kT buildings

Article

Deep Learning Approach on Prediction of Soil
Consolidation Characteristics

Mintae Kim 100, Muharrem A. Senturk 2(”, Rabia K. Tan 3, Ertugrul Ordu # and Junyoung Ko >*

check for
updates

Citation: Kim, M.; Senturk, M.A.; Tan,
RK.; Ordu, E.; Ko, J. Deep Learning
Approach on Prediction of Soil
Consolidation Characteristics.
Buildings 2024, 14, 450. https://
doi.org/10.3390/buildings14020450

Academic Editor: Mengmeng Lu

Received: 5 December 2023
Revised: 2 February 2024
Accepted: 4 February 2024
Published: 6 February 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Civil, Environmental, and Architectural Engineering, Korea University,

Seoul 02841, Republic of Korea; mtkim@korea.ac.kr

Department of Computer Engineering, Yeditepe University, Istanbul 34755, Turkey;
asenturk@cse.yeditepe.edu.tr

Department of Computer Engineering, Tekirdag Namik Kemal University, Tekirdag 59860, Turkey;
rkorkmaz@nku.edu.tr

Department of Civil Engineering, Tekirdag Namik Kemal University, Tekirdag 59860, Turkey;
eordu@nku.edu.tr

Department of Civil Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
*  Correspondence: jyko@cnu.ac.kr; Tel.: +82-42-821-5679

Abstract: Artificial neural network models, crucial for accurate predictions, should be meticulously
designed for specific problems using deep learning-based algorithms. In this study, we compare
four distinct deep learning-based artificial neural network architectures to evaluate their performance
in predicting soil consolidation characteristics. The consolidation features of fine-grained soil have a
significant impact on the stability of structures, particularly in terms of long-term stability. Precise
prediction of soil consolidation under planned structures is vital for effective foundation design. The
compression index (Cc) is an important parameter used in predicting consolidation settlement in
soils. Therefore, this study examines the use of deep learning techniques, which are types of artificial
neural network algorithms with deep layers, in predicting compression index (C.) in geotechnical
engineering. Four neural network models with different architectures and hyperparameters were
modeled and evaluated using performance metrics such as mean absolute percentage error (MAPE),
mean squared error (MSE), root mean squared error (RMSE), and coefficient of determination (R?).
The dataset contains 916 samples with variables such as natural water content (w), liquid limit (LL),
plasticity index (PI), and compression index (C.). This approach allows the results of soil consolidation
tests to be seen more quickly at less cost, although predictively. The findings demonstrate that deep
learning models are an effective tool in predicting consolidation of fine-grained soil and offering
significant opportunities for applications in geotechnical engineering. This study contributes to
a more accurate prediction of soil consolidation, which is critical for the long-term stability of
structural designs.

Keywords: compression index; deep learning; multilayer perceptron; convolutional neural network

1. Introduction

Geotechnical engineering frequently encounters complex problems that necessitate
sophisticated mathematical models [1,2]. However, despite the numerous models that
have been developed, they often fall short of fully capturing the intricacies of geotechnical
problems. Fortunately, artificial intelligence (Al) techniques have proven to be powerful
tools for tackling challenging issues specific to geotechnical engineering. Isik and Ozden
demonstrated a significant example by estimating geotechnical problems using artificial
neural networks [3]. A research investigation explored the application of soft calculation
techniques for estimating the consolidation characteristics of fine-grained soil [4]. In
addition, an extensive study inquired into the applications of Al within this field [5].
Moreover, the geotechnical properties of soils underwent analysis through the utilization
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of Geographic Information Systems (GIS) and artificial neural networks (ANN) [6-8]. As
the field continues to explore more applications of Al, new techniques will be developed
to more effectively address these challenges. It is evident that the utilization of computer
science and Al in geotechnical engineering, as well as in other fields, will continue to
expand and generate interest [9-15].

The selection and design of an appropriate and reliable foundation system require a
crucial step, which is the identification and characterization of soil layers present in soil
profiles, along with their properties [16]. One of the key factors for engineering applications
in fine-grained soils is their consolidation properties. These properties encompass index
properties such as dry density, void ratio, water content, and consistency limits, as well
as compression index, swelling index, and overconsolidation ratio [17,18]. Consolidation
is a soil mechanics process that occurs over time when soil undergoes a reduction in
volume due to the expulsion of water from the void spaces between soil particles. This
process is initiated by an increase in vertical stress, typically caused by structural loads [19].
Determining how well soil layers settle under the additional weight of planned structures
is a vital aspect of foundation design [20,21]. It is important to note that all consolidation
properties and index properties of soils, including compression index, swelling index,
and overconsolidation ratio, can only be determined through laboratory tests [22]. Each
encountered soil layer exhibits distinct index and consolidation characteristics, which
depend on its composition [23]. For this purpose, field drilling operations are conducted
to extract the vertical profile of the soil, and both disturbed and undisturbed samples are
obtained for laboratory experiments. This situation underscores the need for methods that
can efficiently determine the parameters obtained from consolidation tests in a shorter
time and with a closer approximation to reality, all while minimizing costs. The objective
of these field drilling operations is to gather representative soil samples, enabling the
evaluation of variations in different soil parameters as one moves deeper into a soil cross
section. The data obtained from laboratory experiments, coupled with the results from field
drilling operations, collectively contribute to identifying the fundamental soil parameters
essential for accurate calculations and estimations of the anticipated range of settlement
values [24-27].

Techniques based on machine learning have witnessed significant growth in popularity
over the last decade for their ability to make accurate predictions and have been applied
to various real-world problems [28]. In geotechnical engineering, the comprehension and
prediction of consolidation properties are crucial for ensuring the stability and durability
of structures. As mentioned above, Al techniques, especially neural networks, have had an
important role in predicting ground behavior in geotechnical engineering. Al technology is
a field that aims to enable machines to learn like humans. The ability to learn the results that
machines are not specifically programmed with is called machine learning (ML), which is a
type of artificial intelligence [29-31]. The ML technique includes many different algorithms,
but some machine learning algorithms that imitate the human brain are referred to as
artificial neural networks. Deep learning (DL), which covers the techniques we use, is a
name used for artificial neural network algorithms consisting of many layers. Unlike ML,
which involves some human intervention, deep learning involves complete self-learning
without human intervention. The relationship between Al and its subfields is shown
in Figure 1.

ML is a subset of Al focused on the development of algorithms and models that enable
computers to learn from data and improve their performance on a specific task without
being explicitly programmed. In addition, a subfield of ML known as DL draws inspiration
from the functioning of the human brain. In a DL network, each layer utilizes the output of
the layer below it for feature extraction and manipulation [32]. These layers are sequentially
designed, allowing the creation of complex models capable of learning from data [33]. DL
excels in handling large datasets, which is one of its key advantages over typical ML
algorithms. While ML methods often involve problem partitioning and management, DL
approaches aim to solve problems end to end. Moreover, DL algorithms automatically
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extract features from data, eliminating the need for human feature engineering required
in traditional ML methods. Consequently, DL techniques offer faster and more advanced
capabilities overall.

Machine
Learning

Deep
Learning

Figure 1. Diagram of relationships between subfields of AL

Recently, the DL technique has made significant advancements in various fields, in-
cluding voice and image identification, natural language processing, and scientific research.
Deep learning models exhibit remarkable accuracy and speed in tasks such as identification,
classification, detection, inference, and segmentation [34]. As a result, it has become an
indispensable tool for researchers, businesses, and organizations seeking to extract insights
and make predictions from large volumes of data. Artificial neural networks (ANNs)
provide a comprehensive explanation of what deep learning is and how it works, mainly
because DL refers to the algorithms of deep neural networks (DNN), which have multi-
ple hidden layers. Therefore, understanding various types of neural networks (NNs) is
crucial for gaining a better understanding of the applied DL methods. These DL-driven
approaches hold significant potential in formulating predictive models specifically de-
signed for geotechnical engineering dilemmas. As a result, there exists a critical demand
for the advancement of fresh and more exact DL-oriented predictive models, enabling their
versatile deployment across a multitude of geotechnical scenarios and research realms [35].

Table 1 provides the parameters employed by the model to predict the compression
index in the previous study, offering insights into the algorithm applied during model
development. However, it should be noted that, while many previous studies have explored
the impact of input factors or the number of hidden layers on model performance, there is
a lack of information on the architecture, hyperparameters, and configurations that differ
from the specific factors constituting the model.

Table 1. Geotechnical parameters and used algorithms in previous studies.

Reference Geotechnical Parameter Used Algorithm

Water content, w (%)
Void ratio, e (-)

Liquid limit, LL (%)
Plasticity index, PI (%) o
Park and Lee (2011) [36] Specific gravity, Gs (-) Artificial neural network
Weight percentage of sand, Wang (%) (ANN)

Weight percentage of silt, Wy, (%)
Weight percentage of clay, Wy (%)
Compression index, Ce (-)
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Table 1. Cont.
Reference Geotechnical Parameter Used Algorithm
Water content, w (%)
Void ratio, e (-) o
Kurnaz et al. (2016) [37] Liquid limit, LL (%) Artificial neural network
Plasticity index, PI (%) (ANN)
Compression index, Ce (-)

Liquid limit, LL (%) Artificial neural network
Plastic limit, PL (%) (ANN)

Kabeta et al. (2022) [38] Plasticity index, PI (%) and

Regression analysis

Compression index, Cc (-) (LR)

Therefore, in this study, deep learning-based models are employed and evaluated
for predicting soil consolidation characteristics, which are significantly affected by the
structural stability of buildings and the long-term performance of structures. This study
develops and assesses four deep learning models with different architectures and hyperpa-
rameters to predict soil consolidation properties based on parameters such as natural water
content, liquid limit, plasticity index, and compression index. The objective of this study is
to leverage deep learning techniques to predict soil consolidation characteristics accurately
and efficiently, and the results show that deep learning models can be effective tools for
this purpose.

2. Materials and Model Development
2.1. Dataset

A total of 916 samples were used in order to assemble a dataset, which were provided
by Ongun [39], Satyanarayana and Satyanarayana [40], Kahraman [41], and Kalantary and
Kordnaeij [42]. Figure 2 presents 916 samples in the plasticity chart for soil classification.
As shown in the figure, the model developed in this study is limited to the scope of the data.
Therefore, it should be noted that the fine-grained soil in this study does not encompass all
fine-grained soil; rather, it is confined to the data range shown in Figure 2.
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Figure 2. All 916 samples in the plasticity chart.

In addition, it is essential to consider crucial factors for understanding the complicated
consolidation processes while facilitating the evaluation of their structural stability. Since
variations in water content have a direct influence on the compressibility and deformation
potential, natural water content (w) was selected as one of the input parameters. Also, the
liquid limit (LL) represents the critical threshold at which soil changes from a plastic to a
liquid state, and the plasticity index (PI) provides information about the soil’s ability to
undergo deformation and change in consistency when subjected to moisture variations. In
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addition, the compression index (C.) is a crucial value that describes the compressibility
behavior of soil and allows for the determination of the compression potential and the
compression rate. Therefore, the input parameters of the dataset consisted of natural water
content, liquid limit, and plasticity index; the output was determined as the compression
index. Table 2 shows the sample dataset of parameters.

Table 2. Sample dataset of parameters.

No. of Data Water Content, Liquid Limit, Plasticity Index, Cmrllg;iismn
) w (%) LL (%) PI (%) ’
Cc ()
1 36.5 74.0 21.8 0.348
2 25.7 36.5 22.7 0.214
3 34.6 335 20.1 0.183
4 43.5 60.0 31.2 0.427
5 45.0 60.5 33.3 0.423
912 80.0 95.0 34.0 0.880
913 77.0 91.0 32.0 0.840
914 75.0 100.0 34.0 0.830
915 76.0 71.0 31.0 0.800
916 75.0 63.0 30.0 0.760

Figure 3 presents the data using frequency histograms, illustrating the distribution
of the dataset. In addition, Table 3 displays the descriptive statics of the parameters,
representing the dataset.
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Figure 3. Histograms of the distribution of the dataset.
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Table 3. Descriptive statistics of parameters.

Parameter Minimum Maximum Mean Star'lda}rd

Deviation
Water content, w (%) 10.2 99 34.103 13.645
Liquid limit, LL (%) 0 103 48.074 17.165
Plasticity index, PI (%) 0 96.6 24.156 12.609
Compression index, Ce (-) 0.05 0.996 0.288 0.174

Dendrites

A total of 916 samples were divided into three dataset groups, consisting of training,
validation, and test sets. The training phase of the employed methods utilized the complete
set of 738 samples from the training dataset group. In the validation phase, 90 samples
from the validation group were utilized, and during the testing phase, 88 samples from the
test dataset group were employed. However, the limitations of our dataset are rooted in
its diverse composition, encompassing various regions and depths. While this diversity
contributes to the dataset’s richness with approximately 900 entries and correlates well with
the observed high coefficient, it introduces limitations in terms of representativeness. The
dataset may not fully capture the broad spectrum of geotechnical conditions worldwide,
impacting the model’s ability to generalize beyond the specific range and variation present
in the training data.

2.2. Model Development
2.2.1. Artificial Neural Network

Compared to other Al algorithms, DL methods such as ANNSs consistently deliver
superior results. These networks have been developed with inspiration from the human
brain, specifically the biological structures of neuron cells and neuron networks. In ANNSs,
these biological elements are expressed mathematically, with a neuron cell corresponding to
a mathematical expression known as a perceptron. The NNs formed by biological neuron
cells are represented as the output of many perceptrons, which serve as inputs to the
subsequent perceptron [43] (see Figure 4).

Inputs

Axon

o - —p> Output
Nucleus
Linear Activation
function function

Figure 4. Comparison between biological neurons and artificial neurons (perceptron) [43].

In fact, the learning process in the human brain, characterized by changes in electrical
signal values stored by neurons and the formation of new neuron connections, can be
likened to updating the weight values and eliminating perceptrons with low weight values
in ANNs. Consequently, the learning scenario in an artificial neural network revolves
around determining the most suitable weight values for the inputs. Today, there is a wide
selection of artificial neural networks to choose from.

2.2.2. Multilayer Perceptron

A multilayer perceptron (MLP) is a type of ANN consisting of multiple layers of
interconnected nodes or units called neurons. It is one of the foundational architectures
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used in DL methods. Fully connected layers are a crucial component of MLP networks.
Dense layers refer to layers that are fully connected, meaning the perceptron within these
layers is mathematically connected to the perceptrons in the subsequent layers. The
parameters of fully connected layers include the number of units (or perceptron) and the
activation function. When fully connected layers are used in the intermediate or hidden
layers of a neural network design, an activation function called rectified linear unit (ReLU)
is commonly employed. On the other hand, if fully connected layers are present in the
output layer, activation functions such as softmax or sigmoid are preferred depending on
the nature of the problem. The number of outputs required for the problem determines the
total number of units within the output layer.

2.2.3. Convolutional Neural Network

A convolutional neural network (CNN) is a neural network variant specifically de-
signed for processing digital image data. Convolutional neural networks consist of fully
connected layers, pooling layers, and convolution layers in their architecture. The convolu-
tion layers play a crucial role in extracting features from visual data using linear algebra
processes. The important parameters of convolution layers include filters, kernel size,
strides, padding, and an optional activation function. Pooling layers, such as maximum
pooling and average pooling, help retain common features while reducing the overall net-
work size. In addition, fully connected layers are often added at the end of convolutional
neural networks to aid in tasks like classification.

2.2.4. Development of the Deep Learning Models

Four deep learning models were developed, referred to as M4SAB, M3SAB, M3SRM,
and C4LRM, allowing for the indication of configuration, number of layers, activation
function, optimizer algorithm, and loss function in a specified order. These models had
distinct architectures and hyperparameters, which are mathematical variables that define
the structure and settings of deep learning models. By utilizing these configurations, deep
learning models acquire the capability to solve problems. The term ‘learning’ denotes the
process in which the variables, known as weights, within deep learning models converge to
their optimal values. Figure 5 depicts the schematic architectures of the developed models;
a detailed description of the model development follows below.

M4SAB, M3SAB, and M3SRM all utilized multilayer perceptrons, which are a type
of deep learning network. In multilayer perceptrons, all layers are referred to as dense or
fully connected layers. C4LRM, on the other hand, combined a multilayer perceptron with
a convolutional network, which is another type of deep learning network commonly used
for image data analysis and feature extraction. The merging of these networks is achieved
through a layer called Flatten, which reduces the layer size to a vector size. M4SAB and
C4LRM both employed four-layered neural network models, while M3SAB and M3SRM
used three-layered neural network models.

One of the critical steps in creating neural networks is selecting the activation function.
The hidden layers in a neural network are the layers located between the input and output
layers. Generally, the rectified linear unit (ReLU) activation function is commonly used in
hidden layers for both multilayer perceptrons and convolutional neural networks. This
general practice was followed in all the models. However, the choice of activation functions
for the final layers depends on the specifics of the problem at hand. In the M4SAB, M3SAB,
and M3SRM models, the sigmoid activation function was employed in the final layers,
whereas C4LRM utilized the linear activation function.

In addition, the optimizer algorithm is the most crucial hyperparameter used to
calculate the optimal values of variables, known as weights, in deep learning models. In
the M4SAB and M3SAB models, the Adam optimizer algorithm, which is an adaptive
momentum learning technique proposed by Adam [44], was chosen. In the M3SRM
and C4LRM models, the root-mean-squared propagation (RMSProp) optimizer algorithm,
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which is a gradient descent optimization algorithm, was utilized. These choices were made
based on heuristics.

Dense Layer Dense Layer Dense Layer Dense Layer
Input Layer + RelLU + RelLU + RelLU + Sigmoid

Output Shape Output Shape Output Shape Output Shape Output Shape
3 12 8 8 1
(a)
Dense Layer Dense Layer Dense Layer
Input Layer + RelLU + RelLU + Sigmoid

Output Shape Output Shape Output Shape Output Shape
3 32 16 1
(b)
Convolutional Flatten Dense Layer Dense Layer
Input Layer Layer + RelLU Layer + RelLU + Linear

[T

Output Shape Output Shape Output Shape Output Shape Output Shape
3x1 2x64 128 64 1

(©)

Figure 5. Schematic architectures of the developed models: (a) M4SAB; (b) M3SAB and M3SRM;
(c) CALRM.
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Moreover, the selection of the loss function is another crucial hyperparameter. The loss
function was utilized to quantify the differences or errors between the predicted results and
the actual outcomes of deep learning models. In the M4SAB and M3SAB models, we chose
the Binary Cross Entropy loss function based on heuristic decisions [45,46]. In contrast, for
M3SRM and C4LRM, a loss function called mean squared error was employed [32].

Furthermore, the number of epochs serves as a significant hyperparameter in neural
network models. An epoch represents each iteration that the data undergo during the
training process of the neural network. For all models, we chose to set the number of
epochs to 100. This decision was made to facilitate the evaluation of models within a
specific timeframe, enabling us to observe the learning progress demonstrated by each
model over the same duration. Table 4 shows the summary of model developments.

Table 4. Summary of model development.

Model Configuration No. of Layer Activation Function Optm.nzer Loss Function No. of Epochs
Algorithm
M4SAB Multilayer 4 Adam Binary Cross
M3SAB perceptron 3 Sigmoid optimizer algorithm Entropy
_ (MLP) - - 100

M3SRM 3

MLP + Root-mean-squared Mean Squared
C4ALRM Conventional 4 Linear propagation Error

network

Table 5 presents the results of the sensitivity analysis aimed at determining which
input parameter has the most significant impact on the compression index. The method
employed for sensitivity analysis is known as Input Perturbation. This technique entails
altering each input feature of a given sample individually and observing the resulting effect
on the model’s output. Through this process, the impact or importance of each feature was
assessed. C4LRM appears to exhibit a balanced distribution of the three inputs’ effects on
the output, as depicted in the table below.

Table 5. Results of sensitivity analysis of input variables.

Input Variables
Model v .
Water Content, w (%)  Liquid Limit, LL (%) Plasticity Index, PI (%)
M4SAB 59.26 10.35 84.28
M3SAB 66.20 22.94 42.61
M3SRM 18.82 58.36 57.49
C4LRM 51.96 58.22 53.91

2.3. Runtime Environment

Figure 6 illustrates the proposed workflow, providing a visual representation of the
research methodology. In the data collection process, the input and output variables needed
for consolidation prediction are combined into a single file. For the data preparation phase,
our dataset, which is represented as a single file, was divided into distinct sections for
training, validation, and testing purposes in the models. During the model definition
phase, all models were implemented in the software using their specific neural network
architectures and parameters. The training and validation processes of the models encom-
pass essential operations such as training and validating the neural networks within the
software, illustrated as flow diagrams in the figure below.
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Figure 6. Flowchart of the runtime environment.
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As described above, this study utilized four distinct models in order to conduct
experiments. These models were developed using Python (version 3.9.15), a versatile
and user-friendly programming language widely used in machine learning and data
science [47]. The implementation of the models was achieved through the utilization of
the Keras deep learning application programming interface (Keras 3 API) [48], which is
built on top of TensorFlow and serves as a Python library designed for high-level neural
network tasks [49]. TensorFlow (version 2.10.0), an open-source platform frequently used
for developing and deploying machine learning models, was also utilized. The experiments
were performed using Google Colab [50], a free cloud-based platform that provides access
to various hardware resources such as CPUs, GPUs, and TPUs. These resources are crucial
for the efficient execution of deep learning algorithms. By adopting this approach, the
researchers were able to conduct their experiments cost-effectively, eliminating the need for
expensive hardware or software licenses.

2.4. Evaluation Metrics
2.4.1. Mean Absolute Percentage Error

The performance of a predictive model can be evaluated by examining its mean
absolute percentage error (MAPE). As shown in Equation (1), the MAPE value is computed
by taking the mean absolute values of the discrepancies between the obtained values and
the expected values and dividing that result by the number of actual values. A lower MAPE
value indicates that the model is better at accurately predicting the dependent variable,
indicating higher quality.

1 & |Actual; — Pred,|
MAPE = EZ; Actual; @)

2.4.2. Mean Squared Error

Mean squared error (MSE) measures the consistency of deviations between numbers
and their predicted values, as described in Equation (2). A decrease in MSE value, ap-
proaching zero, indicates greater accuracy of the model. While the MAPE metric is also
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important for regression models, a lower MSE value is generally preferred as it offers a
more precise measure of the model’s accuracy.

n
MSE = %Z(Actuali — Predi)2 (2)
i=1

2.4.3. Root Mean Squared Error

Root mean square error (RMSE) is a statistical measure used to evaluate the accuracy
of a prediction model. It is calculated as the square root of the mean of the squares of the
differences between actual and predicted values, as described in Equation (3). A low RMSE
value indicates that the model predicts the data better and has high prediction performance.

n
RMSE = \/rlz Y (Actual; — Pred;)? 3)
i=1

2.4.4. Coefficient of Determination

The R-squared statistic, also known as the coefficient of determination (R?), is utilized
to evaluate the goodness of fit of a regression model to the data. As shown in Equation (4),
it is calculated by subtracting 1 from the ratio of the sum of squared residuals (SSR) to the
sum of squares (SST). In this equation, SSR represents the difference between observed and
expected values, while SST is a statistical measure of dissimilarity between the observed
values and their mean.

" (Actual; — Pred;)*
SSR 1— i (Actual; red;) )

RP=1-2_=
S5T Y (Actual; — Mean(Actuali))2

These metrics were used in the process of assessing and measuring the effectiveness of
the models. For a problem that involves three float-type inputs and a float-type output, the
problem is considered as a regression problem. Some commonly used metrics for regression
models include MAPE, MSE, RMSE, and the coefficient of determination. The selected
metrics were used to provide insight into the accuracy and precision of the models and to
assess their overall effectiveness in solving the regression problem at hand.

3. Results and Discussion
3.1. Results of the Training and Validation Process

An epoch refers to a complete cycle of presenting the entire training or validation
dataset to the network for learning or evaluation, respectively. During each training
epoch, the network processes the training data, adjusts its parameters using optimization
techniques like gradient descent, and gradually refines its predictive capabilities. Validation
epochs involve feeding the validation dataset through the trained network to assess its
performance on unseen data. Monitoring the network’s behavior over multiple epochs
provides insights into its learning progress and convergence, helping to determine when to
stop training to prevent overfitting or achieve optimal generalization.

The training and validation results of the models, assessed using the MAPE metric,
are presented in Figure 7a,b.

It can be concluded that models with lower MAPE values display better performance
when compared to their counterparts. As a result, the comparative analysis highlights the
M4SAB model as the least effective, evident from its significantly higher MAPE value in
comparison to the other models. Upon closer inspection, M3SRM outperforms M4SAB
but still falls short when compared to M3SAB and C4LRM, though with minor differences.
Importantly, the M3SAB and C4LRM models deliver closely aligned outcomes, establishing
them as the most proficient models. In the validation process, lower MAPE values in
models indicate superior performance. Consequently, the M4SAB model emerges as the
least successful, as indicated by its notably higher MAPE value compared to the other
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models. Further analysis of the graph reveals that the M3SAB, M3SRM, and C4LRM models

exhibit closely similar results with subtle variations, occasionally marked by sporadic
upward fluctuations.
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Figure 7. MAPE results: (a) training; (b) validation process.

The training results of the models, evaluated through the MSE metric, are depicted
in Figure 8a. Models with lower MSE values indicate higher efficacy compared to their
counterparts. Consequently, the M4SAB model stands out as the least effective, given
its significantly higher MSE value in comparison to the other models. Further analysis
reveals M3SRM'’s superior performance relative to the M4SAB model, although with a
slight gap from the M3SAB and C4LRM models. The M3SAB and C4LRM models exhibit
closely aligned results, establishing them as the most proficient models in this context.
Furthermore, the validation results of the models, assessed based on the mean squared error
(MSE) metric, are displayed in Figure 8b. Lower MSE values in models signify superior
performance within the group. Thus, the M4SAB model emerges as the least effective,
characterized by a notably higher MSE value compared to its counterparts. The graphi-
cal representation demonstrates that the M3SAB, M3SRM, and C4LRM models produce

closely aligned outcomes with minor differences, occasionally accompanied by sporadic
upward deviations.
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Figure 8. MSE results: (a) training; (b) validation process.

Figure 9a,b shows the R? values obtained after the training and validating process for
100 iterations.

Models with higher R? values indicate superior performance. Consequently, the
M4SAB model is identified as the least effective due to its notably lower R? value com-
pared to the other models. The graphical representations reveal closely similar results
for the M3SAB, M3SRM, and C4LRM models, displaying slight variances and occasional
downward trends. Additionally, a higher R? value within the models indicates improved
performance. Thus, the M4SAB model is recognized as the least successful due to its sub-
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stantially lower R? value compared to the remaining models. The graphical representations
show that the M3SAB, M3SRM, and C4LRM models demonstrate closely similar results
with minor variations and intermittent downward fluctuations.
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Figure 9. Coefficient of determination results: (a) training; (b) validation process.

3.2. Results of the Test Dataset

The test results of output prediction value and comparisons between 88 samples of the
test dataset (actual values) and predicted values from developed models are presented in
Figures 10-13, respectively. The prediction results of the models were the values calculated
by the neural networks performing the regression operation. The performance of the
developed models was assessed using evaluation metrics. The results obtained from the
evaluation of the regression models indicate the performance and effectiveness of each
model in predicting the consolidation data.

The results of evaluation metrics revealed that the M4SAB model performed less
successfully, exhibiting a MAPE value of 71.60, an MSE value of 0.021, a RMSE value of
0.144, and an R? value of 0.776. M4SAB and M3SAB, which involved modifications to the
network architecture (e.g., the number of layers), demonstrated significantly improved
performance in the prediction of consolidation characteristics. M3SAB achieved a MAPE
value of 29.29, an MSE value of 0.017, a RMSE value of 0.132, and an R? value of 0.905. While
the M3SRM model shared the same network structure as the M3SAB model, it employed the
root-mean-squared propagation for the optimizer algorithm and mean squared error for the
loss function, resulting in significant differences in the evaluation metrics compared to the
M3SAB model. The evaluation metrics results of the M3SRM model were an MAPE value of
52.99, an MSE value of 0.059, a RMSE value of 0.245, and an R? value of 0.735. The CALRM
model combined a multilayer perceptron with a convolutional network, an alternative
deep learning structure commonly used for analyzing image data and extracting features.
This integration resulted in the C4LRM model inducing the most successful performance
in predictions. The evaluation values of MAPE, MSE, RMSE, and R? values for the C4ALRM
model were 25.95, 0.013, 0.116, and 0.905, respectively. Table 6 presents the summary of
the evaluation results for each model developed using different techniques. The C4ALRM
model demonstrated the highest level of accuracy and precision among all the models, as
evidenced by the lowest values of MAPE, MSE and RMSE and the highest value of the
coefficient of determination.
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Figure 10. Results of M4SAB model: (a) test results; (b) comparison between actual and predicted
values using M4SAB.
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Figure 11. Results of M3SAB model: (a) test results; (b) comparison between actual and predicted
values using M3SAB.
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Figure 12. Results of M3SRM model: (a) test results; (b) comparison between actual and predicted
values using M3SRM.
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Figure 13. Results of C4ALRM model: (a) test results; (b) comparison between actual and predicted

values using C4LRM.

Table 6. Evaluation metrics on results of predicted values.

Model MAPE MSE RMSE R?

M4SAB 71.60 0.021 0.144 0.776
M3SAB 29.29 0.017 0.132 0.905
M3SRM 52.99 0.059 0.245 0.735
C4LRM 25.95 0.013 0.116 0.905

Evaluating a regression model is vital for assessing its effectiveness and enhancing
precision. Various techniques, such as data preprocessing, adjusting the network architec-
ture, tuning weights, and optimizing hyperparameters, can be employed to improve the
performance of regression models. Statistical and mathematical analysis of experimental
results reveals that the C4LRM model outperforms all other models, with the M3SAB
model closely approaching the performance of the C4LRM model. In contrast, the M4SAB
and M3SRM models exhibit comparatively lower performance. Based on these results, the
number of layers, activation function, optimizer algorithm, and loss function did not play a
dominant role in the model’s performance. Instead, the optimal choice of each configuration
significantly influenced the model’s overall performance for optimal development.

In summary, the discussion highlights the importance of evaluating and comparing
regression models using appropriate metrics. The findings suggest that the CALRM model,
which has the most ideal configuration for model performance, is the most successful model,
followed by M3SAB, while the M4SAB and M3SRM models demonstrate relatively lower
performance. These conclusions provide valuable insights for further model refinement
and optimization.

4. Conclusions

In this study, deep learning techniques were employed to predict consolidation in
geotechnical engineering. Various methods were applied to enhance the performance of
regression models, including data preprocessing, adjustments to the network architecture,
and tuning of weights and hyperparameters. These techniques contributed to improving
the precision and effectiveness of the models.

This study involved the development of four artificial neural network models, referred
to as M4SAB, M35SAB, M3SRM, and C4LRM, using deep learning techniques for consolida-
tion prediction. The M4SAB, M3SAB, and M3SRM models were based on a neural network
architecture known as multilayer perceptrons. Additionally, the C4LRM model incorpo-
rated an architecture of multilayer perceptrons with the convolutional layer, serving as the
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first layer. The input parameters of the dataset included natural water content (w), liquid
limit (LL), and plasticity index (PI), with the compression index (C.) as the output. The
dataset, consisting of 916 samples, was divided into three groups for training, validation,
and testing purposes.

During the training and validation processes, the effectiveness of the models was
evaluated using four criteria: mean absolute percentage error (MAPE), mean squared error
(MSE), root mean squared error (RMSE), and coefficient of determination (R?). Rigorous
statistical analysis revealed that the C4ALRM model demonstrated the most successful
performance compared to the other models. Notably, the M3SAB model exhibited a
strong resemblance to the performance of C4LRM, indicating substantial similarity in their
predictive abilities. Conversely, the M4SAB and M3SRM models displayed relatively lower
levels of performance.

Furthermore, to determine the C4LRM model as the superior model, four distinct
neural network models were assessed using MAPE, MSE, RMSE, and R? evaluation metrics
in the testing phase. The assessment yielded results of an MAPE of 25.95, an MSE of 0.013,
an RMSE of 0.116, and an R? of 0.905 for the CALRM model. Particularly, the CALRM model
exhibited the lowest MAPE, MSE and RMSE values and a higher R? value compared to
the other models. A distinctive feature of the C4ALRM model involved incorporating a
convolutional layer in its initial layer to augment the intricacy of the prediction process.

From these findings, the performance of the model was not primarily influenced by
the number of layers, activation function, optimizer algorithm, or loss function. Rather,
the optimal selection of each configuration significantly impacted the overall performance
of the model for optimal development. As a result, this study highlights the promising
role of deep learning methods in consolidation prediction and demonstrates their ability
to improve decision-making processes and optimize resource allocation in geotechnical
engineering for the stability of structures.
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