufacture, and evaluate the instrumentation of hysteretic devices in
earthquake-resistant structures [1]. One of the most efficient and cost-effective techniques
for reducing the intake of seismic energy is the use of metallic-hysteretic dampers, which
concentrate on inelastic deformation [2]. The advantageous characteristics of hysteretic
energy dissipation devices reduce the risk of earthquake damage to structures due to their
familiar material behavior [3] and modifiable design [4]. Foti et al. conclude that energy
dissipators are efficient in reducing earthquake-induced forces [5]. They can also be used
for retrofitting or upgrading [6] and can serve as protection against structural damage [7].
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The damage in an idealized structure subjected to a single historical earthquake record can
be quantified via a damage measure (DM), as studied by Symans et al. [8]. Thus, a large
enough number and appropriate design of energy dissipators maintain inter-story drifts
between reasonable bounds.

Metallic slit dampers (MSDs) effectively dissipate energy and reduce vibrations in
structures [9]. In recent studies, MSDs were investigated and proven to be optimized
dynamically [10], numerically [11], and according to the bi-directional evolutionary struc-
tural [12] technique. MSDs serve dual functions [13], upgrade seismic performance through
the optimal placement methodology [14], have a B/D ratio greater than 2 [15], are capable
of yielding in both flexure and shear [16], are used to reinforce braced frames [17], can be
integrated into a structure [18], and can be applied to concrete frames [19]. One of the main
advantages of MSDs is their ability to operate over a wide range of frequencies, making
them effective at reducing both low- and high-frequency vibrations. They are also highly
resistant to fatigue [20] and can withstand large displacements, which are highly influenced
by earthquakes and other structural parameters that they carry [21], including ductility and
cumulative displacement parameters [22], the improved initial stiffness criterion [23], and
different aspect ratios [24] without losing their effectiveness. As research progresses and
new materials and designs are introduced, the potential significance of MSDs in controlling
vibrations and minimizing structural fatigue is expected to increase. It is important to
evaluate the seismic performance of MSDs to ensure their effectiveness in reducing the
seismic response of structures. Without proper evaluation, the effectiveness of the dampers
cannot be ensured, which could potentially result in inadequate seismic protection and
structural damage. This paper employs a manufacturing technique using a high-pressure
water jet with accuracy to tenths of a digit. Dampers produced through this method lead to
improved reliability and predictable response. The bolt-type configuration and compact
size of our single-plate MSD (SPMSD) offers adaptability for seamless integrations. As it is
made of durable SS275 steel for an extended service life, minimal maintenance requirements
and associated costs are expected. This study is specifically aimed at assessing the seismic
performance of SPMSD through a combination of numerical and experimental analyses.

2. Assessment of Seismic Performance

This section offers a comprehensive overview of the two widely utilized assessments
for evaluating the seismic performance of dampers. We discuss both the experimental
approach and the combined experimental and numerical method, drawing insights from
previous and ongoing research. These insights form the basis for establishing the procedural
steps to assess the seismic performance of our SPMSD.

2.1. Experimental Evaluation Process of MSDs

MSDs are tested experimentally by subjecting them to simulated seismic stresses in a
controlled laboratory environment. Their vibration is evaluated through their cumulative
dissipated plastic energy induced during hysteretic behavior [25]. MSDs are placed in
a ground-connected structure during the experiment and a seismic load is then applied
to the structure. Generally, the experiment is performed multiple times under different
loading situations to evaluate the dampers’ performance. The experimental data from these
tests is then examined to determine the effectiveness of the MSDs in reducing the seismic
response of the structure. As an example, through experimental evaluation, Bae et al. were
able to conclude that increasing the height-to-width ratio of dampers results in reduced
structural deformation [26]. Sensors are usually placed at various locations to measure
displacement, acceleration, and other important parameters defined and chosen prior to
the execution of the experiment. It is obvious that the analysis of the resulting experimental
data is dependent on the sensor instrumentation used. For displacement-related analysis,
transducers such as linear variable differential transducers (LVDTs) may be used to assess
elongation as tensile loads are applied to the specimen [27], as well as axial deformation [28]
and lateral displacement. Meanwhile, strain analysis is achieved by using strain gauges
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for monitoring [29] and measuring direct strain [30] and axial forces [28]. The evaluation
of the seismic performance of dampers and structures may also be performed with the
aid of accelerometers to measure horizontal accelerations and derive optimum yield-shear
force coefficients [28]. Accelerometers measure the resulting peak accelerations to quantify
input energy responses and the elastic spectrum for a comprehensive understanding of a
structure’s dynamic behavior under varying loads, aiding in accurate seismic assessment
and efficient design improvements.

2.2. Combined Numerical and Experimental Evaluation Process of MSDs

Numerical evaluation of MSDs is all about analyzing the performance of dampers
in decreasing a structure’s seismic response using single or multiple computer-based sim-
ulation softwares. To assess the accuracy of simulation models, numerical evaluation
is frequently used in conjunction with the results of an experimental assessment. The
numerical simulation model is developed based on the physical properties and behavior
of the MSDs and the structure they are installed in. Advanced finite element programs
such as ABAQUS and ANSYS software could be used to model the geometry, material
properties, and mechanical behavior of the dampers, as well as the structural properties
and boundary conditions of the building or structure they are or will be installed in. The
numerical model is then exposed to simulated seismic loads, with and without the MSDs,
and the response of the structure is compared. Numerical simulation can be used to forecast
the performance of various damper combinations and optimize their design for specific
applications. The numerical simulation’s accuracy is evaluated by comparing the results to
the experimental data gained from testing the dampers under simulated seismic stresses.
This procedure helps to ensure that the simulation accurately reflects the real-world be-
havior of the dampers and the structure in which they are mounted. Figure 1 depicts a
flowchart for the sequential procedure involved in combining numerical and experimental
methodologies in the evaluation of MSDs, as collated from several studies. The combination
of experimental analysis and numerical modeling allow the creation of a design and fitting
process [13]. For instance, Askariani et al. proved that high energy dissipation capacity can
be achieved by using slit-link beam in an eccentrically braced frame [31]. The sequential
procedure in Figure 1 may be extended to analyzing the design and retrofit of flexible
steel on special moment resisting frames [32]. Effectively combining experimental and
numerical methodologies can improve the seismic characteristics of dampers [33], enhance
their low-cycle fatigue response [34], assess new brace types consisting of two-slit dampers
and one H-type brace [35], and utilize a seismic isolation system for elastoplastic behavior
analysis [36]. The end phase of the flowchart acts as the starting point from which the
extended stages can be undertaken or combined. For example, extending one’s analysis
makes it possible to introduce several things. In the case of Li and Li, a new building design
with additional structural stiffness and good seismic-dissipation is achieved [37]. A damper
comprised of parallel hollow circular plates and an inner shaft was also introduced by
Jarrah et al. [38], while a comb-teeth damper was presented by Garivani et al. [39]. Finally,
other researchers such as Naimi et al. and Koroglu et al. have employed beam section
reduction to improve beam ductility [40] and prevent damage to beam-column joints [41]
through combined experimental and numerical techniques. Overall, the numerical phase
of MSD evaluation is a crucial tool for evaluating and possibly optimizing their perfor-
mance. It is especially beneficial when physical testing is limited or impracticable, or when
evaluating the performance of novel damper designs or configurations.



Buildings 2023, 13, 2188 4 of 22
Buildings 2023, 13, x FOR PEER REVIEW 4 of 23 
 

 

Figure 1. Numerical and experimental evaluation flowchart of MSD analysis. 

3. Methodology 

The procedural steps implemented in this study to examine the seismic performance 

of SPMSDs and better understand their behavior and efficiency in reducing seismic vibra-

tions are shown in Figure 2. A detailed drawing of the specimen for investigation is shown 

in Figure 3. The geometric variation between SPMSD 1 and SPMSD 2 in Table 1 was based 

on the suggestion of Keykhosro Kiani et al. regarding the ideal b/h ratio of dampers [34]. 

 

Figure 2. Procedural steps for experimentally and numerically assessing SPMSDs. 

Figure 1. Numerical and experimental evaluation flowchart of MSD analysis.

3. Methodology

The procedural steps implemented in this study to examine the seismic performance of
SPMSDs and better understand their behavior and efficiency in reducing seismic vibrations
are shown in Figure 2. A detailed drawing of the specimen for investigation is shown in
Figure 3. The geometric variation between SPMSD 1 and SPMSD 2 in Table 1 was based on
the suggestion of Keykhosro Kiani et al. regarding the ideal b/h ratio of dampers [34].
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Figure 3. Geometry of single-plate MSDs: left- single-plate MSD 1(SPMSD 1), right- single-plate
MSD 2 (SPMSD 2).

Table 1. Geometric configuration of dampers.

Damper Strut Size [(b × h × t); [mm]] b/h Ratio Remarks

SPMSD 1 30 × 125 × 16 4.17 Optimized test piece
SPMSD 2 35 × 130 × 16 3.71 Non-optimized test piece

To complement the experimental analysis, a numerical simulation was performed to
replicate the seismic performance of the SPMSDs. The Abaqus software [42] was used to
model an assembly shown in Figure 4. Three components make up the model: a damper, a
bolt, and the endplate. Using a 3D modelling space, a solid-shape deformable type was
created by means of extrusion. In general, plastic deformation increases after the yielding of
steel and is accompanied by a hardening phenomenon as stress increases. To simulate the
appropriate nonlinear hysteresis in the plastic region beyond the elastic region, combined
hardening is applied to the model.
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Figure 4. Abaqus model of a localized slit damper (left: assembly, upper right: bolt pre-tension,
bottom right: application of damper, bolt, and end-plate Constraints).
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Solid-type homogeneous sections made of SS275 steel were used for the localized
SPMSD. An independent instance of the component (localized SPMSD) was created in the
“Assembly Module”. A reference point, located in the center of mass in the right-most
region of the model, was created that later served as the point where the cyclic loading was
applied. The strut was partitioned into two sections and the base (flange) of the damper
was partitioned into three. A global mesh size of 2.75 mm was applied in the damper while
the partitioned regions were locally seeded with a maximum of nine elements to avoid
any failure when meshing using the medial axis or sweep technique. Mesh transitioning
was minimized, and the bolt and the endplate used a mesh size of 2.5 mm and 10 mm,
respectively. The element type used in all parts is an eight-node linear brick with reduced
integration and hourglass control (C3D8R). The surface-to-surface interaction relationship
for the end plates and bolt nuts and the SPMSD in the FE models were defined as normal
“hard” contact, and the friction coefficient for the tangential behavior of steel-and-steel
contact was taken as 0.35. The “Bolt Load” command in the ABAQUS “Load” module was
used to apply pre-tension to the middle part of the M20 bolts. The pre-tension was 142
(Figure 4, upper right), rounded to the nearest kN in accordance with AISC 360-22 [43]. The
bonding and boundary conditions of the assembly were taken from the actual experimental
setup. Six degrees of freedom were considered to simulate the behavior of the localized
SPMSDs. In Figure 5, the left side of the endplate is fixed. Hence, this surface of the model
is constrained in U1, U2, and U3 (Figure 4, bottom right). In addition, the surface of the
damper in U3 is constrained as well to avoid out-of-plane deformation. After encoding
the cyclic loading protocol during the experiment in the Load and Step modules, the
analysis was executed. The results of the numerical analysis, and its comparison with the
experimental data, are expounded in the succeeding sections. All material properties of the
SPMSDs adapted in the FE model are summarized in Table 2. These isotropic parameters
are taken from a coupon test performed for SS275 steel and the combined hardening
parameters were taken from the study of Krolo et al. [44]. Meanwhile, the material behavior
of the bolts and end plates were taken as solely isotropic with Y = 210 GPa, ν = 0.3, and
Fy = 900 MPa, respectively.

Table 2. Summary of parameters during modelling.

Part Material Behaviors

Isotropic Hardening

SPMSD

Y (GPa) ν Fy (MPa)
207 0.3 285 1

Combined (Isotropic and Kinematic) Hardening
Fyeq (MPa) C1 (MPa) γ1 C2 (MPa) γ2 C3 (MPa) γ3 Q∞ b

285 13921 765 4240 52 1573 14 25.6 4.4

Y—Young’s modulus of elasticity. ν—Poison’s ratio. Fy—Yield stress; 1—Yield stress at zero plastic strain. C1, C2,
C3, γ1, γ2, and γ3—Kinematic hardening parameters. Fyeq—Equiv. stress at cyclic hardening.

To assess their potential for enhancing the structural stability of buildings and struc-
tures, the single-slit SPMSDs were subjected to simulated cyclic loading. The experimental
setup, accurately illustrated in Figure 5, was comprised of a jig frame structure. Both
dampers were precisely installed within the jig frame to replicate real-world structural
conditions. The guidelines outlined in KDS 41 17 00:2019 [45] to replicate realistic loading
conditions of a cyclic loading protocol were implemented. Particularly, the cyclic loading
protocol consisted of three successive steps targeting specific displacements. The first step
entailed subjecting the SPMSDs to ±11 mm displacements for a duration of ten cycles.
This was followed by ±22 mm displacements for five cycles in the second step. Lastly,
the third step involved ±33 mm displacements for three cycles. This incremental method
allowed for an in-depth assessment of the SPMSDs’ performance throughout varying
displacement levels. The performance of SPMSD 1 and SPMSD 2 may be studied across
different displacement levels by examining the strain gauge and LVDT data acquired by
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the data logger. Strain gauges were strategically positioned at four specific locations on
each damper to acquire essential data pertaining to the performance of the SPMSDs. These
locations, based on [26], are recognized as critical areas prone to failure or experiencing
high stress concentrations. Figure 6 depicts the exact positioning of the strain gauges
on the SPMSDs. By monitoring strain at these specific locations, valuable insights into
stress distribution and damper behavior were obtained, contributing to a comprehensive
analysis of their performance. The experimental setup also incorporated a universal testing
machine (UTM) with a 1000 kN capacity to apply simulated seismic forces. The strain
gauges, connected to a data logger, captured localized strains and deformations throughout
the cyclic loading protocol. Simultaneously, LVDT transducers, also connected to the data
logger, recorded the overall displacement and movement patterns of the dampers. The
resulting data on strain and displacement facilitated a thorough analysis of the SPMSDs’
behavior under simulated seismic loading conditions. The use of the jig frame structure,
UTM, strategically placed strain gauges, LVDT transducers, and data logger ensured an
extensive and verifiable assessment of the SPMSDs’ performance under simulated seismic
loading conditions.
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Figure 5. Experimental setup with jig frame structure (bottom left—photo of the experimental setup
from the front and bottom right—photo of the experimental setup from the back).
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Figure 6. Experimental setup with jig frame structure ((a). SPMSD 1; (b). SPMSD 2; (c). Strain gauge
numbering and orientation during experiment).

4. Results and Analysis
4.1. Experimental Results

Tables 3–5 summarize the performance evaluation of the SPMSDs. Equation (1) was
used to compute the theoretical ultimate load, Fu (kN), referred from the conventional
design of slit dampers by [4], where n corresponds to the number of slits, equivalent to
one for this study. σu(MPa) is the tensile strength of the SPMSDs, which were made of
SS275 steel. This value ranges from 410–550 MPa [46]. Accordingly, t, b, and lo correspond
to the slit thickness, depth, and length, all measured in mm, respectively. The experimen-
tal ultimate load, Fu(E) (kN), is defined as the point/s at which the maximum targeted
displacement was exceeded and just before exceeding, either in the positive or negative
direction. Fmax (kN) is the maximum force that was recorded on each cycle. Figure 7
shows the strut-slit details of the specimen used in the experiment. The adequacy of the
SPMSDs was further evaluated using Equations (2)–(6), extracted from section 18.6.1.5.1 of
ASCE/SEI 7-16 [47]. Fmax,0,aoc and Fmin,0,aoc are the maximum force and minimum force
at zero displacement for any one cycle. At a given rate and temperature, (Fmax,0,ac)ave
and (Fmin,0,ac)ave are the average maximum and minimum forces at zero displacement,
as determined from every cycle. Fmax,max,aoc and Fmin,max,aoc are the maximum force and
minimum force at maximum device displacement. At a specific frequency and tempera-
ture, (Fmax,max,ac)ave and (Fmin,max,ac)ave are the average maximum and minimum forces at
the maximum device displacement, as calculated from all cycles. Eloop is the area of the

hysteresis loop of a damping device for any one cycle and
(

Eloop

)
ave

is the average area of
the hysteresis loop as calculated from all cycles at a specific frequency and temperature.

Fu =
σutb2

2lo
(1)

Fmax,0,aoc ≡ 0.15(Fmax,0,ac)ave (2)

Fmin,0,aoc ≡ 0.15(Fmin,0,ac)ave (3)

Fmax,max,aoc ≡ 0.15(Fmax,max,ac)ave (4)

Fmin,max,aoc ≡ 0.15(Fmin,max,ac)ave (5)
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Eloop ≡ 0.15
(

Eloop

)
ave

(6)

SPMSD 1 failed on cycle four of the second step (S2C4), reaching a maximum Fu(E)
equivalent to 52.46 kN. This maximum force occurred exactly at the point in the cycle
before a damper is considered incapable of dissipating energy. It is also evident that
the experimental force recorded during S2C4 was still within the range of the theoretical
ultimate load, equivalent to 34.73 ≤ 46.59 kN, which was computed using Equation (1).
A trend of exceeding Fu for cycles one through three in step two (S2C1-3) of the loading
protocol was observed for SPMSD 1. The recorded Fu(E) for S2C1-3 increased from 11.09%
to 11.85% before S2C4. In the case of SPMSD 2, its maximum force, 57.27 kN, was recorded
at the beginning of the test. Its Fu(E) did not exceed the threshold in any of the cycles and
steps before S2C1, the point where the damper is considered unable to dissipate energy.
The last recorded ultimate experimental force for SPMSD 2 was 37.81 kN. This is 16.57%
below the theoretical ultimate load, equivalent to 44.64 ≤ 59.89 kN. The same relationship
can be extracted from the relationship between Fmax and Fu for both dampers (see Table 3).
This makes SPMSD 1 more stable than SPMSD 2 when the experimental ultimate load is
considered. In the case of Fmax (kN), the maximum force recorded in each cycle of SPMSD 1
and SPMSD 2, both dampers exceed their Fu(E), meaning both dampers exhibited good
uniformity in their demand–capacity relationship.

Table 3. Comparison of test results and theoretical values.

Damper Material Cyclic Loading
Protocol

t× b× lo
(mm)

Fu
(kN)

Fu(E)
(kN)

Fmax
(kN)

% (Exceed/Fall Short)

Fu(E)
vs.
Fu

Fmax
vs.
Fu

Fmax
vs.

Fu(E)

SPMSD
1

SS275

Step 1 Cycle 1 16 30 85

34.73 ≤ 46.59

44.58 44.75 b - - 0.38
Cycle 2 16 30 85 43.89 44.59 b - - 1.58
Cycle 3 16 30 85 42.30 44.56 b - - 5.20
Cycle 4 16 30 85 43.33 44.53 b - - 2.73
Cycle 5 16 30 85 43.07 44.46 b - - 3.18
Cycle 6 16 30 85 43.77 44.43 b - - 1.50
Cycle 7 16 30 85 42.63 44.40 b - - 4.07
Cycle 8 16 30 85 42.46 44.43 b - - 4.53
Cycle 9 16 30 85 40.60 44.40 b - - 8.94
Cycle 10 16 30 85 42.27 44.72 b - - 5.63

Step 2 Cycle 1 16 30 85 52.06 a 55.35 a,b 11.09 17.19 6.13
Cycle 2 16 30 85 52.23 a 54.87 a,b 11.41 16.32 4.93
Cycle 3 16 30 85 52.46 a 53.77 a,b 11.85 14.31 2.47
Cycle 4 16 30 85 42.59 51.62 a,b - 10.24 19.17

SPMSD
2

Step 1 Cycle 1 16 35 90

44.64 ≤ 59.89

57.27 58.09 b - - 1.42
Cycle 2 16 35 90 55.21 58.16 b - - 5.20
Cycle 3 16 35 90 53.90 58.28 b - - 7.81
Cycle 4 16 35 90 55.68 58.32 b - - 4.63
Cycle 5 16 35 90 56.46 58.45 b - - 3.46
Cycle 6 16 35 90 56.11 58.41 b - - 4.02
Cycle 7 16 35 90 56.91 58.54 b - - 2.82
Cycle 8 16 35 90 56.04 58.38 b - - 4.09
Cycle 9 16 35 90 57.01 58.22 b - - 2.10
Cycle 10 16 35 90 51.74 58.22 b - - 11.79

Step 2 Cycle 1 16 35 90 37.81 a 63.18 a,b 16.57 5.35 50.24
a Exceed/fall short Fu. b Exceed/fall short Fu(E).
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Table 4. Compliance with section 18.6.1.5.1 of ASCE/SEI 7-16.

Damper Step and Cycle
Zero Displacement Maximum Displacement

Fmax,0,aoc
(kN)

Diff
(%)

Fmin,0,aoc
(kN)

Diff
(%)

Fmax,max,aoc
(kN)

Diff
(%)

Fmin,max,aoc
(kN)

Diff
(%)

SPMSD 1

Step 1 Cycle 1 39.18 1.38 −38.79 2.55 44.59 0.63 −44.69 0.30
Step 1 Cycle 2 38.95 1.95 −38.79 2.55 44.50 0.85 −44.56 0.59
Step 1 Cycle 3 38.99 1.87 −38.79 2.55 38.79 14.54 −40.18 10.93
Step 1 Cycle 4 38.86 2.20 −38.60 3.05 44.43 0.99 −40.08 11.17
Step 1 Cycle 5 38.95 1.95 −38.79 2.55 44.30 1.28 −44.30 1.17
Step 1 Cycle 6 38.73 2.53 −38.66 2.88 43.72 2.60 −44.30 1.17
Step 1 Cycle 7 38.89 2.12 −38.70 2.80 41.18 8.59 −39.95 11.49
Step 1 Cycle 8 38.82 2.29 −38.60 3.05 43.66 2.75 −42.56 5.18
Step 1 Cycle 9 38.82 2.29 −38.66 2.88 41.24 8.44 −41.21 8.40
Step 1 Cycle 10 38.76 2.45 −38.66 2.88 44.66 0.49 −44.17 1.46

Step 2 Cycle 1 44.30 10.90 −43.34 8.52 50.97 12.72 −52.07 14.95
Step 2 Cycle 2 44.11 10.47 −43.75 9.48 48.30 7.35 −54.61 19.69
Step 2 Cycle 3 42.76 7.36 −43.14 8.08 50.23 11.26 −52.71 16.17
Step 2 Cycle 4 35.99 9.86 −39.82 0.08 37.47 17.98 −42.14 6.17

SPMSD 2

Step 1 Cycle 1 54.19 2.22 −52.84 1.39 57.19 5.71 −57.35 2.69
Step 1 Cycle 2 54.35 2.52 −53.07 0.97 53.07 1.77 −57.35 2.69
Step 1 Cycle 3 54.29 2.40 −53.23 0.66 54.81 1.46 −52.65 5.87
Step 1 Cycle 4 54.29 2.40 −53.32 0.48 58.25 7.55 −49.71 11.59
Step 1 Cycle 5 54.32 2.46 −53.39 0.36 57.70 6.61 −54.29 2.80
Step 1 Cycle 6 54.35 2.52 −53.45 0.24 55.03 1.87 −57.00 2.07
Step 1 Cycle 7 54.32 2.46 −53.45 0.24 56.74 4.92 −57.61 3.13
Step 1 Cycle 8 54.29 2.40 −53.39 0.36 57.70 6.61 −51.36 8.35
Step 1 Cycle 9 54.13 2.11 −53.32 0.48 58.19 7.44 −54.32 2.74
Step 1 Cycle 10 53.45 0.85 −53.48 0.18 58.12 7.33 −57.48 2.91

Step 2 Cycle 1 41.02 25.50 −56.45 5.21 24.65 74.66 −65.02 15.21

Values showing inadequacy to the code are in red font. SPMSD 1:(Fmax,0,ac)ave = 39.72, (Fmin,0,ac)ave =
−39.79(Fmax,max,ac)ave = 44.87, (Fmin,max,ac)ave = −44.82. SPMSD 2:(Fmax,0,ac)ave = 53, (Fmin,0,ac)ave =
−53.58(Fmax,max,ac)ave = 54.01, (Fmin,max,ac)ave = −55.83.

Table 5. Compliance with section 18.6.1.5.1 and 18.6.1.2 of ASCE/SEI 7-16.

Damper Step and Cycle

Energy Dissipation Equivalent Viscous Damping

Eloop
(kN-mm)

(
Eloop

)
ave

(kN-mm)
Diff
(%)

Keffective
(kN/mm) ζeq

SPMSD 1

Step 1 Cycle 1 1398.49 1394.97 0.25 4.20 0.4317
Step 1 Cycle 2 1396.88 1394.97 0.14 4.18 0.4264
Step 1 Cycle 3 1398.03 1394.97 0.22 3.74 0.4849
Step 1 Cycle 4 1398.05 1394.97 0.22 3.99 0.4469
Step 1 Cycle 5 1395.02 1394.97 0.00 4.18 0.4224
Step 1 Cycle 6 1393.38 1394.97 0.11 4.12 0.4183
Step 1 Cycle 7 1394.04 1394.97 0.07 3.82 0.4545
Step 1 Cycle 8 1391.27 1394.97 0.27 4.06 0.4238
Step 1 Cycle 9 1391.03 1394.97 0.28 3.91 0.4506

Step 1 Cycle 10 1393.46 1394.97 0.11 4.20 0.4176
Step 2 Cycle 1 3458.86 3298.50 4.75 2.43 0.4655
Step 2 Cycle 2 3459.19 3298.50 4.76 2.42 0.4680
Step 2 Cycle 3 3376.69 3298.50 2.34 2.43 0.4577
Step 2 Cycle 4 2899.24 3298.50 12.88 1.87 0.5090
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Table 5. Cont.

Damper Step and Cycle

Energy Dissipation Equivalent Viscous Damping

Eloop
(kN-mm)

(
Eloop

)
ave

(kN-mm)
Diff
(%)

Keffective
(kN/mm) ζeq

SPMSD 2

Step 1 Cycle 1 1901.70 1897.57 0.22 5.40 0.4677
Step 1 Cycle 2 1904.41 1897.57 0.36 5.21 0.4805
Step 1 Cycle 3 1907.27 1897.57 0.51 5.04 0.4875
Step 1 Cycle 4 1905.57 1897.57 0.42 5.08 0.4787
Step 1 Cycle 5 1904.80 1897.57 0.38 5.27 0.4547
Step 1 Cycle 6 1905.35 1897.57 0.41 5.27 0.4547
Step 1 Cycle 7 1908.28 1897.57 0.56 5.39 0.4485
Step 1 Cycle 8 1908.67 1897.57 0.58 5.14 0.4737
Step 1 Cycle 9 1903.92 1897.57 0.33 5.21 0.4296

Step 1 Cycle 10 1825.73 1897.57 3.86 5.49 0.3578
Step 2 Cycle 1 3679.10 3679.10 0.00 2.13 0.5259
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At zero displacement, both dampers were compliant with the ASCE/SEI 7-16 standard.
However, during S2C1, the instant where the damper is considered incapable of dissipating
energy, SPMSD 2’s Fmax,0,aoc was 25.50% beyond the allowable percent difference from the
average maximum and the force at zero displacement, as determined from every cycle. A
different case was observed at maximum displacement (see Table 4). SPMSD 2 continued
to go beyond the allowable percent difference from the average maximum and minimum
forces at maximum displacement, as determined from every cycle, by 74.66% and 19.29%,
respectively (during S2C1 only). However, SPMSD 1 failed to comply with the ASCE/SEI
7-16 standard for Fmax,max,aoc during S2C4 and for Fmin,max,aoc during S2C2 and S2C3.
SPMSD 2 is more adequate than SPMSD 1 when considering the minimum and maximum
recorded forces during zero and maximum displacements since it only failed to comply
with the standard on its final cycle of dissipating energy.

4.2. Energy Dissipation and Damping Ratio

The areas of the hysteresis loop of both dampers (see Table 5) for any one cycle were
within the 15% allowable percent difference from the average area of the hysteresis loop,
as calculated from all cycles at a specific frequency and temperature. During step one of
the loading protocol, SPMSD 2 performed better in dissipating energy than SPMSD 1. A
total of 18 975.69 kN-mm of energy was sustained by SPMSD 2. This is 30.53% higher
than the dissipated energy of SPMSD 1. As the loading protocol continued to be applied
in the dampers, SPMSD 1 became more stable and capable of dissipating energy. On the
first cycle of step two, the maximum energy dissipated by SPMSD 2 was 3679.10 kN-mm,
approximately 6.17% higher than SPMSD 1. Figure 8 illustrates the hysteretic behavior of
the dampers in this experiment. SPMSD 2 failed immediately after the first cycle while
SPMSD 1 continued to dissipate energy until the fourth cycle of step two. A total of
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13,193.98 kN-mm of energy was dissipated by SPMSD 1 in step two. This is approximately
112.78% higher than the dissipated energy of SPMSD 2. The loading protocol did not
proceed to step three for either damper, as cracking occurred during the fourth and first
cycle on the second loading protocol for SPMSD 1 and SPMSD 2, respectively. Both SPMSDs
failed to satisfy section 18.6.1.2 of ASCE/SEI 7-16, which requires that damping devices
must not break ten times at 33% target displacement, five times at 67% target displacement,
and three times at 100% target displacement when tested. The equivalent viscous damping
of both dampers were measured using Equations (7)–(9) by [48]. Keffective corresponds to
the effective stiffness measured during the experiment. δmax and δmin are the positive and
negative largest displacements at the maximum and minimum recorded forces of Equations
(4) and (5). ζeq is the damping ratio, calculated by equating the energy dissipated in a cycle
of the jig frame and the damper. ESo is the strain energy.

Keffective =
|Fmax,max,aoc|+ |Fmin,max,aoc|

|δmax|+ |δmin|
(7)

ζeq =
Eloop

4πESo
(8)

ESo =
Keffectiveδmax

2

2
(9)
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The equivalent viscous damping of the two dampers is shown in Figure 9 and is
organized in Table 5. The effective stiffness of SPMSD 1 immediately decreased as the
collective plastic deformation reached the maximum during the first cycle of the first step.
The overall damping ratio of the first damper was 41.76% to 50.90%, possessing an opposite
trend to that of its effective stiffness. The lowest effective stiffness and maximum damping
ratio were recorded during the fourth cycle of the second step, respectively. Meanwhile, the
lowest damping ratio was observed during the tenth cycle of the first step in the loading
protocol. Failure occurred after two more cycles during the second step of the loading
protocol. SPMSD 2 gradually reached its maximum Keffective during the tenth cycle of the
first step. The inverse relationship between the effective stiffness and damping ratio was
evident during the tenth cycle of the first step and the first cycle of the second step, where
the maximum and minimum Keffective and ζeq were recorded. Unlike SPMSD 1, SPMSD 2
reached failure immediately after reaching its maximum effective stiffness and minimum
damping ratio. The transition between the tenth cycle and first cycle of steps one and
two, respectively, provides substantial insight into the failure to dissipate energy for both
dampers. For SPMSD 2, an 88.12% difference in the effective damping value during this
transition caused the immediate destruction of the damper. Meanwhile, stable behavior
was observed in SPMSD 1, as only a 53.47% difference in the effective damping value was
documented, which enabled SPMSD 1 to dissipate a total of 27143.66 kN-mm energy. This
is 4488.87 kN-mm higher than SPMSD 2.
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4.3. Measure of Strain and Failure Modes

Figure 10 shows that both dampers have similar strain distributions and cumulative
displacement trends. Energy dissipation during cyclic straining of both dampers, made of
SS275, was rate dependent. Strain at transition, where the loading protocol increases from
33% of the target displacement to 67%, is always less than the value during the succeeding
cycle. The maximum strain for SPMSD 1 right after failure in step two, cycle four was
1.37 times higher than the average strain recorded by strain gauge no. 2 (Figure 10a. Strain
gauge no. 2).
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Figure 10. Strain distribution and cumulative displacement ((a). SPMSD 1; (b). SPMSD 2).

The first and second strain gauge attached to the second damper were detached
during the cyclic test. No data was recorded for the regions where these strain gauges
were attached in conjunction with Figure 6c. From the recorded data of the strain gauges
that remained attached, the maximum strain for SPMSD 2 was recorded by the third strain
gauge in step two, cycle one of the loading protocol (Figure 10b. Strain gauge no. 3).

Photos of the damaged dampers are depicted for the comparison of the failure modes
between the experimental results and the numerical simulation, as elaborated in Section 4.5.
The location of these cracks illustrates that plastic deformation was concentrated in these
localities. The rest of the identified critical sections exhibit cracking. Failure was expected
whenever the strain value suddenly increased by 1.26 times the average strain for SPMSD 1
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and by about 0.8 times the average strain for SPMSD 2. Commonly, it is observed that after
failure, recorded strain decreases in value. However, in regions where plastic deformation
and the occurrence of cracking was higher, strain increased substantially for SPMSD 1.

4.4. Comparison of Experimental Results and Numerical Analysis
4.4.1. Failure Modes

As illustrated in Figure 11, cracking was prominent on the upper and lower strut of
SPMSD 1. For SPMSD2, cracking was prominent in regions two and three only. The yielding
of the strut that was observed during the test was accurately simulated in the ABQUS
model. The concentration of stresses that appeared in the simulation was concurrent to the
critical regions of the dampers, as discovered from the experimental results. This part is
the curved connection between the strut (web) and the flange.
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Figure 11. Failure modes (1st row: experimental, 2nd row: FEM, 3rd row: actual photos).

4.4.2. Hysteretic Responses

The graphic comparison of hysteretic responses between the experimental and numer-
ical evaluations of the dampers showed a strong correlation (Figure 12). The numerical
simulations performed in the FE models showed a good level of agreement with the experi-
mental results, demonstrating that the ABAQUS modeling approach accurately predicted
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the cyclic behavior of the dampers, predominantly during the elastic stage. The magnitude
of the standard deviations between the experimental and numerical results reveals the
distribution or variability of the data. A similar level of variability between the two sets of
data points was indicated by the minor difference between the two standard deviations
(37.39000788 for the experimental data and 37.01376983 for the numerical data). The stan-
dard deviation difference was less than 1, indicating a negligible difference. For instance,
a relative error ranging from 4.4% to 5.7% existed between the minimum and maximum
recorded forces from the experimental results and numerical simulations for SPMSD 1. The
highest and lowest forces recorded during experiment and in the ABAQUS simulation for
SPMSD 1 were 54.612 kN and −55.353 kN and 57.7346 kN and −57.7711 kN, respectively.
For SPMSD 2 the relative error between the maximum and minimum experimental results
and the numerical values ranged from 1.6% to 2.1%. Consequently, for SPMSD 2, the
highest and lowest forces recorded during experiment and in the ABAQUS simulation
were 64.234 kN and −65.051 kN and 63.334 kN and −63.669 kN, respectively. The relative
error was calculated by finding the absolute difference between the measured experimental
value and the numerical value, which was then expressed as a percentage of the true value
to quantify how close the measurement was to the expected result. These deviation values
indicate a reasonably high level of precision. Thus, the numerical simulation was modelled
successfully and replicated the real-world performance and behavior of the dampers when
subjected to cyclic loading.
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Figure 12. Comparison of experimental and numerical hysteretic responses ((a). SPMSD 1;
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4.5. Practical Implementation in Seismic Design of SPMSDs

In this study, the tested localized SPMSDs under cyclic loading were taken to have a
corresponding maximum considered earthquake (MCER) displacement equal to ±22 mm.
The acceptance thresholds of SPMSD 1 and 2 were based on the sequence and cycles
adapted from the ASCE/SEI 7-16 standard, specifically mentioned under Section 18.4. As
various types of structures are currently configured using several damping technologies to
mitigate dynamic loadings, SPMSD 1 and SPMSD 2 may be implemented in different ways.
SPMSDs can be an addition to the conventional bracing for dynamic loads, as depicted in
Figure 13. The damper serves its main purpose by absorbing and dissipating energy, which,
in effect, reduces the forces and displacements suffered by a structure during seismic events.
It can also be treated as an element for the seesaw brace systems shown in Figure 14 or as a
beam-to-column connection with a wide opening in the frame bays, as shown in Figure 15.
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an SPMSD.

The ABAQUS model, created in the numerical investigation, was optimized by creating
single-term design responses focused on strain energy and volume. Strain describes the
deformation of material under stress and, as damping devices, SPMSDs must sustain
high strain energies, resulting in higher ductility. This means that they can withstand
larger deformations before breaking, as the prescribed displacement is set to ±33 mm.
Volume is defined as the total volume of all of the design-area parts; since strain energy is
being minimized, stiffness is maximized, as defined by the objective function manager. As
recommended in the ABAQUS documentation [42], either a volume or a weight constraint
must be applied in the model. The optimized constraint corresponds to 90% of the original
volume. Finally, the bolts and both endplates in the model were geometrically restricted
under the geometric restriction manager command and were labeled as “frozen areas”
since only the damper was targeted to be augmented using 50 iterations. Figure 16 shows
the optimization model, reflecting the optimization task (green rhombus), design response,
objective function, and geometric restrictions applied (pink circles). As the optimization
was conducted within the ABAQUS model, we would like to highlight that the cost function
for structural optimization in terms of strain energy, intended to find the optimal material
distribution within a design domain to minimize strain energy, is given by Equation (10),
where εtotal is the cost function, representing the total strain energy, V is the volume of
the design domain (retained at 90%), σij is the stress tensor, and εij is the strain tensor.
Consequently, as displacement is taken as a critical design requirement, optimization
was performed to minimize the displacement at the web section of the damper using the
simplified approach described in Equation (11). Here, ∆total is the cost function taken as a
square to ensure a positive value and that larger displacements contribute more to the cost
and ∆node represents the displacement (typically in a specific direction, such as X, Y, or Z)
at the node of interest.

εtotal =
∫

V1/2σijεij (10)

∆total = (∆node)
2 (11)

The result of the optimization produced an “improved” geometry for the SPMSD that
was capable of damping the prescribed displacements up to ±33 mm, adapted from the
1% story drift of a 3000 mm floor-to-floor height. Although there isn’t a universal minimum
story drift requirement, the maximum allowable story drift is typically defined by building
codes and standards. According to ASCE 7-16 (2016 edition of Minimum Design Loads for
Buildings and Other Structures), buildings in seismic design categories A, B, and C have a
maximum allowable story drift ratio (story drift divided by story height) of 2.5%. Buildings
in seismic design categories D, E, and F have a maximum drift ratio of 1.5%. For this case,
we decided to work with 1% only [47]. This was determined to be 1700 mm by 6840 mm by
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15 mm. Due to the enormous volume of the improved SPMSD, it may be discretized into
multiple struts. The improved SPMSD shall be implemented as:

≈ one 1700 by 6840 by 15 mm damper installed as a single plate.
≈ two 850 by 3440 by 15 mm dampers installed as a double plate.
≈ four 425 by 1740 by 15 mm dampers installed as two double plates or in multiple series.
≈ eight 212.5 by 890 by 15 mm dampers installed in multiple series.
≈ forty 42.5 by 210 by 15 mm dampers installed in multiple series.
If a double plate MSD (DPMSD) is adapted, each plate shall have forty 42.5 mm by

210 mm by 15 mm struts for the imposed displacement, equal to ±33 mm.
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As guide, the overall implementation of SPMSDs may be governed but not limited,
and may be extended, as shown in the following steps:

Step 1: Conduct a preliminary structural analysis of the building or structure to decide and
understand how it will react to dynamic loads. This investigation identifies the areas and
sections that need more dampening.
Step 2: The best (optimal) places to install single-plate metallic slit dampers should be
determined next by considering the distribution of projected seismic forces and structural
susceptibility. Performance-based analysis is also an option.
Step 3: The next phase is to consider the design specifications of the dampers (i.e., maximum
displacement capacity, strength, and energy dissipation capabilities). The design must take
into consideration both the general structural response and the anticipated seismic loads.
In addition, the dampers should be made of an appropriate material, usually high-strength
steel or another alloy with good ductility and energy-dissipation properties. The material
must have a steady stress–strain response and be able to tolerate cyclic loads.
Step 4: Installation of the single-plate metallic slit dampers is next. Using the proper
fasteners and/or welding procedures, depending on the structural codes implemented and
followed, the dampers are attached to the structural components, such as columns, beams,
or braces.
Step 5: The final step is to combine the following:

• integration between conventional connections represented in Figures 13–15.
• user-defined testing and validation processes and procedures, and
• a monitoring system to keep an eye on the structure’s performance while using dampers.
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5. Conclusions

The concluding summary of the research objectives, findings, and contributions to the
field of seismic performance evaluation includes:

1. Stability and compliance with standards. When the experimental ultimate load is
considered, SPMSD 1 is more stable than SPMSD 2. Both dampers meet the ASCE/SEI
7-16 standard at zero displacement. When examining the minimum and maximum
recorded forces during minimum and maximum displacements, SPMSD 2 is more
appropriate than SPMSD 1 because it only failed to meet the criterion on its final cycle
of dissipating energy.

2. Energy Dissipation and Damping Ratios. SPMSD 2 outperforms SPMSD 1 in dissipat-
ing energy during step one of the loading protocol. During the first step, SPMSD 2
maintained 30.53% more dissipated energy than SPMSD 1. SPMSD 1 became more
stable and capable of dispersing energy when the loading protocol continued to be
applied in the dampers. During step two, SPMSD 1 dissipated roughly 112.78%
more energy than SPMSD 2. When tested, both SPMSDs failed to comply with
section 18.6.1.2 of ASCE/SEI 7-16.

3. Hysteretic behavior. SPMSD 2 failed promptly after achieving its maximum effective
stiffness and minimal damping ratio, as opposed to SPMSD 1. The shift from the tenth
cycle to the first cycle of steps one and two, respectively, provides significant insight
into the dampers’ failure to dissipate energy. For SPMSD 2, an 88.12% difference
in effective damping value during this transition resulted in instantaneous damper
disintegration.

4. Measure of Strain and Failure Modes. Cracks indicate the presence of plastic deforma-
tion in the dampers. Failure is expected whenever the strain value suddenly increases
by 1.26 times the average strain for SPMSD 1 and by approximately 0.8 times the
average strain for SPMSD 2. It is common to see that the value of recorded strain
reduces after failure. However, in locations where plastic deformation is greater, the
occurrence of cracking increases significantly for SPMSD 1.

5. Numerical Evaluation and Analysis. ABAQUS software was used to successfully
model the SPMSDs under cyclic loading. The simulation’s stress concentration corre-
sponds to the critical regions of the dampers, as determined by experimental results.
The curved connection between the strut (web) and the flange is represented by this
component. The numerical simulations in the FE models agreed well with the experi-
mental results, revealing that the ABAQUS modeling approach accurately anticipated
the cyclic behavior of the dampers, particularly during the elastic stage. For SPMSD 1,
the relative error ranged from 4.4% to 5.7% between the minimum and highest re-
ported forces from experimental data and numerical simulation, while the relative
error ranged from 1.6% to 2.1% for SPMSD 2.

6. Practical implementation. If SPMSDs and the modified SPMSD are used either as a
component of seesaw brace systems, as an addition to conventional bracing, or as a
beam-to-column connection, they can lessen the forces and displacements that the
structure experiences during seismic occurrences (Figures 13–15). In Section 4.5 of
this study, a manual for the general implementation of SPMSDs is provided.
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