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Abstract: Ultra-high-performance concrete is widely used in bridge strengthening to improve me-
chanical performance and bridge durability. Interfacial bonding performance is a key factor in
ensuring the effectiveness of ultra-high-performance concrete strengthening. The bending test of the
UHPC–NC composite structure was carried out in this article. The effects of groove treatment type
and epoxy resin bonding were considered to discuss the damage modes, load–deflection relation-
ships, and strengths. The interfacial tensile strength of the UHPC–NC composite structure and the
distribution pattern of cracks were clarified. The results of the test showed that (a) only 22.2% of
the groove-treated specimens failed due to bonding surface failure, indicating that the UHPC–NC
bonding surface has a high degree of reliability; (b) the strength of specimens with an epoxy adhesive
interface was the lowest. It was only 21% higher than the pure normal concrete specimen, and the
effective synergistic force of UHPC–NC cannot be achieved; (c) the specimens treated with a positive
trapezoidal keyway exhibited the highest strength, with an increase of approximately 200% compared
to the pure normal concrete specimens. The strength of bending specimens with right-angled and
inverted trapezoidal grooves increased by approximately 100% compared with pure normal concrete
specimens. Based on the established three-dimensional numerical model and the analysis of test
results under economic and safe conditions, the positive trapezoidal keyway specimen exhibits
superior interfacial bonding–tensile performances.

Keywords: ultra-high-performance concrete (UHPC); bridge strengthening; bending performance;
interface treatment; finite element analysis

1. Introduction

With the rapid development of civil engineering, the demand for concrete material
performance has increased. In this context, ultra-high-performance concrete (UHPC) came
into being. The concept of UHPC, a new type of cement-based composite material with
ultra-high strength, high toughness, and high durability, was first proposed in the 1990s by
Richard et al. [1] Its appearance marks a new era in concrete technology [2–4].

The bonding interface is directly related to the permanent stability and structural safety
of bridge strengthening. It is therefore essential to ensure the efficient and sustainable bond-
ing of the strengthening interface in bridge strengthening [5–7]. UHPC is widely recognized
as an effective material to enhance the performance of existing bridges due to its excellent
mechanical performance and durability [8]. But the compressive strengths of UHPC and
NC, which are 120–180 MPa and 20–40 MPa, respectively, are significantly different. The
tensile strength of UHPC is usually between 8 and 12 MPa, while the tensile strength of
NC is generally between 1.5 and 3 MPa [9]. The study of interfacial bonding performance
between UHPC and normal concrete (NC) has received considerable attention [10,11].
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The bending performance of the interface is an important indicator for evaluating
the strengthening effectiveness of existing structures [12–14]. The performance of UHPC
in bending is particularly remarkable. Numerous scholars have carried out in-depth re-
search on the bending performance of the UHPC–NC interface. Lampropoulos [15,16] and
Chen et al. [17] investigated strengthening reinforced concrete (RC) beams strengthened
with UHPC by flexural loading on the specimens. The results showed that the flexural ulti-
mate load capacity of the specimens strengthened with a three-sided jacket was increased
by 53%. Farhat et al. [18] tested RC beams strengthened with thin UHPC panels, and
epoxy adhesive was used for the connection between UHPC and RC beams. The failure
load increased to 86%. Beschi et al. [19] investigated the application of UHPC for repair-
ing beam-column nodes and observed a significant enhancement in load-carrying. Yang
et al. [20] studied the shear behavior and strength characteristics of the UHPC–NC meso-
scopic interface under the combined effect of mechanical interlocking and pin action. Tayeh
et al. [21,22] formulated UHPC with a compressive strength of 170 MPa and performed
split tensile tests using UHPC–NC cylindrical bonded specimens. The interfacial transition
zone (ITZ) was microscopically examined by SEM/EDS scanning electron microscopy, and
the bonded interface of UHPC–NC was shown to be reliable.

Similar splitting tensile test studies have been carried out by Carbonell [23], Sarkar [24],
Alhallaq [25], and Li [26]. UHPC–NC prismatic bonded specimens with dimensions of
75 mm × 75 mm × 285 mm were used to conduct three-point bending tests. The results
showed that the UHPC–NC bonded specimens had good integrity during the stressing
process. The interfacial separation was not detected after the destruction of the specimens.
This indicated that the interfacial bonding performance of UHPC–NC was good. The
bending studies were carried out by Alaee [27] and Tayeh [28]. Elsaigh et al. [29] conducted
a four-point bending test on the UHPC specimen. The actual mid-span moment-curvature
relationship curve was obtained. The curvature measurement method was obtained per
JCIS-003-2007. Schultz [30] derived a formula for calculating the tensile strength from the
bending and tensile strengths of light UHPC specimens of different thicknesses. Shrinkage-
cracking specimens of old and new concrete bond surfaces under different influencing
parameters (e.g., environment, thickness of reinforcement layer, etc.) were studied. The
effects of quantifying the separation of these factors as well as combining them were
discussed by Beushausen [31]. Li et al. [32] used epoxy resin adhesive to connect a steel
bar to UHPC and carried out a pull-out test. It was concluded that the tensile ratio of this
specimen had a significant effect on the separation performance and tensile performance of
the hybrid connection.

In summary, existing research on the bending performance of the interface between
UHPC and NC predominantly builds upon studies on NC interfaces, with a strong em-
phasis on qualitative analysis. However, investigation into the fundamental bending
performance of the UHPC–NC interface remains inadequate. To understand the bending
performance of the UHPC–NC interface, a four-point bending test was carried out in
this paper. By setting different connection interfaces, key indicators such as bond surface
damage mode, load–deformation relationship, and bending strength were analyzed. The
test results were simulated and verified by the ANSYS finite element model. The influence
mechanism of interface bonding performance was further analyzed to ensure the structural
safety and durability of bridge strengthening.

2. Experiment Program
2.1. Specimens

To investigate the effect of notch type on structural tensile strength and crack pattern,
this paper designed and produced UHPC–NC composite specimens with dimensions of
100 mm × 100 mm × 400 mm. The thickness of the UHPC and NC layers was 30 mm
and 70 mm, respectively. The three types of interface grooves were designed, i.e., positive trape-
zoidal, inverted trapezoidal, and right-angled. The groove bonding interface is the interface
between the existing concrete and the newly poured reinforced concrete. In addition, a set of
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specimens with an epoxy-bonded interface was designed to compare the bonding performance
of the groove-treated interface. The specimen parameters are shown in Table 1.

Table 1. Design scheme of UHPC–NC bending specimen.

Specimen Number Experimental Factors/mm No. of Specimens
Groove Depth Groove Width Groove Spacing Groove Shape

L1-1~3 10 10 100 Perpendicular type 3
L2-1 10 10 100 Positive trapezoid 1
L3-1 10 10 100 Inverted trapezoidal 1

L4-1~3 Epoxy resin adhesive bonding 3
LN-1~3 Pure NC prism specimen 3
LU-1~3 Pure UHPC prism specimen 3

The interfacial frictional resistance was greater than the tangential force along the
beveled surface when the angle between the beveled edge of the trapezoidal groove and
the normal bonding surface was less than 22◦. The effect of stopping an interfacial slip
can be achieved. Therefore, to facilitate the production of the specimen, the angle between
the oblique edge of the trapezoidal grooving and the bonding surface was set to 79◦ [33].
The angle between the oblique edge of the inverted trapezoidal grooving and the bonding
surface was set to 101◦. The angle between the oblique edge of the right-angle grooving
and the bonding surface was set to 90◦. The detailed shape of the specimen is shown in
Figure 1, and the size of the specimen is shown in Figure 2.
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2.2. Materials
2.2.1. UHPC

The composition of UHPC includes cement, silica fume, quartz sand, quartz powder,
superplasticizer, and steel fiber (8 mm length and 0.12 mm diameter of straight steel fiber).
The mix ratio of UHPC is shown in Table 2.

Table 2. UHPC mix ratio (kg/m3).

Ingredient Cement Silica Fume Quartz Sand Quartz Powder Water Reducer Water

Unit weight 933 233 1026 280 18 210

Note: The volume content of steel fiber is 2%.

Regarding GB/T 50082-2009 [34], two sets of UHPC prisms of 100 mm × 100 mm ×
515 mm were designed to measure shrinkage properties. The arrangement and results of
the mechanical properties of UHPC are shown in Figure 3 and Table 3, respectively.
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Table 3. UHPC properties results.

Material Compressive Strength/MPa Tensile Strength/MPa Elastic Modulus/MPa Shrinkage

UHPC ≥150 ≥9.7 ≥45 × 103 360 µε

2.2.2. Normal Concrete

The grade of NC used for the tests is C40. The mixes used are shown in Table 4.

Table 4. Mix proportion of NC (kg/m3).

Grade Cement Sand Gravel (0–10 mm) Water Water Cement Ratio Percentage of Sand

C40 482 519 1272 185 0.38 29%

Substrate damage tests were performed on NC. It was found that the NC substrate
damage area gradually increased with the depth, width, and number of grooves cut. The
specimen design scheme is shown in Table 5.
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Table 5. NC damage specimen design scheme.

Groups Specimen Number
Experimental Factors/mm

Groove Depth Groove Width Groove Spacing

Group A
PA-1 5 20 75
PA-2 10 20 75
PA-3 15 20 75

Group B
PB-1 10 10 75
PB-2 10 20 75
PB-3 10 30 75

Group C
PC-1 10 20 50
PC-2 10 20 75
PC-3 10 20 100

Group D
PD-1 0 0 0
PD-2 0 0 0
PD-3 0 0 0

The ultimate load was recorded and the failure strength was calculated according to
Equation (1):

fNC = F/A (1)

where fNC was the destructive strength of the NC damage specimen (MPa); F was the
ultimate load of the specimen (N); and A was the direct pressure area of the damaged
specimen (mm2), and the direct pressure area in the test was 50 mm × 100 mm.

To compare and analyze the ungrooved prismatic specimens, two damage evaluation
indexes (volume loss rate (α) and strength loss rate (β)) were introduced. α was the ratio of
the lost volume of the grooved prism to the volume of the ungrooved prism, and β was the
ratio of the lost strength of the grooved prism to the strength of the ungrooved prism. They
were calculated according to Equations (2) and (3).

α =
V0 − V

V0
× 100% (2)

β =
fNC0 − fNC

fNC0

× 100% (3)

where V0 was the volume of ungrooved prisms, which in this test was the volume of
group D prisms; V was the volume of grooved prisms; fNC0 was the strength of ungrooved
prisms, which in this test was the average strength of prisms in group D, and its value was
40.54 MPa; and fNC was the strength of grooved prisms.

The results of the test and the damage evaluation index results are listed in Table 6.

Table 6. NC damage test results.

Groups Specimen Number Loading/kN Destructive Strength/MPa Volumetric Loss Ratio Strength Loss Rate

Group A
PA-1 187.49 37.50 0.03% 7.50%
PA-2 169.85 33.97 0.06% 16.21%
PA-3 164.62 32.92 0.09% 18.79%

Group B
PB-1 159.67 31.93 0.03% 21.23%
PB-2 166.81 33.36 0.06% 17.71%
PB-3 104.21 20.84 0.09% 48.59%

Group C
PC-1 126.34 25.27 0.08% 37.67%
PC-2 189.24 37.85 0.06% 6.64%
PC-3 176.60 35.32 0.04% 12.88%

Group D
PD-1 198.25 39.65

/ /PD-2 215.65 43.13
PD-3 194.25 38.85
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The strength loss distribution of NC specimens was plotted, as shown in Figure 4. It
can be seen that the degree of strength loss of NC specimens was mostly between 10% and
20%, and only two specimens had a large degree of strength loss, with the degree of loss
close to 50%.
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Figure 4. Strength loss distribution diagram (MPa).

When the volume loss rates of NC substrates are equal, the groove width has a more
significant effect on the strength loss rate than the depth. It was recommended that the
groove width be ≤20 mm to prevent the excessive strength loss of the NC matrix leading to
ineffective strengthening. The NC matrix strength loss rate and the volume loss rate were
positively correlated. When the volume loss rate was lower than 0.06%, the degree loss rate
was lower than 20%. When the volume loss rate was higher than 0.06%, the degree loss
rate increased sharply. Hence, it was recommended that the NC matrix grooving volume
loss rate be ≤0.06%. The degree of the NC matrix deformation was positively correlated
with the rate of volume loss, and the grooving weakened the stiffness. The loading process
is shown in Figure 5.
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2.3. Specimen Production

(1) C40 was used to cast the NC layer in a non-standard prismatic formwork.
(2) After the NC layer specimens reached maturity, one portion was grooved while

another portion was left untreated.
(3) The grooved NC layer specimens were placed back into the formwork and sub-

sequently the UHPC layer was poured to complete the grooved set of composite
specimens. Simultaneously, a portion of pure UHPC layer specimens was poured.

(4) The specimens were cured at room temperature for 24 h and then removed from
the formwork. Later, 90 ◦C high-temperature steam curing was carried out for 48 h.
Once the steam curing was complete, the specimens continued to be cured at room
temperature until reaching the standard age of 7 days.

(5) The epoxy resin adhesive was used to adhere the ungrooved NC to the UHPC speci-
mens, completing the fabrication of the adhesive group of specimens.

The specimen fabrication process is shown in Figure 6.
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2.4. Loading and Measurement Program

A displacement gauge was arranged at the mid-span position of the specimen to
measure its deformation. An MTS universal material testing machine with a range of
200 kN was used for loading at a rate of 0.1 kN/s, as shown in Figure 7.
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3. Analysis of Results
3.1. Failure Mode

The failure mode of each group was observed after the specimens were damaged. The
failure mode of each group is described in detail below.

The damage area appeared on the lower bottom surface within the two loading
points. Only a few specimens showed bottom edge damage outside the region of the two
concentrated load lines of action due to the occurrence of bond interface cracking. This
indicated that the test effect was ideal.

(1) Groove cutting group

The damage modes of the groove-treated UHPC–NC specimens can be categorized
into two types, as shown in Figure 8.

(a) Uncracked bonding surface: Cracks developed upward from the lower edge of the
specimen. The area of damage on the lower bottom surface of the specimen occurred
within the range of the two loading points.

(b) The cracks developed from the NC grooving location. One side progressed along
the bonding surface to the end of the specimen and the other side progressed within
the NC substrate to the concentrated load location. The damage location appeared
outside the region of two concentrated load lines of action.
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The distribution of the two damage modes of the groove-treated specimens is given in
Figure 9. The proportion of type a (bonded surface without cracking) was larger, indicating
that the UHPC–NC bonded surface is more reliable. The crack development pattern of
the a-type damage was consistent with that of the overall bending and tensile specimens,
indicating that the UHPC and NC can work together to coordinate the forces. The NC part
of the b-type damage specimen showed shear damage cracks, while the UHPC part had not
been fully functional, indicating that the two are not jointly stressed. This proved that the
reliability of the bond surface played a decisive role in the damage pattern of the bending
and tension of the composite specimens.
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(2) Paste group

Cracks developed upward from the lower edge of the UHPC and NC simultaneously.
The damage to the bottom edge of the specimens occurred in the area between the two
concentrated load lines. The damage pattern is shown in Figure 10. This indicated that the
UHPC and NC were stressed separately due to the weak adhesive interface which did not
coordinate the forces on the UHPC and NC portions together.
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(3) Pure NC and UHPC

The damage modes of pure NC and UHPC are shown in Figure 11. Pure NC developed
damage rapidly after the appearance of initial cracks, showing obvious brittleness. In
contrast, after the initial crack appeared in pure UHPC, it was constrained by steel fibers
and developed more slowly, demonstrating obvious toughness. During the crack expansion
process, the crisp sound of steel fibers being pulled out was heard, indicating that the failure
mode was fiber and matrix bond failure rather than fiber fracture failure.
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3.2. Load–Deflection Relationship

To evaluate the toughening effect of UHPC on UHPC–NC bending, the load–deflection
curves during the test were plotted according to the test data. To facilitate the comparison,
the average results for each group were selected for analysis, as shown in Figure 12.
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There are various specific evaluation methods for bending toughness, such as the
strength method, the energy ratio method, and the deformation ratio method. Considering
the effects of test conditions and other factors, this paper adopted the method recommended
by the Japanese Society of Civil Engineers for the evaluation of bending tests. The energy
absorbed by the specimens during the damage course was obtained via integration of the
load–deflection curves. This energy was used to calculate the bend-tension toughness
indicator, a commonly used method for evaluating the bending toughness of concrete.

The JSCE SF4 method is a strength method which is shown in Figure 13 and Equation
(4). The method specified that the bending toughness coefficients were calculated using pa-
rameters such as the area enclosed by the load–deflection curve at deflection deformations
up to 1/150 of the specimen span and the specimen dimensions.

σ =
Tb
δtb

· l
bh2 (4)

where σ was the bending and tensile toughness coefficient (MPa); δtb was the set deflection
value, δtb = 20 mm; Tb was the load–deflection curve with x = δtb, the area surrounded by
the axis; l was the specimen span; b was the specimen cross-section width; and h was the
specimen cross-section height.
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Figure 13. Schematic diagram of JSCE SF4 bending toughness evaluation methods.

In the elastic phase, the slope of the load–deflection curve indicated the stiffness of
the specimen in this phase (the size of the load required to produce a unit of deflection,
in kN/mm). The slope value was obtained by one-way linear regression on the linearly
increasing part of the load–deflection curve. The area enclosed by the curve and the x = 2,
x-axis was obtained by integration. The bending toughness coefficients were calculated
using Equation (4). The calculation results are listed in Table 7 and Figure 14.

Table 7. Calculation parameters of load–deflection curves.

Specimen Number Load/kN Slope of the Elastic Segment Tb/N·mm σ/MPa

L1 31.48 24.28 33.13 × 103 4.97
L2 41.59 26.82 46.25 × 103 6.94
L3 27.27 19.18 26.38 × 103 3.96
L4 16.61 10.15 18.56 × 103 2.78
LN 11.88 24.73 / /
LU 79.75 47.52 89.24 × 103 13.39

Note: Since the toughness of the pure NC specimen is very low, LN-1 reached the destructive load without a
ductile drop section. The measured deflection was less than the deflection value set by the calculation formula, so
no calculation will be conducted.
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Figure 14. Toughness coefficient and stiffness.

Analyzing Figure 14, it can be seen that the stiffness of pure UHPC in the elastic
phase was about two times that of pure NC. For the UHPC–NC composite specimens, the
stiffness with interface adhesive treatment was the lowest, which was less than half of the
stiffness of the pure NC. The interface-positive trapezoidal groove processed specimen
exhibited the highest stiffness. The difference in stiffness between the interface-positive
trapezoidal groove processed specimen and the pure NC specimen was not significant, in-
dicating that the interface treatment type has a greater impact on the stiffness of UHPC–NC
composite specimens.

The bending toughness coefficient reflected the toughness performance and the lower
bending toughness coefficients indicated lower toughness. For the UHPC–NC composite
specimens, the interface paste treatment of the specimen toughness was the worst, with
only 21% of the pure UHPC toughness. The specimen with positive trapezoidal grooving
at the interface had the best toughness and could reach 52% of the pure UHPC toughness.
It was twice as high as that of the specimen with interface paste treatment, showing that
the interface treatment also has a great influence on the toughness of the UHPC–NC
composite structure.

3.3. Bending Tensile Strength Analysis

The ultimate load was recorded after the specimen was damaged. The bending
strength was calculated according to Equation (5).

ft =
Fl

bh2 (5)

where F was the breaking load (N); l was the specimen span (mm); b was the specimen
section width (mm); and h was the specimen section height (mm).

The results of the tests are presented in Table 8.
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Table 8. Strength of UHPC–NC bending and tensile specimens.

Groups Specimen
Number Loading/kN Destructive

Strength/MPa

Destructive
Strength

Value/MPa

Destructive
Strength

STD/MPa

Incipient
Crack

Load/kN

Initial Crack
Strength/MPa

Value of
Initial Crack
Strength/MPa

L1
L1-1 31.48 9.44

9.76 1.37
22.63 6.79

6.90L1-2 38.56 11.57 26.99 8.10
L1-3 27.56 8.27 19.43 5.83

L2 L2-1 41.59 12.48 12.48 0 34.41 10.32 10.32
L3 L3-1 27.27 8.18 8.18 0 22.98 6.89 6.89

L4
L4-1 16.61 4.98

4.94 0.36
13.30 3.99

3.96L4-2 18.56 5.57 14.85 4.45
L4-3 14.23 4.27 11.41 3.42

LN
LN-1 11.88 3.56

4.08 0.44
11.17 3.35

3.83LN-2 13.46 4.04 12.64 3.79
LN-3 15.42 4.63 14.51 4.35

LU
LU-1 79.75 23.93

25.33 1.66
59.04 17.71

20.00LU-2 92.21 27.66 76.67 23.00
LU-3 81.29 24.39 64.22 19.27

Note: Define the strength value as the average value of the strength data of the same group of three specimens.

The initial cracking load in this test was also equivalent to the elastic limit load because
of the low tensile capacity of plain concrete, which will crack once the elasticity phase
is over. The values of the initial cracking strength and failure strength of each group of
specimens are plotted as shown in Figure 15.
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Figure 15. Relationship between test factors and bending strength.

Analyzing Figure 15 and Table 8, it can be seen that the bending strength of pure
NC specimens was extremely low. The initial cracking strength was almost equal to the
ultimate strength, indicating that pure NC specimens exhibited brittle damage. The bending
strength of pure UHPC specimens can be up to six times the bending strength of pure
NC. The increase from initial crack strength to ultimate strength was larger, indicating that
pure NC specimens exhibited ductile damage. The steel fibers contributed the strength
and toughness of UHPC. The bending strength of UHPC–NC composite specimens was
between that of UHPC and NC. The increase in initial crack strength to ultimate strength
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was also between the two, similar to the bending strength of pure NC specimens. The
specimens with interfacial trapezoidal NC groove treatment had the highest strength, which
was about double that of pure NC specimens. The strength of the interface right-angled
and inverted trapezoidal groove-treated specimen was lower, but it was still about twice
as high as that of the pure NC specimen. This is because the inverted trapezoidal groove,
when subjected to a tensile component perpendicular to the beveled edge of the groove,
would lead to shear cracks toward the bond interface, resulting in increased cracking of the
bonded surface. While the positive trapezoidal beveled groove was subjected to a tensile
component perpendicular to the beveled edge of the cut groove, the shear cracks progressed
toward the interior of the matrix [35]. The bond surface was prevented from inhibiting
premature cracking, thus improving the bond tensile performance as shown in Figure 16.
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This result showed that the interface treatment has a more obvious effect on the
strength of the UHPC–NC composite. The performance improvement effect of interfacial
paste treatment was very low, whereas the interface-positive trapezoidal groove treatment
effectively improved the interface bending performance.

4. Finite Element Modeling

ANSYS [2023 R2 version] is a finite element computing software commonly used in
bridge engineering with large modeling capability, strong solution capability, excellent
nonlinear analysis capability, and good optimization capability. It is an important tool
for engineers and researchers carrying out research. In this paper, ANSYS finite element
software will be used to simulate the UHPC–NC bending specimens.

4.1. Material Constitutive

The model used SOLID65 solid cells to simulate UHPC and NC. The detailed ma-
terial performances are shown in Table 9. In the finite element model, the multilinear
isotropic strengthening model (MISO model) was used to establish the material constitutive
relationship between UHPC and NC. The stress–strain relationship was described by a
multi-segment straight line. The damage criterion used the isotropically strengthened MISS
yield criterion. The rising segment of the curve was obtained from the UHPC material
properties test. The horizontal segment was used in some of the references after the peak
value. The constitutive stress–strain relationship of UHPC is shown in Figure 17.

Table 9. UHPC and NC material properties.

Modulus of Elasticity Yield Strength Poisson’s Ratio

UHPC 45 GPa 114.9 MPa 0.2
NC 32.5 GPa 40 MPa 0.2
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Figure 17. Stress–strain relationship of UHPC.

4.2. Bonding Interface Parameters

To aptly simulate the test model, it was necessary to consider the existence of the
bond-slip phenomenon between the UHPC and the NC. Hence, it was necessary to use
the connection unit between the UHPC and the NC. The frequently used connection units
are the spring unit and the contact unit. Referring to the literature, this paper chose to use
the nonlinear spring unit COMBINATION39 to simulate the bond-slip phenomenon at the
interface between UHPC and NC. The stiffness matrix for the COMBINATION39 cell is
shown in Equation (6). The cell node load vectors are shown in Equation (7).

[k]e= ktg

[
1 −1
−1 1

]
(6)

[F]e= F
[

1
−1

]
(7)

where ktg was the stiffness coefficient of the spring unit, the value could be obtained
from Figure 18.
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In the finite element model, each pair of nodes on the UHPC–NC bonding surface
was connected by a spring unit. The interaction in the vertical direction of the bonding
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surface was indicated by the setting of real constants. Each spring unit has no length, and
its performance was defined by the load–deflection curve of the spring.

According to the actual size of the specimen to establish the bending model, the model
defined the horizontal longitudinal direction as the x-direction, and the bond interface
normal direction as the y-direction. To save calculation time, the bending model was
selected to analyze the four cases of interface right-angled grooves, inverted trapezoidal
grooves, positive trapezoidal grooves, and interface bonding. The bending model is shown
in Figure 19.
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4.3. Comparative Analysis of Experiments and Finite Elements
4.3.1. UHPC–NC Bond Constraint Shrinkage Modeling Analysis

Shrinkage produced by freshly cast UHPC was modeled by the equivalent tempera-
ture difference method in this article. The principle of the equivalent temperature difference
method to simulate shrinkage was the initial strain method, i.e., based on the principle that
the deformation produced by shrinkage was equal to the deformation produced by tem-
perature change. Shrinkage was equated to a temperature difference, and the temperature
load was applied to the freshly cast concrete to achieve the same effect of shrinkage. The
coefficient of linear expansion was an indispensable parameter for temperature equivalence.
The coefficient of linear expansion of UHPC used in this paper was 11.76 µε/◦C. UHPC
shrinkage was taken as the final shrinkage strain of 360µε measured in the shrinkage test in
Section 2.2.1. Since the paste group model did not need to consider the effect brought about
by the contraction of UHPC, it was chosen to apply the temperature load to the model of
the bending groove group for calculation. The horizontal stress clouds of the NC, UHPC,
and UHPC–NC composite specimens of the model are shown in Figure 20.
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From Figures 20–22, it can be seen that for the bonded interface, the UHPC side was
mainly subjected to tensile stresses while the NC side was mainly subjected to compressive
stresses. In the vertical direction of the model, the tensile stress in the UHPC portion was
largest at the bonding surface, and gradually decreasing to zero towards the edge of the
model, and then transforming into the compressive stress. The position where the tensile
stress was zero was not subjected to confining stress, meaning it was free from shrinkage. In
contrast, the shrinkage of UHPC at the bonding surface was subjected to the NC confining
limiting effect, resulting in tensile stress. The stress distribution on the bonding surface on



Buildings 2024, 14, 4040 17 of 21

the UHPC side was not even, and the phenomenon of stress concentration occurred. Tensile
stress distribution tends to be great on both sides and low in the middle. The stress at the
groove position was the lowest. This indicated that if the bonding surface was not strong
enough, the end of the bonding surface may be the first to experience shrinkage cracking.
This led to the destruction of the bonding surface, and it was very unlikely that shrinkage
cracking would occur first at the groove. This was consistent with the damage that occurs
in actual strengthening projects, especially when the freshly poured concrete was a thin
layer, and the UHPC strengthening was particularly suitable for thin-layer strengthening,
demonstrating the accuracy of the finite element model.
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UHPC (tensile strength ≥ 10 MPa) can achieve a tensile strength five times greater
than that of NC. The maximum tensile stress appearing in the model calculation results was
2.2 MPa, which was far from the UHPC cracking strength. It has been observed that using
the measured values of elastic modulus and free shrinkage values to calculate the shrinkage
stresses, can lead to higher results compared with the measured values of shrinkage stresses.
So, this showed that the risk of UHPC constrained shrinkage cracking was very low.

By comparing the maximum tensile stress values of right-angled grooves, inverted
trapezoidal grooves, and positive trapezoidal grooves, it is found that there was little
difference among the three, indicating that the form of grooving did not have a significant
effect on the restraining shrinkage stresses.

4.3.2. UHPC–NC Bonded Slip Model Analysis

To investigate the effect of different bond interface treatments on the stress distribution
of specimens, the same load was applied to different models to control a single variable.

The same load of 25 kN was applied to each bending model. The horizontal longitudi-
nal stress clouds of the NC, UHPC, and the composite specimens are shown in Figure 23.
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Figure 23. Paste bending model.

From Figures 23–26, it can be seen that for the bonding interface of the pure bending
section, both NC and UHPC were mainly subjected to tensile stresses, and no compressive
stresses occurred. For the UHPC–NC bending model as a whole, NC was mainly subjected
to compressive stress, which decreased gradually from the loading surface to the bonding
interface. UHPC was mainly subjected to tensile stress, which decreased gradually from
the bottom surface of the model to the bonding interface. For the x-direction of the model,
the stress distribution tended to be the greatest in the middle of the model span and became
increasingly smaller on both sides. This indicated that the specimen would be damaged
near the middle of the span in the context of strong interfacial bonding. This was consistent
with the damage pattern of the specimen without cracking on the bonding surface. The
damaged area on the lower bottom surface of the specimen appeared in the range within
the two loading points.
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Although the bonded interfaces of different treatments were all mainly subjected to
tensile stresses, the different treatments affected the distribution of tensile stresses at the
bonded interfaces. For the pasted model, the tensile stress distribution on the bonding
surface of the pure bending section was relatively uniform. The stress distributions of the
right-angled groove model, inverted trapezoidal groove model, and pasted model were
similar. The pressure values were not so different. For the positive trapezoidal groove
model, the tensile stress on the NC side of the bonding surface was reduced by about 15%
compared to the other models at the same location, indicating that the presence of the
positive trapezoidal groove weakened the tensile stress on the NC side of the bonding
surface, which was beneficial to the composite structure. This was also in agreement
with the results obtained in the tests which highlight that the interfacial bond bending
performance of the positive trapezoidal groove specimens was optimal. This indicated that
the finite element model has a certain degree of accuracy.

5. Conclusions

Two types of UHPC–NC interfacial bonding, grooving treatment, and epoxy bonding,
were considered to investigate the bending performance of UHPC-reinforced concrete
structures. By organizing and analyzing the results and finite element calculation of the
bonding model, the following main conclusions are presented:

■ UHPC completed shrinkage under steam-conditioned conditions ahead of schedule,
80% ahead of the non-steam-conditioned UHPC at the same age. The UHPC–NC
bond-constrained shrinkage ANSYS model calculations showed that the risk of
UHPC-constrained shrinkage cracking was very low. The shrinkage stresses on the
UHPC side bond interface showed a distribution with two large sides and a small
middle, with the minimum stress at the notch location.

■ The NC groove width factor had the most significant effect on the rate of strength loss
of the NC matrix and the bond shear strength of the UHPC–NC interface. Groove
widths of ≤ 20 mm and NC groove volume loss rates of ≤ 0.06% were recommended.
The relationship equation between the NC matrix volume loss rate and interfacial
bond shear strength was summarized to provide a quantitative reference basis for
matrix groove treatment.

■ The damage pattern of the bonded surface in the bending and tension specimens only
accounted for 22.2%. The UHPC–NC bonded surface was very reliable. The failure
mode of UHPC–NC bond interface was closely related to the bond strength.

■ The UHPC–NC interface shear bond-slip curves went through an elastic rise phase, a
yielding phase, and a destructive fall phase, and some of the curves had no yielding
phase. Overall, the slip corresponding to the ultimate interfacial bond strength was
small, all below 0.8 mm. Most of the bonded interface damage was brittle, with about
20% of the specimens showing some ductile characteristics. This indicated that UHPC
improves the toughness of the bonded interface.
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■ The bonding performance of the grooving interface was better than that of the bonding
interface. The interface bonding shear strength of the grooving group was about
2 times higher than that of the pasting group. The bending performance of the paste
group test was very poor, and the UHPC and NC could not coordinate forces.

■ Calculations from the ANSYS model showed that the grooving treatment was able to
transfer the large stress region from the NC to UHPC side, which was beneficial to the
strengthening structure. The maximum tensile stress reduction on the NC bonding
surface of the positive trapezoidal groove model was consistent with the test results
indicating that the finite element model analysis results were reliable.
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