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Abstract: The standard approach for testing ordinary concrete compressive strength (CS) is to cast
samples and test them after different curing times. However, testing adds cost and time to projects,
and, therefore, construction sites experience delays. Because carbon nanotubes (CNTs) vary in length,
composition, diameter, and dispersion, experiment and formula fitting alone cannot reliably predict
the strength of CNTs-based composites. For empirical equations or traditional statistical approaches
to properly forecast complex materials’ mechanical characteristics, various significant parameters,
databases, and nonlinear relationships between variables must be considered. Machine learning (ML)
tools are the most advanced for accurate predictions of material behaviour. This study employed
gradient boosting, light gradient boosting machine, and extreme gradient boosting techniques to
forecast the CS of CNTs-modified concrete. Also, in order to explore the influence and interaction
of various features, an interaction analysis was conducted. In terms of R2, gradient boosting, light
gradient boosting machine, and extreme gradient boosting models proved their accuracy. Extreme
gradient boosting had the highest R2 of 0.97, followed by light gradient boosting machine and
gradient boosting with scores of 0.94 and 0.93, respectively. This type of research may help both
academics and industry forecast material properties and influential elements, thereby reducing lab
test requirements.

Keywords: carbon nanotubes; compressive strength; prediction models; interaction analysis; machine
learning

1. Introduction

In order to get the best possible results, concrete technology has recently included
nanoparticles [1]. The usage of these materials can improve the durability of many build-
ing components [2]. As a result of developments in nanotechnology, new materials are
available for use in enhancing the mechanical characteristics and toughness of concrete,
cement pastes, and other construction components [3]. The mechanical properties of
nanomaterial-modified concrete have recently been investigated in experimental experi-
ments. Researchers have used a variety of nanoscale materials, including carbon nanotubes
(CNTs), micro silica, nanoscale aluminium, and micro-clay [4–6]. Concrete is one of the
most widely used building materials in the world for construction purposes [7,8]. Crushed
stone, freshwater, sand, and gravel are the non-renewable raw resources used the most
by the building industry [9]. In addition, this industry consumes over 1.6 billion metric
tonnes per year of Portland cement (PC) [10]. PC, a crucial ingredient in concrete, consumes
considerable energy and is limited in supply. Additionally, a substantial amount of CO2 is
released into the environment by the cement industry [11]. Thus, the latter is responsible for
around 7% of global CO2 emissions [12]. Modern construction trends, such as the building
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of modern bridges, high-rise buildings, and huge water accumulation systems, are also
driving the rising demand for concrete [13,14]. Nonetheless, the appearance of nanoscale
voids and cracks is a major disadvantage that lowers concrete’s performance and reduces
its lifespan [15]. Consequently, incorporating nanoparticles into a cementitious matrix
increases mechanical strength and makes the material very resistant to cracking [16,17].
Researchers all around the globe are interested in nanotechnology because of its promising
applications in a wide range of industries [18]. Particles of diameters between 1 and 100 nm
are considered to be in this category [19]. Nanoparticles are employed in cementitious
concrete to improve the material’s conventional strengths.

CNTs’ structural parameters, including their diameter characteristics, specific number
of walls, cross-link density, and chirality, have significant effects on the cementitious matrix.
Different properties of CNTs, such as fracture linkage, varied nucleation site, permeability,
and structural change, allow them to enhance cementitious composites in various ways. To
obtain optimal strengthening, it is necessary to understand how a given ingredient will
affect the composite’s qualities and what factors will determine that effect before using
that substance as a supplement. A number of analyses have investigated how CNTs affect
the mechanical properties of cementitious composites. Ghaderi [20] employed ternary
materials in the formulation of concrete, including waste glass powder, basalt fibres, and
CNTs, which are useful for making environmentally friendly buildings. Models for CNT
concrete were provided by Lushnikova and Zaoui [21], and the effect of nanotube density
on cementation nanocomposite was studied. The mechanical properties and piezoelectric
material properties of concrete buildings have been studied recently [22,23]. Cost-effective
monitoring of concrete structures may be possible with the use of electrochemical cement
nanocomposites incapacitated with CNTs. The use of CNTs in concrete might lead to the
development of an exciting new construction material. The aggregation propensity of
nanoparticles has a similar profound impact on the shape performance of cementitious
composites [24].

Producing a significant quantity of samples and evaluating them after varied lengths
of curing time is the standard method for determining the compressive strength (CS) of
ordinary concrete [25]. Until the results of the test are collected, normally after 28 days,
construction activities on a building site should be halted. As a result, construction sites
experience delays, and the testing processes adds extra cost and effort to the project. Testing
specimens for distinct ingredient combinations with variable quantities at various ages is
neither practicable nor sensible because of being time-consuming, costly, and reliant on
real investigations [26–28]. It is difficult to accurately predict the mechanical characteristics
of cementitious composites through experiment and formula fitting because of the varied
features of CNTs, such as length, content, dispersion, and diameter. In addition, there
are several important factors, databases, and nonlinear interactions between variables
for empirical equations or typical statistical methodologies that need to be considered to
reliably predict the mechanical properties of complex materials. Machine learning (ML)
approaches have been used in recent studies to predict the properties of building materials,
and the resulting models have shown promising results, outperforming the empirical
formulae [29]. One of the most beneficial approaches to forecasting material performance,
ML, has been successfully used for cement-based materials. ML approaches for predicting
and analysing CNTs/cement-based composites are still in their infancy.

The primary objective of this work was to utilize ML techniques to estimate the CS
of CNTs-modified concrete. Additionally, this study intends to assess the significance of
input parameters by analysing a dataset obtained through laboratory testing. Three ML
techniques, including gradient boosting (GB), light gradient boosting machine (LGBM),
and extreme gradient boosting (XGB), were employed to achieve the study’s aims. The
objectives of this study are as follows: (i) to develop ML models using established Python
codes in order to estimate the CS of the CNTs-modified concrete; (ii) to validate and
compare the model results using statistical performance indicators and Taylor diagrams;
(iii) to investigate the influence and interaction of input parameters using interaction
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analysis. The evaluation and assessment of the correctness of each model’s estimation
was conducted through the utilization of statistical tests, which involved comparing the
estimated results with the test results and calculating the coefficient of determination (R2)
and errors. Experimental-based research for the CS evaluation and mix design optimization
of building materials requires significant effort, expenses, and time. This proposed research
may aid both academics and industry in predicting the material attributes and influential
factors, thus eliminating repeated test trials in the laboratory.

2. Research Methods

The research approach that was utilized in this investigation for the purpose of esti-
mating the compressive strength of concrete containing CNTs involved making use of CNT
data that was already available from previous literature sources. The information that was
gathered was put through processing and analysis using ML methods so that a predictive
model could be developed. Figure 1 is an illustration of the methodical approach that
the research took, illustrating the successive processes that were carried out for this study.
This methodology sought to improve our understanding of the influential factors affecting
concrete strength when CNTs were incorporated by leveraging the power of both historical
data and advanced techniques for machine learning. The end goal was to contribute to a
more informed and efficient concrete composite design.
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2.1. Data Description

The purpose of this study was to make a prediction regarding the compressive strength
of concrete that contained CNTs. In order for ML algorithms to create the predicted
output variable, they require a number of different input variables. Data were taken from
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previously published works and included in this review for the purpose of predicting
the CS of concrete containing CNTs [15]. In order to accurately forecast the compressive
strength of concrete, six characteristics were used as inputs. These parameters were as
follows: cement (kg/m3), curing (days), fine aggregate (FA) (kg/m3), coarse aggregate
(CA) (kg/m3), w/b, and nanomaterial CNTs (%). The parameters of aggregates, such as
their fineness modulus, maximum diameters, and saturated surface dry (SSD), were either
unchanging or varied only very slightly. As a result, these parameters were not included
in this particular research. Since all of the data points acquired for this study adhered to
the American Society for Testing and Materials (ASTM) criteria, it was presumed that the
preparation of concrete was the same in each and every instance. In addition to this, the
output of the model is substantially impacted by the quantity of data points as well as the
numerous input parameters. This study made use of 282 different data points in order to
make a prediction regarding the CNTs-based compressive strength of concrete. The dataset
was split into training (70% of the data) and testing (30% of the data) for the modelling
phase. This allocation was taken considering pertinent literature in the field [30–32]. All of
the algorithms needed to run the models were crafted in the programming language Python,
and the software that was employed was the Spyder (version 5.4.3) accessed through the
Anaconda Navigator. Figure 2 gives a visual depiction of the relative frequency distribution
of all parameters used in creating the models. Furthermore, for the database, Pearson’s
correlation matrix was produced, as illustrated in Figure 3. A correlation matrix presents
the correlation coefficients between pairs of variables in the form of a symmetrical matrix.
The intensity and direction of the linear relationship between two variables are quantified
by correlation coefficients. The correlation matrix is a frequently employed instrument in
the fields of statistics and multivariate analysis for examining the connections between
numerous variables [33]. Potential results comprise a perfect negative correlation (denoted
by −1), a perfect positive correlation (represented by +1), and the absence of any correlation
(represented by 0). A positive correlation denotes that when one variable increases, the
other variable also increases proportionally; conversely, a negative correlation suggests that
when one variable increases, it generally results in a decrease in the other [34]. The most
significant input was the cement quantity, which exhibited a strong positive correlation (as
indicated by a correlation coefficient of 0.59) with the output (CS). The correlation between
the output and CT was also positive, while the impact of w/b, CA, FA, and CNTs was
shown to be negative. Statistics used for describing the data are listed in Table 1.

Table 1. Statistical description of the CNTs dataset.

Name Abbreviation Total
Data Mean

Standard
Devia-

tion
Sum Minimum Kurtosis Skewness Range Median Maximum

Curing time
(d) CT 282 45.30 32.69 12,776 1 3.2 1.5 179.0 28 180

Cement
(kg/m3) C 282 397.82 45.40 112,186.6 250 −0.3 −0.1 225.0 400 475

Water to
binder ratio w/b 282 0.50 0.08 140.62 0.4 5.1 1.9 0.5 0.49 0.87

Coarse
aggregate
(kg/m3)

CA 282 1031.25 163.87 290,813.5 498 1.7 −0.9 968.8 1068.75 1466.8

Fine
aggregate
(kg/m3)

FA 282 638.64 163.44 180,096.4 175.5 3.2 1.2 1109.5 608.375 1285

Carbon
nanotubes

(%)
CNT 282 0.51 1.89 145.21 0 18.4 4.4 10.0 0 10

Compressive
strength
(MPa)

CS 282 45.14 10.57 12,730.26 14.7 0.6 −0.9 52.0 46.5 66.7
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Figure 3. Correlation coefficient of the CNTs dataset.

2.2. Machine Learning Algorithms
2.2.1. Gradient Boosting

In 1999, Friedman [35] introduced GB to the scientific community as an ensemble
method for regression and classification. The GB method can only be used for regression.
Figure 4 exhibits how the GB approach conducts a comparison of each iteration of the
arbitrarily chosen training set to the initial model. Randomly subsampling the data used for
training is one way to assist in minimizing overfitting while also increasing the execution
accuracy of GB. This can also help speed up the execution of GB. The smaller the percentage
of data used for training, the more rapid the regression will be since the model needs to
adapt to the new minor data with each and every iteration. The GB method needs tuning
parameters, such as n-trees and shrinkage rate. The n-trees parameter represents the count
of trees to be produced and it should not be set too low. In addition, the shrinkage rate,
which is typically known as the rate of learning, being utilized to all trees in the creation,
should not be set too high [36]. Tuning is required because the GB algorithm is used to
generate trees.
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2.2.2. Light Gradient Boosting Machine

LGBM is a relatively new gradient learning framework that utilizes decision trees and
the concept of boosting [37]. Histogram-based techniques are used to accelerate training,
decrease memory use, and use a leaf-wise growth approach with depth limitations, setting
it apart from the XGB model. Histogram algorithms work by dividing the space occupied
by the eigenvalues of a continuous floating-point variable into a number of discrete bins,
say k. The memory requirements of the histogram approach can be lowered by a factor of
eight by not having to keep track of intermediate results that have already been sorted, and
by saving the value after the discretization of features, which is often small enough to store
with an 8-bit integer. The model’s precision is unaffected by the approximate partitioning.
Overfitting may be successfully avoided due to the regularization impact of the coarser
segmentation points. Decision trees utilize a level-wise growth approach, which is an
inefficient method since it treats the leaves of the same layer. This wastes a lot of memory.
By comparing all of the leaves and selecting the ones with the largest branching gain, the
leaf-by-leaf approach is more efficient. As a result, the blade’s vertical orientation allows
for more error reduction and greater accuracy with the same number of iterations as the
horizontal orientation. Overfitting and deeper decision trees are two potential drawbacks
of leaf orientation. LGBM prevents inefficient overfitting by placing a depth restriction on
the leaf’s upper surface. Figure 5 is a simplified representation of the level- and leaf-specific
development methods that trees employ [38].



Buildings 2024, 14, 134 8 of 21Buildings 2024, 14, x FOR PEER REVIEW 8 of 22 
 

 
Figure 5. An illustration of the LGBM method [38]. 

2.2.3. Extreme Gradient Boosting 
The XGB approach for machine learning is based on a decision tree, and it uses the 

gradient descent method to decrease the amount of data that is shed as a result of the 
addition of new models. According to Shehadeh et al. [39], the decision-tree-based algo-
rithms that are used for machine learning on medium- to small-scale tabular data are 
deemed to be the most effective among the comparable machine-learning algorithms. XGB 
is nothing more than a haphazard assortment of CARTs. The CARTs are divided, and the 
places at which they are most effectively divided are determined to be the minimal objec-
tive function. According to Nguyen et al. [40], XGB may be utilized to solve regression 
problems. XGB leaf node weight computations are guided by the following desired func-
tion: 𝑂𝑏𝑗 = ෍ [𝐺௝𝑤௝ + ଵଶ (𝐻௝ + 𝜆)𝑤௝ଶ௝்ୀଵ ] + γT 

where 𝑂𝑏𝑗 is the objective function, 𝑤௝ is the leaf j weight vector, 𝐺௝ is the sum of the 
derivatives that are partial of the samples at the jth leaf node (defined at the first order), 𝜆 is the coefficient for L2 regularisation, 𝐻௝ is the cumulative sum of the partial deriva-
tions of the data points at leaf node j of the second order, and γT regulates the tree’s degree 
of intricacy. 

2.3. Model Assessment and Validation Methods 
A mathematical technique known as k-fold cross-validation (KFCV) is used to eval-

uate the effectiveness of the models that are applied to data in order to prevent overfitting 
and bias in the training set. It then takes the remaining set (k10-1) and uses it to train the 
model [41]. This method partitions the whole data set into k10 subsets of data, with one 
set serving as the testing set (k1) out of ten. It was hypothesized by Kohavi in 1995 [42] 

Figure 5. An illustration of the LGBM method [38].

2.2.3. Extreme Gradient Boosting

The XGB approach for machine learning is based on a decision tree, and it uses
the gradient descent method to decrease the amount of data that is shed as a result of
the addition of new models. According to Shehadeh et al. [39], the decision-tree-based
algorithms that are used for machine learning on medium- to small-scale tabular data are
deemed to be the most effective among the comparable machine-learning algorithms. XGB
is nothing more than a haphazard assortment of CARTs. The CARTs are divided, and the
places at which they are most effectively divided are determined to be the minimal objective
function. According to Nguyen et al. [40], XGB may be utilized to solve regression problems.
XGB leaf node weight computations are guided by the following desired function:

Obj = ∑T
j=1

[
Gjwj +

1
2
(

Hj + λ
)
w2

j

]
+ γT

where Obj is the objective function, wj is the leaf j weight vector, Gj is the sum of the
derivatives that are partial of the samples at the jth leaf node (defined at the first order), λ
is the coefficient for L2 regularisation, Hj is the cumulative sum of the partial derivations
of the data points at leaf node j of the second order, and γT regulates the tree’s degree
of intricacy.

2.3. Model Assessment and Validation Methods

A mathematical technique known as k-fold cross-validation (KFCV) is used to evaluate
the effectiveness of the models that are applied to data in order to prevent overfitting and
bias in the training set. It then takes the remaining set (k10-1) and uses it to train the
model [41]. This method partitions the whole data set into k10 subsets of data, with one set
serving as the testing set (k1) out of ten. It was hypothesized by Kohavi in 1995 [42] that
KFCV would produce a precise variance and be more appropriate for optimum calculation
time. The K10 subset is used in this study to perform an analysis and validation of all
models, as shown in Figure 6.
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Moreover, statistical errors including the mean absolute error root (MAE), root mean
square logarithmic error (RMSLE), root mean square error (RMSE), and R2, were utilized
when assessing a model’s performance on a training or testing set. R2, also known as the
determination coefficient, is a statistic that may be used to measure how well a model can
predict future outcomes [43,44]. The advancements that have been made in AI modelling
techniques have made it possible to provide more accurate forecasts of the mechanical
characteristics of concrete. The GB, LGBM, and XGB models are statistically evaluated
and contrasted with one another in this research by means of the determination of error
criteria. There are a large number of data points that might perhaps shed light on the
inaccuracy of the model. In order to determine whether or not the model is reliable and
valid, the coefficient of determination can be utilized. The findings that are produced
by models with R2 values that are above 0.50 are disappointing, whereas the results that
are produced by models with R2 values that lie within the range of 0.65 and 0.75 are
encouraging. The value of R2 may be found by utilizing Equation (1). The MAE uses
the same unit system for both its input and its output. A model with an MAE that falls
within a certain range has the potential to produce mistakes of a significant nature on
occasion. Equation (2) is what we use to compute MAE. The RMSE is the measure of how
accurate estimates and measurements are. Error squared is determined by adding up all
of the individual error squares. The new method gives more consideration to extreme
circumstances than the older computations did, which results in squared differences that are
larger in some cases but lower in others. The RMSE may be estimated using Equation (3).
The model’s ability to reliably anticipate incoming data increases in proportion to the
reduction in the value that represents the RMSE. The root-mean-square error, or RMSE, is a
useful metric for contrasting models of differing degrees of complexity. Incorporating a
larger logarithmic error into the RMSLE enables it to compute the proportional difference
between the outcome that was predicted and the one that was actually seen. Because the
log conversion presents the intended distribution in a very straightforward manner, it is
helpful for analysing results that are right-skewed. The RMSLE can be computed with
Equation (4).

R2 = 1 −
∑m

j=1

(
pj − tj

)2

m
∑

j=1

(
tj − t

) (1)
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MAE =
∑m

j=1

∣∣∣tj − pj

∣∣∣
n

(2)

RMSE =

√√√√∑m
j=1

(
tj − pj

)2

n
(3)

RMSLE =

√√√√ 1
n

m

∑
j=1

(
log

(
tj + 1

)
− log

(
pj + 1

))2
(4)

In these equations, tj represents the original experimental data used to create the model,
pj represents the anticipated result, tj represents the target average value, pi represents the
projected mean value, and m is the total number of instances considered.

3. Results and Discussions
3.1. Gradient Boosting Model

The GB model has a remarkable predictive performance, displaying an R2 value of 0.93,
which indicates its capacity to explain a significant percentage of the variation included
within the dataset. This demonstrates the model’s ability to forecast the future accurately.
The linear regression fit of R2 is also shown in Figure 7. As can be seen in Figure 8, a
comprehensive examination of prediction errors has been carried out in order to evaluate
the accuracy of the model in terms of providing estimates of actual values. The findings
indicate that the bulk of the predictions are astonishingly near to the actual values, with
47.1% of them having an error of less than 1.5 MPa. This is demonstrated by the fact
that there is a remarkable correlation between the two. In addition, 35.2% of the model’s
predictions fall within the range of 1.5 to 4 MPa, which demonstrates the model’s reliability
in providing correct forecasts throughout a wider spectrum. The fact that just 17.7% of the
forecasts are off by more than 4 MPa from the values that really occurred demonstrates the
robustness of the model in its ability to deal with difficult circumstances. When looking
at the error distribution, we can see that the biggest forecast error is 8.2 MPa, while the
smallest error is 0.1 MPa. This shows that the model is able to handle a diverse set of data
points. The fact that the model has an error rate of 2.19 MPa on average underlines the
robust prediction skills it possesses over a wide range of data sets.
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3.2. Light Gradient Boosting Machine Model

Figure 9 illustrates that the LGBM model has an impressively high R2 value of 0.94,
which suggests that it has an exceptional level of predictive accuracy. This score is a
reflection of how well the model is able to explain a sizeable percentage of the variability
present in the data. In addition, a comprehensive error analysis has been carried out in
order to assess how well the model performs in terms of its ability to forecast real values,
as can be seen in Figure 10. According to the findings, the bulk of the forecasts are quite
close to the actual values, with 52.9% of them having an error that is lower than 1.5 MPa.
In addition, 29.4% of forecasts fall within the range of 1.5 to 4 MPa, which demonstrates
the model’s constant accuracy over a larger range of values. The fact that just 17.7% of
forecasts are off by more than 4 MPa from the actual values demonstrates how resilient the
model is when it comes to dealing with severe circumstances. The dependability of the
model is shown by the error distribution, which reveals that the model’s biggest forecast
error measures 7.33 MPa, while the model’s lowest mistake measures just 0.05 MPa. The
model has high prediction skills for a variety of data points, as seen by its moderate error
of 1.99 MPa, which is calculated as an average over all of the data points.
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3.3. Extreme Gradient Boosting Model

The XGB regression model demonstrates exceptional predictive capability, as seen
by its remarkable R2 value of 0.97. This indicates that the model is very successful in
explaining approximately 97% of the variation in the data, showing its resilience in cap-
turing underlying patterns, as illustrated in Figure 11. In addition, as can be shown in
Figure 12, an in-depth investigation of the error distribution demonstrates that the model
has an excellent level of accuracy. Its precision in forecasting values within a tight margin is
demonstrated by the fact that 61.1% of the forecasts have errors that are less than 1.5 MPa.
This is a major fraction of the predictions. In addition, 36.5% of forecasts come within the
range of 1.5 MPa to 4 MPa, which demonstrates its adaptability in managing a wider range
of value ranges. Even when errors are present that are more than 4 MPa, the model still
maintains an acceptable degree of performance, with just 2.4% of predictions falling into
this category. The reliability of the model’s forecasts is shown by the fact that its biggest
mistake was calculated to be 5.5 MPa, while its lowest error was calculated to be a meagre
0.005 MPa. The model has been shown to have an inaccuracy of 1.44 MPa on average,
which further demonstrates the outstanding precision and dependability with which it can
estimate target values.
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3.4. K-Fold Cross-Validation Outcomes

KFCV was used to conduct an in-depth analysis of the performance of three ML
models, namely GB, LGBM, and XGB. As can be seen in Table 2 and Figure 13, the findings
demonstrated outstanding performance across the board for all of the assessment criteria.
XGB came out on top as the best performer, attaining the greatest R2 value of 0.981 on a
constant basis, which indicates that it has a remarkable capacity to explain data variation.
In addition, it had the lowest MAE of 3.499 MPa, which indicates that it is extremely
accurate, and the lowest RMSE of 2.605 MPa, which demonstrates that it can make accurate
predictions. In addition, XGB showed the lowest RMSLE values, with 0.071 MPa being
the lowest possible value. This demonstrates how well it can handle data on a variety of
scales. Despite the fact that both GB and LGBM performed wonderfully, with impressive
R2 values of 0.935 and 0.940, respectively, as well as competitive MAE, RMSE, and RMSLE
scores, XGB continually beat both, making it the best option for this specific CNTs dataset.

Table 2. KFCV of all models.

K-Fold

GB Model LGBM Model XGB Model

R2 MAE
(MPa)

RMSE
(MPa)

RMSLE
(MPa) R2 MAE

(MPa)
RMSE
(MPa)

RMSLE
(MPa) R2 MAE

(MPa)
RMSE
(MPa)

RMSLE
(MPa)

1 0.82 3.65 2.08 0.036 0.71 2.47 2.57 0.068 0.88 3.33 2.52 0.033
2 0.92 4.02 4.60 0.072 0.91 3.95 3.89 0.017 0.94 3.25 3.78 0.012
3 0.83 2.43 2.82 0.042 0.89 3.28 3.21 0.014 0.87 3.01 1.04 0.035
4 0.89 3.29 3.80 0.044 0.87 3.19 3.02 0.022 0.96 3.50 3.71 0.029
5 0.91 2.27 2.96 0.078 0.94 2.73 1.16 0.071 0.95 2.49 2.52 0.071
6 0.83 3.09 3.23 0.017 0.93 2.14 3.96 0.027 0.90 3.36 2.13 0.015
7 0.68 3.86 3.95 0.036 0.83 3.02 3.68 0.069 0.98 1.17 3.75 0.034
8 0.85 1.53 2.46 0.047 0.86 2.31 3.11 0.078 0.88 1.31 1.65 0.012
9 0.88 3.17 3.53 0.092 0.86 3.03 1.74 0.036 0.94 2.03 2.38 0.060

10 0.94 1.36 3.84 0.057 0.85 1.74 4.42 0.090 0.93 1.41 2.57 0.009

Max 0.94 4.02 4.60 0.092 0.94 3.95 4.42 0.090 0.98 3.50 3.78 0.071

Min 0.68 1.36 2.08 0.017 0.71 1.74 1.16 0.014 0.87 1.17 1.04 0.009
Mean 0.85 2.87 3.33 0.052 0.87 2.79 3.08 0.049 0.92 2.48 2.60 0.031
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3.5. Statistical Performance Indicators

The statistical analysis conducted on the three independent ML models, GB, LGBM,
and XGB, yielded valuable performance data. The XGB model beat the others with a
significantly lower MAE of 1.445 MPa, suggesting its higher accuracy in predicting target
values. In addition, the XGBoost model showed a substantially reduced mean absolute
percentage error (MAPE) at 3.80%, which indicates that it is able to deliver more exact
predictions while taking into consideration the magnitude of the data. In addition, the
XGBoost model had the lowest RMSE of all of the models tested, coming in at 1.798 MPa.
This demonstrates how good the model is in reducing prediction errors across the board.
In conclusion, the RMSLE provided more evidence that the model is superior by demon-
strating that it attained the lowest value out of the three models (0.041 MPa), indicating
that it is able to make predictions that are scaled and accurate on a consistent basis. Table 3
provides an in-depth analysis of the statistical examinations that were performed. In light
of all of these findings, it is clear that the XGB model has far more potential for accurate
prediction than either GB or LGBM.

Table 3. Statistical checks for the GB, LGBM, and XGB models.

Technique GB LGBM XGB

MAE (MPa) 2.195 2.0 1.445
MAPE 5.70% 5.70% 3.80%

RMSE (MPa) 2.863 2.844 1.798
RMSLE (MPa) 0.065 0.064 0.041

3.6. Taylor Diagrams

A Taylor diagram is a graphical tool that is used to graphically compare and analyse
the performance of several models or datasets, notably in the context of data analysis and
predictive modelling. It is also known as a “Taylor plot”. It makes it possible to evaluate
different models or datasets on the basis of their correlation, RMSE, and standard deviation,
which provides insights into the correctness and dependability of the models and datasets.
In the field of machine learning, this graphic is especially helpful for model assessment
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and selection. Therefore, Taylor diagrams were used to graphically evaluate the results of
three different machine learning algorithms (the GB model, the LGBM model, and the XGB
model) in the assessment of prediction models for compressive strength in CNTs-based
concrete. Figure 14 displays the forecasts made by the models: GB had a value of 9.572,
LGBM had a value of 9.576, and XGB was the clear winner with a prediction of 9.579.
In particular, XGB’s predictions for compressive strength in CNTs-based concrete were
very close to the actual values, demonstrating its better accuracy. This result demonstrates
why XGB has the potential to be the go-to model for concrete strength prediction, where
accuracy and precision are of the utmost importance.
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3.7. Interaction Analysis Outcomes

This section investigates the relationships between input factors, specifically raw
materials, and the resulting outputs, i.e., CS. Scatter plots were produced in order to
illustrate the correlation between different inputs and the CS of CNTs-based concrete, as
seen in Figure 15. The bar graphs positioned beside the scatter plot depict the frequency of
input or output events. As depicted in Figure 15a, CT exhibited increasing strength with
rising CT, which suggests that at later ages of CNTs-based concrete, its strength improves.
Similar observations were also noted in prior experimental studies [45]. The interaction of
cement with CS was found to be similar to the CT. In order to achieve higher strength, the
cement quantity in the mix needs to be kept higher, as displayed in Figure 15b. The impact
pattern of w/b, as shown in Figure 15c, demonstrates that lower w/b is favourable for
attaining the desirable strength. The interaction of CA and FA, as shown in Figure 15d,e,
showed that with rising quantities of CA and FA, strength declines. Figure 15f shows the
interaction of CNTs, which implies that a lower percentage of CNTs is feasible for achieving
the maximum CS. The optimal percentage of CNTs in the mix might be around 1%. The
results of the present study were derived from the input kinds and dataset size employed
in the interaction analysis. There is potential for attaining more accurate correlations
by expanding the range of input variables inside the database, which is suggested for
future research.
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4. Discussions

This research focused on developing and comparing ML models such as GB, LGBM,
and XGB for estimating the CS of CNTs-based concrete. The developed models exhibited
satisfactory prediction performance. An important aspect of ML models derived from
this work is their restriction to a predefined set of eight input parameters. Consequently,
the forecasts will be tailored only to CNTs-based concrete. The accuracy of the models’
strength forecasts is ensured by their utilization of identical testing procedures and unit
measurements. The meticulously derived equations generated by the simulations signifi-
cantly enhance comprehension of the mix design and the impact of each input parameter.
Expanding the parameters of the composite analysis beyond the given eight inputs might
potentially invalidate the usefulness of the predicted models. If these models are provided
with data that do not align with their original design, they may not function as intended.
The models may produce erroneous predictions if the input parameters’ units are adjusted
or inconsistent. The efficacy of the models relies on maintaining uniform unit sizes. ML
models have several applications in the construction sector, including predicting material
strength, ensuring quality, assessing risks, forecasting maintenance needs, and improv-
ing energy efficiency. Nevertheless, these models have several constraints, including the
requirement for human involvement, flawed data, and unreliable models. Subsequent
studies may concentrate on overcoming these constraints and enhancing ML solutions
through various means, such as leveraging the Internet of Things (IoT), developing hybrid
models, implementing explainable AI techniques, taking sustainability factors into account,
and adapting data generation and distribution to industry requirements. The previous
research done on construction materials using similar methods has been documented in
Table 4. These technological advancements have the capacity to improve effectiveness,
clarity, comprehensibility, and informed decision-making in the construction industry. All
of these factors would lead to a reduction in project delays and an improvement in safety
and sustainability. The results of this study might potentially enhance the adoption of
CNTs-based concrete in the construction sector, hence fostering the implementation of
sustainable building practices.
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Table 4. Results comparison with past ML-based studies.

Ref. Material Studied Properties
Predicted

ML Techniques
Employed

Optimum ML
Model Noted

R2 of the Best
ML Model

Current study CNTs-based
concrete CS GB, LGBM, and XGB XGB 0.97

[32] Eggshell-based
cement mortar

Reduction in CS
after acid attack

GB, AdaBoost, and
XGB XGB 0.94

[46] Steel fibre
reinforced concrete Flexural strength GB, random forest,

and XGB XGB 0.94

[47] Geopolymer
concrete CS Support vector

machine, GB, and XGB XGB 0.98

[48] Nano-silica
modified concrete

Ultrasonic pulse
velocity

GB, AdaBoost, and
XGB XGB 0.90

5. Conclusions

This study aimed to use ML algorithms to predict the CS of CNTs-based concrete. A
comprehensive dataset of six inputs and 282 points was employed with CS as an output.
The GB, LGBM, and XGB models were utilized in the process of result forecasting. Python
code was utilized in Spyder (version 5.4.3) to build models. The models’ predictability
performance was evaluated using statistical checks (R2, MAE, RMSLE, MAPE, and RMSE).
This study led to the following conclusions:

• In terms of the coefficient of determination (R2), each of the three ML models, GB,
LGBM, and XGB, presented convincing evidence of their accuracy. XGB surpassed the
other models with the greatest R2 of 0.97, while GB and LGBM also attained R2 of 0.93
and 0.94, respectively.

• When compared to LGBM and GB, XGB had a low error distribution, and its average
error was just 1.44 MPa. This indicated that XGB’s forecasts were more accurate and
had lower variability than other models’ predictions.

• During KFCV, the performance of XGB was consistently superior to that of GB and
LGBM since it produced lower values for MAE, RMSE, and RMSLE. The excellence of
XGB’s predictions is further shown through measurements. Similar results are also
shown using statistical checks.

• The findings were verified using the Taylor diagram, which demonstrated that the
values predicted by XGB were closer to the actual values than those predicted by GB
and LGBM. This also demonstrated that XGB was accurate in predicting the CS of
CNTs-based concrete.

• The interaction pattern indicated that at higher values of CT and cement, strength
improves. To attain maximum strength, w/b, CA, and FA need to be kept low, while
CNTs’ percentage needs to be kept around 1%.

This study determined the suitability of ensemble ML methods in predicting the CS
of CNTs-modified concrete. Additionally, interaction analysis was conducted to examine
the influence and interaction of various features on CS. Using ML tools might eliminate
repeated test trials by accurately predicting the desired outcomes. Interaction analysis
examines the influence of various features, which might be used in formulating the mix
proportions of CNTs-modified concrete.

Author Contributions: Conceptualization, F.Z. and J.H.; methodology, X.W. and Y.L.; software, F.Z.;
validation, X.W. and J.H.; formal analysis, Y.L.; investigation, Y.L.; resources, J.H.; data curation,
F.Z.; writing—original draft preparation, F.Z.; writing—review and editing, X.W., Y.L. and J.H.;
visualization, Y.L.; supervision, X.W. and J.H.; project administration, X.W.; funding acquisition, X.W.
All authors have read and agreed to the published version of the manuscript.



Buildings 2024, 14, 134 19 of 21

Funding: This research received no external funding.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hassan, A.; Galal, S.; Hassan, A.; Salman, A. Utilization of carbon nanotubes and steel fibers to improve the mechanical properties

of concrete pavement. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 121. [CrossRef]
2. Faraj, R.H.; Mohammed, A.A.; Omer, K.M. Self-compacting concrete composites modified with nanoparticles: A comprehensive

review, analysis and modeling. J. Build. Eng. 2022, 50, 104170. [CrossRef]
3. Paruthi, S.; Husain, A.; Alam, P.; Husain Khan, A.; Abul Hasan, M.; Magbool, H.M. A review on material mix proportion and

strength influence parameters of geopolymer concrete: Application of ANN model for GPC strength prediction. Constr. Build.
Mater. 2022, 356, 129253. [CrossRef]

4. Hawreen, A.; Bogas, J.A. Creep, shrinkage and mechanical properties of concrete reinforced with different types of carbon
nanotubes. Constr. Build. Mater. 2019, 198, 70–81. [CrossRef]

5. Mohsen, M.O.; Al Ansari, M.S.; Taha, R.; Al Nuaimi, N.; Taqa, A.A. Carbon nanotube effect on the ductility, flexural strength, and
permeability of concrete. J. Nanomater. 2019, 2019, 6490984. [CrossRef]

6. Shekari, A.H.; Razzaghi, M.S. Influence of Nano Particles on Durability and Mechanical Properties of High Performance Concrete.
Procedia Eng. 2011, 14, 3036–3041. [CrossRef]

7. Lao, J.-C.; Xu, L.-Y.; Huang, B.-T.; Zhu, J.-X.; Khan, M.; Dai, J.-G. Utilization of sodium carbonate activator in strain-hardening
ultra-high-performance geopolymer concrete (SH-UHPGC). Front. Mater. 2023, 10, 1142237. [CrossRef]

8. Riaz Ahmad, M.; Khan, M.; Wang, A.; Zhang, Z.; Dai, J.-G. Alkali-activated materials partially activated using flue gas residues:
An insight into reaction products. Constr. Build. Mater. 2023, 371, 130760. [CrossRef]

9. Sandanayake, M.; Gunasekara, C.; Law, D.; Zhang, G.; Setunge, S.; Wanijuru, D. Sustainable criterion selection framework for
green building materials—An optimisation based study of fly-ash Geopolymer concrete. Sustain. Mater. Technol. 2020, 25, e00178.
[CrossRef]

10. Abdalla, L.B.; Ghafor, K.; Mohammed, A. Testing and modeling the young age compressive strength for high workability concrete
modified with PCE polymers. Results Mater. 2019, 1, 100004. [CrossRef]

11. Lou, Y.; Khan, K.; Amin, M.N.; Ahmad, W.; Deifalla, A.F.; Ahmad, A. Performance characteristics of cementitious composites
modified with silica fume: A systematic review. Case Stud. Constr. Mater. 2023, 18, e01753. [CrossRef]

12. Yang, H.; Liu, L.; Yang, W.; Liu, H.; Ahmad, W.; Ahmad, A.; Aslam, F.; Joyklad, P. A comprehensive overview of geopolymer
composites: A bibliometric analysis and literature review. Case Stud. Constr. Mater. 2022, 16, e00830. [CrossRef]

13. Pan, Y.; Tannert, T.; Kaushik, K.; Xiong, H.; Ventura, C.E. Seismic performance of a proposed wood-concrete hybrid system for
high-rise buildings. Eng. Struct. 2021, 238, 112194. [CrossRef]

14. Wang, Z.; Pan, W.; Zhang, Z. High-rise modular buildings with innovative precast concrete shear walls as a lateral force resisting
system. Structures 2020, 26, 39–53. [CrossRef]

15. Jiao, H.; Wang, Y.; Li, L.; Arif, K.; Farooq, F.; Alaskar, A. A novel approach in forecasting compressive strength of concrete with
carbon nanotubes as nanomaterials. Mater. Today Commun. 2023, 35, 106335. [CrossRef]

16. De Maio, U.; Fantuzzi, N.; Greco, F.; Leonetti, L.; Pranno, A. Failure Analysis of Ultra High-Performance Fiber-Reinforced
Concrete Structures Enhanced with Nanomaterials by Using a Diffuse Cohesive Interface Approach. Nanomaterials 2020, 10, 1792.
[CrossRef]

17. Vitharana, M.G.; Paul, S.C.; Kong, S.Y.; Babafemi, A.J.; Miah, M.J.; Panda, B. A study on strength and corrosion protection of
cement mortar with the inclusion of nanomaterials. Sustain. Mater. Technol. 2020, 25, e00192. [CrossRef]

18. Huseien, G.F.; Shah, K.W.; Sam, A.R.M. Sustainability of nanomaterials based self-healing concrete: An all-inclusive insight. J.
Build. Eng. 2019, 23, 155–171. [CrossRef]

19. Wang, Y.; Zeng, D.; Ueda, T.; Fan, Y.; Li, C.; Li, J. Beneficial effect of nanomaterials on the interfacial transition zone (ITZ) of
non-dispersible underwater concrete. Constr. Build. Mater. 2021, 293, 123472. [CrossRef]

20. Mohammadyan-Yasouj, S.E.; Ghaderi, A. Experimental investigation of waste glass powder, basalt fibre, and carbon nanotube on
the mechanical properties of concrete. Constr. Build. Mater. 2020, 252, 119115. [CrossRef]

21. Lushnikova, A.; Zaoui, A. Influence of single-walled carbon nantotubes structure and density on the ductility of cement paste.
Constr. Build. Mater. 2018, 172, 86–97. [CrossRef]

22. D’Alessandro, A.; Rallini, M.; Ubertini, F.; Materazzi, A.L.; Kenny, J.M. Investigations on scalable fabrication procedures for
self-sensing carbon nanotube cement-matrix composites for SHM applications. Cem. Concr. Compos. 2016, 65, 200–213. [CrossRef]

23. Parvaneh, V.; Khiabani, S.H. Mechanical and piezoresistive properties of self-sensing smart concretes reinforced by carbon
nanotubes. Mech. Adv. Mater. Struct. 2019, 26, 993–1000. [CrossRef]

https://doi.org/10.1186/s43088-022-00300-5
https://doi.org/10.1016/j.jobe.2022.104170
https://doi.org/10.1016/j.conbuildmat.2022.129253
https://doi.org/10.1016/j.conbuildmat.2018.11.253
https://doi.org/10.1155/2019/6490984
https://doi.org/10.1016/j.proeng.2011.07.382
https://doi.org/10.3389/fmats.2023.1142237
https://doi.org/10.1016/j.conbuildmat.2023.130760
https://doi.org/10.1016/j.susmat.2020.e00178
https://doi.org/10.1016/j.rinma.2019.100004
https://doi.org/10.1016/j.cscm.2022.e01753
https://doi.org/10.1016/j.cscm.2021.e00830
https://doi.org/10.1016/j.engstruct.2021.112194
https://doi.org/10.1016/j.istruc.2020.04.006
https://doi.org/10.1016/j.mtcomm.2023.106335
https://doi.org/10.3390/nano10091792
https://doi.org/10.1016/j.susmat.2020.e00192
https://doi.org/10.1016/j.jobe.2019.01.032
https://doi.org/10.1016/j.conbuildmat.2021.123472
https://doi.org/10.1016/j.conbuildmat.2020.119115
https://doi.org/10.1016/j.conbuildmat.2018.03.244
https://doi.org/10.1016/j.cemconcomp.2015.11.001
https://doi.org/10.1080/15376494.2018.1432789


Buildings 2024, 14, 134 20 of 21

24. Farooq, F.; Akbar, A.; Khushnood, R.A.; Muhammad, W.L.; Rehman, S.K.; Javed, M.F. Experimental Investigation of Hybrid
Carbon Nanotubes and Graphite Nanoplatelets on Rheology, Shrinkage, Mechanical, and Microstructure of SCCM. Materials
2020, 13, 230. [CrossRef]

25. Lin, W.-T. Effects of sand/aggregate ratio on strength, durability, and microstructure of self-compacting concrete. Constr. Build.
Mater. 2020, 242, 118046. [CrossRef]

26. Adel, H.; Ilchi Ghazaan, M.; Habibnejad Korayem, A. Chapter 9—Machine learning applications for developing sustainable
construction materials. In Artificial Intelligence and Data Science in Environmental Sensing; Asadnia, M., Razmjou, A., Beheshti, A.,
Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 179–210.

27. Huang, J.; Zhang, J.; Li, X.; Qiao, Y.; Zhang, R.; Kumar, G.S. Investigating the effects of ensemble and weight optimization
approaches on neural networks’ performance to estimate the dynamic modulus of asphalt concrete. Road Mater. Pavement Des.
2023, 24, 1939–1959. [CrossRef]

28. Huang, J.; Zhou, M.; Zhang, J.; Ren, J.; Vatin, N.I.; Sabri, M.M.S. Development of a new stacking model to evaluate the strength
parameters of concrete samples in laboratory. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 46, 4355–4370. [CrossRef]

29. Ben Chaabene, W.; Flah, M.; Nehdi, M.L. Machine learning prediction of mechanical properties of concrete: Critical review. Constr.
Build. Mater. 2020, 260, 119889. [CrossRef]

30. Chen, Z.; Amin, M.N.; Iftikhar, B.; Ahmad, W.; Althoey, F.; Alsharari, F. Predictive modelling for the acid resistance of cement-
based composites modified with eggshell and glass waste for sustainable and resilient building materials. J. Build. Eng. 2023,
76, 107325. [CrossRef]

31. Khan, K.; Ahmad, W.; Amin, M.N.; Rafiq, M.I.; Abu Arab, A.M.; Alabdullah, I.A.; Alabduljabbar, H.; Mohamed, A. Evaluating
the effectiveness of waste glass powder for the compressive strength improvement of cement mortar using experimental and
machine learning methods. Heliyon 2023, 9, e16288. [CrossRef]

32. Wang, N.; Xia, Z.; Amin, M.N.; Ahmad, W.; Khan, K.; Althoey, F.; Alabduljabbar, H. Sustainable strategy of eggshell waste usage
in cementitious composites: An integral testing and computational study for compressive behavior in aggressive environment.
Constr. Build. Mater. 2023, 386, 131536. [CrossRef]

33. Taffese, W.Z.; Espinosa-Leal, L. A machine learning method for predicting the chloride migration coefficient of concrete. Constr.
Build. Mater. 2022, 348, 128566. [CrossRef]

34. Zheng, X.; Xie, Y.; Yang, X.; Amin, M.N.; Nazar, S.; Khan, S.A.; Althoey, F.; Deifalla, A.F. A data-driven approach to predict the
compressive strength of alkali-activated materials and correlation of influencing parameters using SHapley Additive exPlanations
(SHAP) analysis. J. Mater. Res. Technol. 2023, 25, 4074–4093. [CrossRef]

35. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
36. Dahiya, N.; Saini, B.; Chalak, H.D. Gradient boosting-based regression modelling for estimating the time period of the irregular

precast concrete structural system with cross bracing. J. King Saud Univ. Eng. Sci. 2021. [CrossRef]
37. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision

tree. In Advances in Neural Information Processing Systems 30 (NIPS 2017), Proceedings of the 31st Conference on Neural Information
Processing Systems (NIPS2017), Long Beach, CA, USA, 4–9 December 2017; Neural Information Processing Systems Foundation, Inc.:
La Jolla, CA, USA, 2017.

38. Fan, J.; Ma, X.; Wu, L.; Zhang, F.; Yu, X.; Zeng, W. Light Gradient Boosting Machine: An efficient soft computing model for
estimating daily reference evapotranspiration with local and external meteorological data. Agric. Water Manag. 2019, 225, 105758.
[CrossRef]

39. Shehadeh, A.; Alshboul, O.; Al Mamlook, R.E.; Hamedat, O. Machine learning models for predicting the residual value of heavy
construction equipment: An evaluation of modified decision tree, LightGBM, and XGBoost regression. Autom. Constr. 2021,
129, 103827. [CrossRef]

40. Nguyen, H.; Vu, T.; Vo, T.P.; Thai, H.-T. Efficient machine learning models for prediction of concrete strengths. Constr. Build. Mater.
2021, 266, 120950. [CrossRef]

41. Saud, S.; Jamil, B.; Upadhyay, Y.; Irshad, K. Performance improvement of empirical models for estimation of global solar radiation
in India: A k-fold cross-validation approach. Sustain. Energy Technol. Assess. 2020, 40, 100768. [CrossRef]

42. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the
International Joint Conference on Artifcial Intelligence, Montreal, QC, Canada, 20–26 August 1995; pp. 1137–1145.

43. Wang, H.-L.; Yin, Z.-Y. Unconfined compressive strength of bio-cemented sand: State-of-the-art review and MEP-MC-based
model development. J. Clean. Prod. 2021, 315, 128205. [CrossRef]

44. Mosavi, A.; Edalatifar, M. A hybrid neuro-fuzzy algorithm for prediction of reference evapotranspiration. In Recent Advances in
Technology Research and Education, Proceedings of the International Conference on Global Research and Education, Kaunas, Lithuania,
24–27 September 2018; Springer: Cham, Switzerland, 2019; pp. 235–243.

45. Siahkouhi, M.; Razaqpur, G.; Hoult, N.A.; Hajmohammadian Baghban, M.; Jing, G. Utilization of carbon nanotubes (CNTs) in
concrete for structural health monitoring (SHM) purposes: A review. Constr. Build. Mater. 2021, 309, 125137. [CrossRef]

46. Zheng, D.; Wu, R.; Sufian, M.; Kahla, N.B.; Atig, M.; Deifalla, A.F.; Accouche, O.; Azab, M. Flexural Strength Prediction of Steel
Fiber-Reinforced Concrete Using Artificial Intelligence. Materials 2022, 15, 5194. [CrossRef] [PubMed]

https://doi.org/10.3390/ma13010230
https://doi.org/10.1016/j.conbuildmat.2020.118046
https://doi.org/10.1080/14680629.2022.2112061
https://doi.org/10.1007/s40996-022-00912-y
https://doi.org/10.1016/j.conbuildmat.2020.119889
https://doi.org/10.1016/j.jobe.2023.107325
https://doi.org/10.1016/j.heliyon.2023.e16288
https://doi.org/10.1016/j.conbuildmat.2023.131536
https://doi.org/10.1016/j.conbuildmat.2022.128566
https://doi.org/10.1016/j.jmrt.2023.06.207
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/j.jksues.2021.08.004
https://doi.org/10.1016/j.agwat.2019.105758
https://doi.org/10.1016/j.autcon.2021.103827
https://doi.org/10.1016/j.conbuildmat.2020.120950
https://doi.org/10.1016/j.seta.2020.100768
https://doi.org/10.1016/j.jclepro.2021.128205
https://doi.org/10.1016/j.conbuildmat.2021.125137
https://doi.org/10.3390/ma15155194
https://www.ncbi.nlm.nih.gov/pubmed/35897626


Buildings 2024, 14, 134 21 of 21

47. Khan, K.; Ahmad, W.; Amin, M.N.; Ahmad, A.; Nazar, S.; Al-Faiad, M.A. Assessment of Artificial Intelligence Strategies to
Estimate the Strength of Geopolymer Composites and Influence of Input Parameters. Polymers 2022, 14, 2509. [CrossRef]

48. Khan, K.; Amin, M.N.; Sahar, U.U.; Ahmad, W.; Shah, K.; Mohamed, A. Machine learning techniques to evaluate the ultrasonic
pulse velocity of hybrid fiber-reinforced concrete modified with nano-silica. Front. Mater. 2022, 9, 1098304. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/polym14122509
https://doi.org/10.3389/fmats.2022.1098304

	Introduction 
	Research Methods 
	Data Description 
	Machine Learning Algorithms 
	Gradient Boosting 
	Light Gradient Boosting Machine 
	Extreme Gradient Boosting 

	Model Assessment and Validation Methods 

	Results and Discussions 
	Gradient Boosting Model 
	Light Gradient Boosting Machine Model 
	Extreme Gradient Boosting Model 
	K-Fold Cross-Validation Outcomes 
	Statistical Performance Indicators 
	Taylor Diagrams 
	Interaction Analysis Outcomes 

	Discussions 
	Conclusions 
	References

