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Abstract: In order to analyze the thixotropy of mastic asphalt concrete during the mixing process,
the factors affecting the thixotropy of mastic asphalt binder and asphalt mastic are studied, and the
measures to shorten the mixing time of mastic asphalt mixture are given. The dynamic viscosity of
mastic asphalt binder and asphalt mastic with time and shear rate is obtained via the step frequency
method, and the thixotropic constitutive models of mastic asphalt binder and asphalt mastic are
constructed by structural dynamics model, exponential equation, and extended exponential equation
respectvely. The improved time thixotropy index is used to analyze the effects of asphalt type,
asphalt–aggregate ratio, filler type, heating temperature, and shear rate, and the laws of various
factors affecting the thixotropy of mastic asphalt binder and asphalt mastic are obtained. The research
shows that the extended exponential model can better characterize the thixotropy of mastic asphalt
binder and asphalt mastic under different shear rates. When the amount of lake asphalt or cement is
increased, the viscosity of the system and the mixing time to reach a steady viscosity increases; that
is, the mixing time needs to be increased. Increasing shear temperature does not change the time
parameter to reach steady viscosity; that is, it cannot shorten mixing time. When the shear rate is
increased, the time for the system to reach the steady viscosity will be shortened; that is, the time for
mixing the mixture can be shortened.

Keywords: mastic asphalt binder; thixotropy; constitutive model; viscosity

1. Introduction

Gussasphalt concrete is mainly used for steel bridge deck pavement, and it can be
divided into two categories: gussasphalt and mastic asphalt. Gussasphalt has been widely
used as a waterproofing material in building construction and for pavement engineering
since 1917. In the United Kingdom, based on the material’s characteristics, gussasphalt
concrete was improved and defined as mastic asphalt concrete. The mastic asphalt concrete
production process is complex, requiring adding asphalt and aggregate in batches, then
mixing for up to 6 h, and finally paving and forming with a special paver [1,2]. In the
long-term mixing process, the viscosity of mastic asphalt concrete gradually decreases
with the increase in mixing time. When the mixing stops, the viscosity recovers. This
characteristic is collectively called “thixotropy” [3–5]. The biggest difference between a
mastic asphalt mixture and an ordinary asphalt mixture is that it can be formed by gravity,
so its fluidity cannot be too great but also not too small. The mastic asphalt mixture must
be stirred for a long time to achieve the fluidity required by construction. Due to its long
mixing time, it cannot be applied to large-scale production, making it difficult to popularize
and apply. Relevant researchers began to study the methods of shortening the mixing time
of mastic asphalt mixture to improve its production efficiency [6,7]. Due to the thixotropy of
mastic asphalt mixture, the related research progress is slow. The viscosity change process
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in the mixing process of mastic asphalt mixture has been unable to be explored clearly, and
the thixotropic constitutive model cannot be established accurately.

Thixotropy means that in the isothermal process, the material is subjected to certain
shear action, and its viscosity changes with the increase of shear action time. Thixotropy
can be divided into three types: positive thixotropy, negative thixotropy, and compound
thixotropy [8–10]. Positive thixotropy means that under the action of shear external force,
viscosity decreases with time and then recovers after quiescence, which was first discovered
through studying hydrated iron oxide gel [11]. Negative thixotropy means that the viscosity
increases with time under the action of shear external force and then recovers after quies-
cence, which was first discovered during the study of polyisobutylene tetralin solution [12].
Compound thixotropy refers to the positive and negative thixotropy of a specific system,
which was found in the study of the Al-Mg-MMH-montmorillonite dispersion system [13].
Thixotropy is an important research content of the rheology of dispersion systems, which
has important theoretical research significance and engineering application value [14–18].

The research on the thixotropy of asphalt has just begun. The existing research results
have only proved and simply analyzed the thixotropy of asphalt but have not carried out
systematic and in-depth research on its influencing factors. Perraton put forward that the
failure rate of asphalt materials under cyclic loading can be divided into two parts: real
failure rate and failure rate caused by thixotropy [19]. Kim pointed out that the viscoelastic
master curve modulus of asphalt is very close. If thixotropy is introduced, it can only be by
viscosity [20]. Soltani et al. established a new fatigue method for asphalt mixtures, stating
that thixotropy can be separated from the fatigue of asphalt mixtures, but the applicability
of this method to asphalt needs further study and confirmation [21]. Virginie et al. used
cone-plate thixotropy test equipment to carry out the time scanning and stress scanning of
asphalt, took composite modulus as the evaluation index of thixotropy, and studied the
influence of test temperature, loading rate, and loading duration on thixotropy [22]. By
analyzing the viscosity, stress, and hysteretic curve of asphalt mastic under cyclic shear
load, Ma et al. found that adding fillers can significantly reduce the thixotropy, and different
types of mineral fillers have little effect on the thixotropy [23]. Hassan et al. studied the
thixotropy of two adhesives containing different fillers, and the thixotropy model of asphalt
can be established by DSR [24]. Shan et al. applied various methods to test the thixotropy
of four asphalt binders and established corresponding thixotropy models [25]. Hung et al.
showed that the thixotropy of rubber-modified asphalt was the fastest, and the thixotropy
of polymer-modified asphalt was the slowest [26]. Shanab et al. used DMA to study the
mechanical properties of bio-modified asphalt binder and found that bio-modified asphalt
showed thixo hardening with the increase of time [27]. Perez et al. found that the decrease
of initial composite modulus was mainly caused by thixotropic effect by conducted time
and strain scanning tests [28,29]. Researchers mainly pay attention to the influence of
thixotropy of asphalt on the fatigue performance of asphalt concrete, but the influence
of thixotropy is mainly the viscosity change during long-time mixing, but there is little
research on mastic system which needs long-time mixing. The research on thixotropy of
asphalt is relatively little, but the research on thixotropy in the field of polymer rheology is
sufficient. Applying its research methods and achievements can provide valuable reference
for the research on thixotropy of mastic asphalt binder and its mixture.

Test methods commonly used to evaluate the thixotropy of asphalt and other polymer
materials include thixotropic ring, dynamic modulus, and stepped frequency [30–32]. The
thixotropic ring method is the simplest. Its greatest defect is there are two variables, shear
rate and action time, in the process of measuring thixotropy, which cannot distinguish
the influence of these two factors [33]. The dynamic modulus method has obvious advan-
tages in measuring the thixotropy of elastomers or viscoelastic substances, but it reflects
thixotropy through dynamic modulus parameters and has a certain indirectness [34]. The
stepped frequency method can not only reflect the internal structure changes of materials
but can also be directly used to establish thixotropic models [35]. The thixotropic character-
istics of mastic asphalt binder and asphalt mastic are explained by the stepped frequency
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method. Based on shear rheometer AR-2000, the curves of dynamic viscosity and other
characteristic functions of asphalt mastic changing with time and shear rate are obtained
by the stepping frequency method, the thixotropic constitutive equation of mastic asphalt
binder and asphalt mastic is put forward, and the influencing factors of thixotropy are
studied. It is of great help to master the rule of thixotropy of mastic asphalt concrete, reveal
its rheological mechanism, and provide key theoretical support for engineering application.

2. Methods

Mastic asphalt binder and asphalt mastic are prepared in a laboratory. The viscosity
index is discussed using the stepping frequency method. The thixotropy constitutive model
of mastic asphalt binder and asphalt mastic is studied by the structural dynamics model
and Mewis mathematical model, and the optimal constitutive model under different shear
rates is established. The improved time thixotropy index method analyzes the effects
of asphalt type, asphalt–aggregate ratio, filler type, heating temperature, and shear rate
on thixotropy.

3. Experimental Plan
3.1. Test Equipment

An AR-2000 rheometer was used as the test instrument. It had three kinds of test
heads for test fluid deformation, including concentric cylinder, cone and plate, and parallel
plate. Because the test object was mastic asphalt binder and asphalt mastic, it belonged
to the system filled with large particles at high temperatures, and its viscosity was high.
Therefore, the parallel plate test head was selected in the test. The diameter of the parallel
plates is 25 mm, and the spacing is 1 mm.

When using the stepped frequency method, it is necessary to select an appropriate
shear rate. If the shear rate is too large, the samples between parallel plates overflow out of
the plates with centrifugal force, resulting in distortion of test results. If the shear rate is
too small, the equipment may not get accurate test results. The objective is to study the
thixotropy of mastic asphalt mixture during mixing, so the shear rate of the test should be
close to that of mastic asphalt mixture during mixing. The mixing speed of the cooker car,
a professional preparation device for mastic asphalt mixture, is usually set to two gears,
3.5 r/min and 7 r/min. The relevant research shows that when the shear rate is 5 s−1,
the blade speed of the horizontal cooker preparation device is equivalent to 3.5 r/min;
When the shear rate is 10 s−1, the blade speed of the horizontal cooker preparation device
is equivalent to 7 r/min [36]. In addition, the mixture shear rate caused by the blades is
different, with different distances from the agitator axis to the blades. Besides the fixed
shear rate in the axial direction, there is also a shear rate with a radial rate gradient in the
radial direction of blades, and the shear rate at each point is different. To fully analyze the
effect of shear rate on thixotropy, the range of shear rate is set wide enough to cover all
possibilities during agitation. In summary, the shear rates of 0.01, 0.1, 1, 10, and 100 s−1 are
selected. The test duration is 240 s.

3.2. Materials

Mastic asphalt binder is made of 30% base asphalt +70% lake asphalt. Shell 70# base
asphalt is used as base asphalt, and Trinidad Lake asphalt is used as lake asphalt in South
America. Technical indicators are shown in Table 1. As can be seen from Table 1, after
the mixing of lake asphalt and base asphalt, the mastic asphalt binder has the anti-aging
property and the anti-rutting property of lake asphalt, which effectively reduces the aging
phenomenon in the production process of the mixture, and improves the anti-rutting ability
of the mixture under the condition of high asphalt content. In the thixotropy study of
castable asphalt mastic, the filler used is limestone powder, produced in the Xifu Mineral
Powder Factory in Guangxi Province. The relevant technical indicators are shown in Table 2.
The cement is Conch cement, and the technical indicators are shown in Table 3. Because
the mastic asphalt mixture needs to realize the characteristics of self-leveling, it needs to
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use a lot of asphalt binder, which leads to very poor rutting resistance at high temperatures.
Therefore, cement is added to the mastic asphalt mixture to improve the rutting resistance.

Table 1. Technical index of asphalt.

Pilot Item Unit Mastic Asphalt Binder A-70 TLA

Penetration (25 ◦C, 100 g, 5 s) 0.1 mm 16 63 3

Penetration index PI - −0.68

Softening point ◦C 69 50 90

Ductility (15 ◦C, 5 cm/min) cm >100

Ductility (10 ◦C, 5 cm/min) cm 34.6

Density 15 ◦C g/cm 1.031 1.261

Solubility (trichloroethylene) % 68.1 99.9 52.5

Flash point ◦C 268 309

Wax content (distillation
method) % 1.72

Viscosity 60 ◦C Pa·s 340

Kinematic viscosity 135 ◦C Pa·s 3.9 0.51

Ash content % 23 0.01 37.16

RTFOT

Quality change % −0.04 −0.95

Penetration ratio % 74.8 74.2

Ductility: 10 ◦C cm 10.5

Ductility: 15 ◦C cm 25.1

Table 2. Technical index of mineral powder.

Test Items Unit Test Result

Calcium carbonate content % 89

Apparent relative density g/cm 2.765

Hydrophilic coefficient % 0.6

Stability Do not deteriorate

Appearance Agglomerate-free caking

Particle size range < 0.6 mm
<0.15 mm

<0.075
%

100
100
99.3

Table 3. Technical Indicators of Cement.

Test Items Unit Test Result

Loss on ignition % 1.2

SO content % 0.6

MgO content % 1

Insoluble matter content % 0.5

Particle size range 0.08 mm (square hole sieve) % 98.5



Buildings 2023, 13, 2380 5 of 18

3.3. Preparation of Mastic Asphalt Binder and Asphalt Mastic
3.3.1. Preparation of Mastic Asphalt Binder Samples

The base asphalt and lake asphalt were placed in the oven, where the base asphalt
heating temperature was 140 ◦C, the lake asphalt heating temperature was 180 ◦C, and the
heating time was 4 h. The mixture was poured into a beaker according to the mass ratio of
3:7, and a miniature mixer was used for rapid mixing at a speed of 500 r/min for 3 min to
ensure the uniform mixing of the two asphalts. The mixed asphalt was poured into a test
mold with a diameter of 25 mm, and several mastic asphalt binder samples were prepared
and molded.

3.3.2. Preparation of Asphalt Mastic Samples

Asphalt mastic is a mixture of mastic asphalt binder and filler. The mastic asphalt
binder was heated to 180 ◦C by heating oven. The mineral fillers were heated to 195 ◦C
and added into the mixture asphalt according to the mass ratio of 0.8, 1.2, 1.6, 2.0, 2.4. The
mixture was quickly stirred by a mini-mixer at a speed of 500 r/min for 3 min, and the
asphalt mastic samples were formed immediately after stirring for 3 min.

4. Thixotropic Constitutive Model of Mastic Asphalt Binder
4.1. Constitutive Model

Two commonly used thixotropic constitutive models are used to analyze the thixotropic
behavior of mastic asphalt binder and asphalt mastic. The first is the structural dynamics
model, which belongs to the rheological model [37,38]. The second is the mathematical
model first adopted by Mewis et al. (Mewis mathematical model) [39–41]. For the structural
dynamic model, the structural parameter λ(t) (0 ≤ λ ≤ 1) is used to characterize the struc-
tural integrity of the instantaneous thixotropic body. When λ = 0, it means that the structure
is completely destroyed; When λ = 1, it means that the structure has not been destroyed or
completely restored. Equation (1) is the basic expression of the structural dynamic model.
The basic expression of the structural dynamic model is complex, and another expression
is the general expression of the structural parameter λ dynamic equation, as shown in
Equation (2).

σ(t) = σy[λ(t)] + ηλ[λ(t),
.
γ(t)]

.
γ(t) + ηλ−0[

.
γ]

.
γ(t) (1)

where: Residual viscosity (Pa·s) when the ηλ−0 structure is completely destroyed; Con-
tribution of ηλ structure to viscosity (Pa·s); σ(t) yield stress (Pa);

.
γ(t) shear rate (s−1)

dλ

dt
= a(1 − λ)c − bλ

.
γ

d (2)

where: λ is structural parameters; a, c are coefficients related to microstructure establish-
ment; b, d are coefficients related to microstructure failure;

.
γ is the shear rate (s−1).

Mewis’s mathematical model adopts a replaceable method and does not use structural
parameters. Viscosity η(t) is directly fitted by a mathematical model. The commonly
used mathematical models are exponential equations and extended exponential equations,
which are shown in Equations (3) and (4).

η(t) = ηorig + (ηss − ηorig)[1 − exp(−t/τ)] (3)

η(t) = ηorig + (ηss − ηorig)[1 − exp(−t/τ)]p (4)

where: ηorig and ηss are the initial viscosity and steady viscosity, respectively, and τ, p are
time constants.

4.2. Establishment of Constitutive Model

The viscosity index of the mastic asphalt binder under different shear rates is measured
by an AR-2000 rheometer. The shear rate changes in the order of 0.01, 0.1, 1, 10, and 100 s−1.
The test results are shown in Figure 1. The viscosity data are normalized, as shown in
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Figure 2. The normalized data is processed by the central difference method. As can be seen
from Figure 2, the overall change trend remains consistent after normalization treatment.
The fitting analysis is carried out by Equation (2). The results are shown in Figure 3 and
Table 4.

Table 4. Fitting results of a dynamic model of mastic asphalt binder structure.

Shear Rate (s−1) a b c d R2

0.01 0.0155 0.168 0.611 0.529 0.953

0.1 0.0214 0.0676 0.586 0.00235 0.961

1 0.00356 0.0300 0.00794 0.0286 0.923

10 0.00100 0.0430 0.0991 0.0991 0.819

100 4.50 × 10−5 0.0643 0.0282 0.210 0.768
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It can be seen from Table 4 that in the fitting of the structural dynamics model, the
fitting effect of shear rates of 0.01, 0.1, and 1 s−1 is better, and R2 is above 0.9. The fitting
results of shear rate 10 and 100 s−1 are average; R2 is 0.819 and 0.768, respectively. The main
reason is that the data are too discrete to form a better fitting model. Mewis mathematical
model is used to construct the thixotropic constitutive model of mastic asphalt binder,
without normalization treatment and central difference differentiation treatment, and
the exponential equation and extended exponential equation are directly used for fitting
analysis. The fitting analysis results of the exponential equation are shown in Figure 4 and
Table 5, and the fitting analysis results of the extended exponential equation are shown in
Figure 5 and Table 5.
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Table 5. Fitting results of Mewis mathematical model of mastic asphalt binder.

Shear Rate (s−1) Equation ηorig ηss t τ R2

0.01
Index 12.9 8.05 35.90 0.996

Expansion index 42.6 6.57 0.145 0.165 0.996

0.1
Index 6.52 3.73 12.4 0.99

Expansion index 16.8 3.69 0.577 0.327 0.99

1
Index 2.55 1.58 30.3 0.989

Expansion index 2.52 1.58 3.73 1.14 0.989

10
Index 0.66 0.500 44.3 0.687

Expansion index 0.674 0.540 18.0 13.8 0.82

100
Index 0.390 0.210 287 0.557

Expansion index 0.427 0.409 15.9 1.24 0.78

It can be seen from Table 5 that in the fitting analysis results of the Mewis mathematical
model, the fitting effect of shear rates of 0.01, 0.1, and 1 s−1 is better, R2 is above 0.9, and the
fitting effect of the exponential equation is consistent with that of the extended exponential
equation. However, the fitting effect of the shear rate of 10 and 100 s−1 is average, and
the extended exponential equation shows a better fitting effect. To further determine
the thixotropic constitutive model of mastic asphalt binder, the fitting results of different
models are analyzed, and the results are shown in Figure 6. It can be seen from Figure 6
that at shear rates of 0.01, 0.1, and 1 s−1, the fitting effect of the exponential equation is
consistent with that of the extended exponential equation, and it is better than that of
the kinetic equation. When the shear rates are 10 and 100 s−1, the extended exponential
equation is the best, followed by the dynamic equation, and the exponential equation is the
worst. To facilitate the analysis, the extended exponential equation is selected as the final
constitutive model of the thixotropy of mastic asphalt binder.
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5. Thixotropic Constitutive Model of Asphalt Mastic

To further study the thixotropic constitutive model of asphalt mastic, the mineral
powder was mixed into mastic asphalt binder to form asphalt mastic with an asphalt–
aggregate ratio of 1.2. The stepped frequency method was used for the rheological test,
and the structural dynamics model and Mewis mathematical model were used for fitting
analysis. The structural dynamics fitting results are shown in Figure 7 and Table 6.

It can be seen from Figure 7 and Table 6 that in the fitting analysis results of the
structural dynamics model, the fitting effect is better when the shear rate is 0.01 s−1 and R2

reaches 0.991. When the shear rates are 1, 10, and 100 s−1, the fitting results are average,
and R2 is 0.772, 0.582, and 0.512. When the shear rate is 100 s−1, the fitting fails. The fitting
results of the Mewis mathematical model are shown in Figures 8 and 9 and Table 7, in
which the fitting results of the exponential equation are shown in Figure 8, and the fitting
results of the extended exponential equation are shown in Figure 9.
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Figure 7. Fitting results of center differential differentiation of asphalt mastic. (a) Central differential
fitting result (0.01 s−1); (b) Central differential fitting result (0.1 s−1); (c) Central differential fitting
result (1 s−1); (d) Fitting results of central differential differentiation (10 s−1); (e) Fitting results of
central differential differentiation (100 s−1).
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Table 6. Fitting results of a structural dynamic model of asphalt mastic.

Shear Rate (s−1) a b c d R2

0.01 0.0949 0.631 1.14 0.629 0.991

0.1 0.0222 0.477 0.673 0.776 0.772

1 0.00164 0.0355 0.00287 0.0597 0.582

10 0.00129 0.0761 0.00286 0.0207 0.512

100 3.43 × 10−5 0.0431 0.0757 0.0241 0.01
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Figure 8. Fitting results of the exponential equation of asphalt mastic.
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Figure 9. Fitting results of expansion index equation of asphalt mastic.

It can be seen from Table 7 that when the shear rates are 0.01, 0.1, 1, and 10 s−1, the
exponential equation and the extended exponential equation can form better fitting results,
and R2 is above 0.8. When the shear rate reaches 100 s−1, only the extended exponential
equation forms a general fitting effect, and R2 is 0.756. To further determine the thixotropic
constitutive model of asphalt mastic, the fitting effects of different models are analyzed,
and the results are shown in Figure 10. As can be seen from Figure 10, the fitting effect
of the extended exponential equation is the best. The extended exponential equation is
selected as the final constitutive model of the thixotropy of asphalt mastic.
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Table 7. Fitting results of Mewis mathematical model of asphalt mastic.

Shear Rate (s−1) Equation ηorig ηss t τ R2

0.01
Index 22.0 13.4 9.83 0.999

Expansion index 23.0 13.4 10.6 0.780 0.999

0.1
Index 6.71 5.50 19.7 0.939

Expansion index 931 5.47 44.1 0.00100 0.984

1
Index 3.14 2.32 40.1 0.985

Expansion index 3.28 2.32 48.8 0.650 0.987

10
Index 2.38 1.87 10.9 0.842

Expansion index 0.74 1.86 24.1 −0.140 0.849

100
Index 1.65 1.52 32.1 0.551

Expansion index 2.99 1.51 78.9 0.0300 0.756

Buildings 2023, 13, x FOR PEER REVIEW 11 of 18 
 

Figure 9. Fitting results of expansion index equation of asphalt mastic. 

Table 7. Fitting results of Mewis mathematical model of asphalt mastic. 

Shear Rate (s−1) Equation origη
 ssη  t  τ  R2 

0.01 
Index 22.0 13.4 9.83  0.999 

Expansion index 23.0 13.4 10.6 0.780 0.999 

0.1 
Index 6.71 5.50 19.7  0.939 

Expansion index 931 5.47 44.1 0.00100 0.984 

1 
Index 3.14 2.32 40.1  0.985 

Expansion index 3.28 2.32 48.8 0.650 0.987 

10 
Index 2.38 1.87 10.9  0.842 

Expansion index 0.74 1.86 24.1 −0.140 0.849 

100 
Index 1.65 1.52 32.1  0.551 

Expansion index 2.99 1.51 78.9 0.0300 0.756 

It can be seen from Table 7 that when the shear rates are 0.01, 0.1, 1, and 10 s−1, the 
exponential equation and the extended exponential equation can form better fitting re-
sults, and R2 is above 0.8. When the shear rate reaches 100 s−1, only the extended exponen-
tial equation forms a general fitting effect, and R2 is 0.756. To further determine the thixo-
tropic constitutive model of asphalt mastic, the fitting effects of different models are ana-
lyzed, and the results are shown in Figure 10. As can be seen from Figure 10, the fitting 
effect of the extended exponential equation is the best. The extended exponential equation 
is selected as the final constitutive model of the thixotropy of asphalt mastic. 

0.01 0.1 1 10 100
0.2

0.4

0.6

0.8

1.0

1.2

R
2

Shearing rate(S－1)

 Kinetic equation
 Exponential equation
 Extended exponential equation

 
Figure 10. Fitting results of asphalt mastic. 

It can be seen from the above analysis that under constant shear rate and prolonging 
shear time, the thixotropic structure of mastic asphalt binder and asphalt mastic system is 
gradually destroyed, and the geometric entanglement density decreases, resulting in the 
viscosity of the system decreasing until it reaches the equilibrium viscosity. With the in-
crease of shear rate, the thixotropic structure of mastic asphalt binder and asphalt mastic 
can be destroyed, and the system’s viscosity gradually decreases. Moreover, with the in-
crease of shear rate, the time for the system to reach equilibrium viscosity shortens. For 
thixotropic bodies, the time effect is equivalent to the shear effect; that is, prolonging the 
shear time or increasing the shear rate can achieve the same state. 

6. Influencing Factors of Thixotropy of Mastic Asphalt Binder 

Figure 10. Fitting results of asphalt mastic.

It can be seen from the above analysis that under constant shear rate and prolonging
shear time, the thixotropic structure of mastic asphalt binder and asphalt mastic system
is gradually destroyed, and the geometric entanglement density decreases, resulting in
the viscosity of the system decreasing until it reaches the equilibrium viscosity. With the
increase of shear rate, the thixotropic structure of mastic asphalt binder and asphalt mastic
can be destroyed, and the system’s viscosity gradually decreases. Moreover, with the
increase of shear rate, the time for the system to reach equilibrium viscosity shortens. For
thixotropic bodies, the time effect is equivalent to the shear effect; that is, prolonging the
shear time or increasing the shear rate can achieve the same state.

6. Influencing Factors of Thixotropy of Mastic Asphalt Binder

The characteristic of thixotropy is that the internal structure will change with time or
shear rate, so the existing evaluation indexes of thixotropy are mainly established around
this characteristic. The evaluation index of thixotropy can be divided into the following
three methods: The first method is to analyze the effect of shear rate on viscosity. The
second method is to analyze the effect of shear time on viscosity. The third method analyzes
the effect of shear rate and shear time on viscosity. The improved time thixotropy index is
used to analyze the influence of asphalt type, asphalt–aggregate ratio, filler type, heating
temperature, and shear rate on thixotropy. The evaluation index is shown in Equation (5).
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The improved time thixotropy index indicates the influence of shear time on the viscosity
of asphalt mastic under certain external conditions.

MTTI =
ηorig − ηss

lg
(
tss − torig

) (5)

Firstly, the optimal constitutive equation of the thixotropic structure of mastic asphalt
binder materials is obtained by fitting experimental data by using an extended exponential
model to obtain initial shear viscosity ηorig and steady shear viscosity ηss, and then the
time tss − torig corresponding to the reduction of initial shear viscosity ηorig to steady shear
viscosity ηss is obtained from experimental data. The initial shear viscosity ηorig is often
considered as zero shear viscosity, so the corresponding time torig is zero, so the time
required for viscosity change can be considered as tss, and the improved time thixotropic
index analysis model can be modified to Equation (6). MTTI characterizes the thixotropy
level of mastic asphalt binder under certain conditions. The higher the value of MTTI, the
higher the thixotropy level, and the smaller the value, the weaker the thixotropy ability of
the mastic asphalt binder.

MTTI =
ηorig − ηss

lgtss
(6)

6.1. Influence of Asphalt Types on Thixotropy

The stepper frequency test is carried out with lake asphalt, base asphalt, and mastic
asphalt binder. The shear rate is 1.0 s−1, and the test temperature is 180 ◦C. The test results
are fitted by an extended exponential equation to obtain MTTI calculation parameters, and
the thixotropy of lake asphalt, base asphalt, and mastic asphalt binder is evaluated by
calculation results. The results are shown in Figure 11.
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Figure 11. Influence of asphalt types on thixotropy. (a) Thixotropy fitting results of different asphalts;
(b) MTTI calculation results of different asphalts.

As can be seen from Figure 11a, the viscosity of all asphalt decreases with the extension
of shear time. Prolonging shear time leads to the increase of internal structure damage of
the asphalt system and reduces the movement resistance of internal particles and molecular
chains, showing the characteristics of reduced thixotropy of the system. The viscosity of
lake asphalt is higher than that of mastic asphalt binder, while the viscosity of base asphalt
is the smallest. Increasing the content of lake asphalt leads to an increase in the time to
reach steady viscosity. As can be seen from Figure 11b, the thixotropic ability of different
kinds of asphalt is in the order of lake asphalt > mastic asphalt binder > base asphalt. This
shows that the thixotropy of asphalt materials is related to the properties and structural
characteristics of asphalt materials themselves.



Buildings 2023, 13, 2380 13 of 18

6.2. Effect of Asphalt–Aggregate Ratio on Thixotropy

The mastic asphalt binder and asphalt mastic with asphalt–aggregate ratios of 1.2, 1.6,
2.0, and 2.4 are used for the stepping frequency test; the shear rate is 1.0 s−1, and the test
temperature is 180 ◦C. The test results are fitted by an extended exponential equation to
obtain MTTI calculation parameters, and the calculation results are used to evaluate the
influence of different asphalt–aggregate ratios on the thixotropy of mastic asphalt binder
and asphalt mastic. The results are shown in Figure 12.
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As shown in Figure 12a, the viscosity of all asphalt–aggregate ratios decreases con-
tinuously with the extension of shear time. Prolonging shear time leads to the increase
of internal structure failure of the asphalt system and reduces the movement resistance
of fine aggregate particles and molecular chains, showing the characteristics of reduced
thixotropy of the asphalt system. The greater the asphalt–aggregate ratio, the greater its
viscosity. This is due to the increase of fine particles, which fills the free volume between
asphalt macromolecules, resulting in the irregular thermal movement of molecules slowing
down, equivalent to the decrease of molecular spacing, resulting in the difficulty of asphalt
molecular chains moving. As seen in Figure 12b, the thixotropic ability of mastic asphalt
binder and asphalt mastic increases with the increase of the asphalt–aggregate ratio. The
reason is that the volume concentration of fine aggregate particles increases due to the
increase of the asphalt–aggregate ratio, thus increasing the viscosity of the system, resulting
in the obstruction of particle movement and the increase of thixotropy.

6.3. Effect of Filler Type on Thixotropy

The mastic asphalt binder and asphalt mastic with calcium carbonate ore powder and
cement as fillers (asphalt–aggregate ratio 1.2) are used for the stepping frequency test; the
shear rate is 1.0 s−1, and the test temperature is 180 ◦C. The test results are fitted by an
extended exponential equation to obtain MTTI calculation parameters, and the calculation
results are used to evaluate the influence of different filler ratios on the thixotropy of mastic
asphalt binder and asphalt mastic. The results are shown in Figure 13.
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Figure 13. Effect of filler type on thixotropy. (a) Thixotropy fitting results of different fillers; (b) MTTI
calculation results of different fillers.

From Figure 13, it can be seen that the viscosity of asphalt mastic with cement as filler
is greater than that with mineral powder as filler, and the thixotropy of asphalt mastic with
cement filler is greater than that with mineral powder filler. The reason is that cement
fineness is larger, which can be better mixed with mastic asphalt binder to form integrity.
Cement is often added to mastic asphalt mixture to improve rutting resistance, which will
lead to an increase in the time to reach steady viscosity; that is, prolonging the mixing time
is required.

6.4. Effect of Temperature on Thixotropy

Step frequency tests at 150 ◦C, 180 ◦C, 200 ◦C, and 220 ◦C are carried out on mastic
asphalt binder, and the shear rate is 10 s−1. The test results are fitted by an extended
exponential equation to obtain MTTI calculation parameters, and the calculation results are
used to evaluate the influence of different temperatures on the thixotropy of mastic asphalt
binder. The results are shown in Figure 14.
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Figure 14. Effect of temperature on thixotropy. (a) Thixotropy fitting results at different temperatures;
(b) MTTI calculation results at different temperatures.

As can be seen from Figure 14a, the viscosity of mastic asphalt binder decreases with
the extension of shear time at different temperatures, and the higher the temperature, the
smaller its viscosity. Increasing the shear temperature decreases the initial viscosity and
steady viscosity, but it does not change the time parameter of reaching steady viscosity. As
seen in Figure 14b, the thixotropy of mastic asphalt binder decreases with the increase in
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temperature. The analysis reason is that the molecular motion is intense, and the thixotropy
becomes smaller due to the temperature increase.

6.5. Effect of Shear Rate on Thixotropy

The mastic asphalt binder is tested with shear rates of 0.1 s, 1, 10, and 100 s−1 at 180 ◦C.
The MTTI calculation parameters are obtained by fitting the extended exponential equation
of the test results, and the influence of different shear rates on the thixotropy of mastic
asphalt binder is evaluated by calculation results. The results are shown in Figure 15.
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As can be seen from Figure 15a, under different shear rates, the viscosity of mastic
asphalt binder decreases with the extension of shear time, and the higher the shear rate, the
smaller its viscosity. The main reason is that under the action of high-speed shearing, the
original internal molecular chain or the inherent structure of filler particles are opened and
cannot be restored before the next shearing, which makes the molecular chain and particles
move along the flow direction, and finally makes the viscosity of the material decrease,
which has important practical significance for the processing of mastic asphalt binder. The
initial viscosity and steady-state viscosity of mastic asphalt binder and asphalt mastic
decrease with the increase of shear rate, and the time for the system to reach steady-state
viscosity shortens with the increase of shear rate. As seen in Figure 15b, the thixotropy of
mastic asphalt binder decreases with the increase of shear rate. This shows that prolonging
shear time and increasing shear rate can achieve the effect of reducing thixotropy, and they
are equivalent.

7. Conclusions

The thixotropic structural dynamic model and Mewis mathematical model of mastic
asphalt binder and asphalt mastic are obtained by stepping frequency test, and the following
conclusions are formed:

(1) The greater the amount of lake asphalt, the greater the thixotropy of mastic asphalt
binder and asphalt mastic; The greater the asphalt–aggregate ratio, the greater the
thixotropy of asphalt mastic; The thixotropy of asphalt mastic with cement as filler is
much greater than that of asphalt mastic with mineral powder as filler; The higher
the temperature and the higher the shear rate, the smaller the thixotropy of mastic
asphalt binder, and they are equivalent;

(2) The initial viscosity and steady-state viscosity of mastic asphalt binder and asphalt
mastic decrease with the increase of shear rate, and the time for the system to reach
steady-state viscosity shortens with the increase of shear rate. Therefore, when it is
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necessary to shorten the stirring time of mastic asphalt concrete, the shear rate can be
increased;

(3) Increasing the shear temperature does not change the time parameter of reaching
steady-state viscosity obviously. When the mixing time is sufficient, the viscosity
index of finished mastic asphalt concrete should be considered in the selection of
mixing temperature;

(4) When the amount of lake asphalt or cement in the asphalt mastic is increased, the
viscosity of asphalt mastic and the mixing time to reach the steady viscosity increase;
that is, the mixing time needs to be increased.

The thixotropic behavior of mastic asphalt binder and asphalt mastic is studied, which
provides important basic data for objectively and comprehensively analyzing its mechanical
response, exploring the best process window period, and subsequent research. The above-
mentioned experimental studies are all based on small-scale indoor experiments, and
aggregate gradation and other factors must be considered for the mastic asphalt mixture.
Therefore, follow-up research should focus on the thixotropy of mastic asphalt mixtures
and further reveal the thixotropy behavior of the mastic asphalt mixture.
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