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Abstract: This research aims to investigate the bearing capability of deep helical anchors and grouped
helical anchors under uplift or lateral loads using field experiments. Grouped helical anchors may
serve as a viable alternative to traditional deep foundations, offering increased resistance against
uplift and lateral forces. The study of group effect primarily focuses on vertically installed helical
anchors, with few data available on various configurations of grouped helical anchors. This research
includes a total of 12 single-helix anchors, 4 double-helix anchors, and 4 grouped helical anchors,
with anchor plate diameters of 400 mm and maximum embedment depths of 7.4 m. There are two
configurations of grouped helical anchors, each with different platforms. This article studies the effect
of some factors, including the embedment depth, the number of anchor plates, the spacing between
anchor shafts, the selection of failure criteria, and the group effect. The primary findings indicate that
adding the anchor plates to single-helix anchors without extending the shaft length does not increase
uplift or lateral capacity. In this soil condition, the group efficiency of double-helix anchors is higher
than 1. By comparing the group efficiency and economy of the G1 and G2 grouped helical anchors,
it is highly recommended to use the G2 configuration. The data obtained from this work may also
serve as a valuable tool for validating numerical models used to analyze interactions among grouped
helical anchors.

Keywords: grouped helical anchor; group efficiency; uplift capacity; lateral capacity

1. Introduction

A helical anchor, also known as a helical pile, consists of an anchor head, anchor plate,
anchor shaft, and connection, which are joined together by either welding or prefabrication.
Based on the number of anchor shafts, it may be categorized into single-helix anchors and
grouped helical anchors. The helical anchor differs from the standard pile foundation in
using torque to screw the anchor into the earth, enabling it to withstand more pressure,
uplift, and lateral load [1–5]. In contrast to the conventional pile foundation, the helical
anchor foundation has the advantages of quick and easy installation, little noise during
construction, rapid use after installation, and the ability to be reused several times [6–13].
The helical anchor is used as the foundation for many structures such as coastal wharves,
wind power generators, overhead transmission lines, natural gas platforms, and high-rise
skyscrapers due to its numerous benefits [12,14–17]. In particular, helical anchors have
significant capacity and have recently been proposed by many researchers for offshore
applications [18–21]. For low upper loads, one may use either a big single-helix anchor or a
tiny grouped helical anchor. As the load carried by the superstructure increases, the design
parameters of the grouped helical anchor, such as embedment depth, anchor plate diameter,
anchor plate quantity, and foundation shape, must be adjusted correspondingly. Machine
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learning, artificial intelligence, and artificial neural network (ANN) algorithms are expected
to develop a more accurate and reliable tool for determining the load-bearing capacity
(LBC) of helical anchors [22–25]. Such models can be specifically established to provide
quick and precise predictions of the LBC under various loading conditions, including axial,
lateral, and inclined loads [26,27].

A group of researchers has investigated the behavior of helical anchors in cohesionless
soil [28–34] as well as in cohesive soil [35–38] using numerical, experimental, and field
tests. Two failure mechanisms, the individual pile failure mechanism, and the block
failure mechanism, which is dependent on the spacing between the anchors, are available
when the grouped helical anchor is loaded vertically. The group effect will gradually
diminish as the anchor spacing increases [39,40]. In a study conducted by Radhakrishna, a
single vertical uplift test was conducted on a group of triple-helix anchors arranged in a
2 × 2 configuration. The anchors were installed in stiff fissured clay. The results showed
that spacing the anchors at approximately three times the diameter of the largest helix did
not lead to a significant decrease in the uplift capacity of each individual anchor [41]. The
characteristics of grouped helical anchors under lateral static [21,35,42–45] and dynamic
loads [46–50] have been studied. In a study conducted by Venkatesan Vignesh, the uplift
and lateral behavior of group piles installed in soft clay soil was studied using a finite
element and 1 g model experiment. The findings showed that the group efficiency is
significantly influenced by the number of anchors, center-to-center anchor spacing, and the
failure criteria assumed to interpret test data [21]. However, the majority of the studied
grouped helical anchors consist of vertical single-helix anchors, and there is a scarcity of
studies on other configurations of grouped helical anchors.

The purpose of this research was to examine the bearing characteristics of deep helical
anchors. Two configurations of grouped helical anchors were designed in accordance with
engineering requirements, and helical anchors were subjected to either uplift or lateral loads.
Furthermore, we augmented the current data on the impacts of grouped helical anchors
by conducting a field study. The following sections of this paper include a comprehensive
account of the test site, design, methods, results, and discussion.

2. Test Site and Design
2.1. Test Site

The test site was located at Yuncheng, Shanxi, China. The area is in the Quaternary late
Pleistocene alluvial layer, and the lithology is mainly clay, belonging to the accumulation
terrain, as shown in Figure 1. Through field drilling combined with laboratory test results,
it was determined that the soil texture of the stratum is relatively uniform. It is clay, brown,
slightly wet, and slightly dense from the surface to a depth of 13.5 m. This soil layer contains
white mycelia and calcareous nodules which are without a gloss reaction and have low
dry strength, low toughness, and a moderate shaking response. According to geological
survey and excavation results, no groundwater was found within 15.0 m. The physical
and mechanical parameters of the soil layer in the site were obtained through indoor
geotechnical tests, as shown in Table 1. Using the modified Cam Clay yield criterion, we
estimated the OCR to be between 5 and 10 based on a comparison of the prior consolidation
pressure with the current pressure [51–54].

Table 1. Physico-mechanical property indices of soil layers.

Soil Type
Water

Content
(%)

Density
(g/cm3) Gravity Void Ratio

(%)

Compression
Modulus

(MPa)

Liquid
Limit
(%)

Plastic
Limit
(%)

Internal
Friction

Angle (◦)

Cohesion
(kPa)

Clay 12.4 1.48 2.7 1.055 7.59 23.6 14.9 27.1 15.9
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Figure 1. Test site.

2.2. Test Design

A total of 20 field load tests were conducted using round-shaft helical anchors, includ-
ing 12 single-helix anchor tests, 4 double-helix anchor tests, and 4 grouped helical anchor
tests. The field load test scheme is shown in Table 2; in the test numbers, S represents
a single helical anchor, D represents a double-helix anchor, and G represents a grouped
helical anchor.

Table 2. Field load test scheme.

Test
Number

Direction of
Test Load

Embedment
Depth H (m)

Anchor Plate
Number n

Anchor Plate
Spacing S (m)

Inclination
Angle α (◦)

S1 Uplift 6.0 1 0 0
S2 Uplift 6.0 2 1.2 0
S3 Uplift 6.0 3 1.2 0
S4 Uplift 6.0 4 1.2 0
S5 Uplift 6.0 4 1.2 12◦

S6 Uplift 6.0 4 1.2 17◦

S7 Uplift 7.4 1 0 0
S8 Lateral 6.0 1 1.2 0
S9 Lateral 6.0 2 1.2 0
S10 Lateral 6.0 3 1.2 0
S11 Lateral 6.0 4 1.2 0
S12 Uplift 4.8 1 0 0
D1 Uplift 6.0 1 0 0
D2 Uplift 6.0 1 0 0
D3 Uplift 6.0 4 1.2 0
D4 Uplift 6.0 4 1.2 0

G1-U Uplift 6.0 4 1.2 0, 7, 7, 10
G1-L Lateral 6.0 4 1.2 0, 7, 7, 10
G2-U Uplift 6.0 4 1.2 12, 17, 17
G2-L Lateral 6.0 4 1.2 12, 17, 17

The helical anchors were made of Q345 steel (Young Modulus and = 210 GPa, yield
stress = 345 MPa, and tensile stress = 470~630 MPa). The anchor proportions are based on
some of the largest commercially available helical anchors, consisting of 114 mm diameter
anchor shafts (d) and a wall thickness of 8 mm. The helix plate diameter (D) is 400 mm
with a thickness of 10 mm and a pitch of 100 mm. The number of anchor plates (n) is 1 to
4, and the spacing (S) between anchor plates is 1.2 m. The embedment depth (H) of the
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helical anchors was 4.8 m to 7.4 m. The partial design drawings of those helical anchors are
shown in Figure 2, where Figure 2a is a single-helix anchor, Figure 2b is a grouped helical
anchor used in the G1 tests, and Figure 2c is a grouped helical anchor used in the G2 tests.
The double-helix anchors consist of two single-helix anchors in which the distance between
the shaft of D1 and D3 (l) is 3D and the l of D2 and D4 is 4D. Two types of grouped helical
anchors were designed based on the upper load in engineering needs, G1 and G2. G1
consists of a reinforced concrete platform and four single-helix anchors with one inclination
angle (α) of 10◦, two inclination angles of 7◦, and one inclination angle of 0◦. G2 consists of
a steel platform and three single-helix anchors with two inclination angles of 17◦ and one
inclination angle of 12◦.
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The installation process is shown in Figure 3. The rotary drilling driver was used to
install the helical anchors, as shown in Figure 3a, and the advancement ratio (AR) was set
to 1. An advancement ratio of 1.0 would indicate a “pitch-matched” installation. Firstly,
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we determined the position and inclination of the helical anchor to be installed. During
the installation process, we rotated it at one revolution per minute and then paused the
installation for ten revolutions each time in order to re-measure the position and inclination.
We ensured that the position error was no greater than 10 mm and the inclination error
was no greater than 1◦. After installation, all single-helix anchors had a space of 300 mm
at the top (in which to apply the load), as shown in Figure 3b. The double-helix anchor
was placed with a connector on the top of the anchor, and the weight of the connector was
subtracted from the subsequent results, as shown in Figure 3c. The grouped helical anchor
used a cast-in-place pile foundation as a reaction pile, as shown in Figure 3d.
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Figure 3. Photograph showing a typical load test setup for the helical anchors.

We performed real-time detection of changes in installation torque during installation
from the driver hydraulic pressure. The installation torques at different inclinations are
shown in Figure 4. It can be observed that the inclination has a small impact on the
installation torque. The installation torques associated with various depths were averaged.
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According to Figure 4, we calculated the correlation between the installation torque
calculated and the depth after linear fitting, as shown in Equation (1).

T = k × H (1)

where T is the installation torque, kN·m; k is the slope, equal to 0.8042 kN; and H is the
embedment depth, m.

The layout of the in situ test for the helical anchors is shown in Figure 5. The control
room is equipped with a load control system and a data acquisition system. Different tests
were positioned according to the layout, using the scale in the bottom left as the reference.
All tests were conducted by applying a load on the top of the anchor through a hydraulic
jack via a transmission device. The hydraulic jack was located on the top of the reaction
beam, which was bolted to the reaction pile. The test sequence was to test the single-helix
anchor first, followed by the double-helix anchor and the grouped helical anchor. During
the test, the single-helix anchor was tested separately to avoid interaction with the others.
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All pile testing was followed the ASTM “quick test” axial compression load test
procedure (D1143/D1143M-07) [35]. The anchors were tested after installation by applying
incremental loads; each additional load was 1/8 of the estimated undrained ultimate load
capacity and was held for a period of 5 min. The undrained ultimate load capacity of deep
helical piles and anchors in clays is generally found using

Qu = suNc A (2)

where Qu is the uplift failure capacity, su is the undrained shear strength, Nc is the deep
bearing capacity factor (typically taken to be 9.0), and A is the area of the helical plate. The
helical anchors were loaded using three types of hydraulic jacks, that is 50 kN, 500 kN, and
1000 kN, and loads were measured with various capacity load cells as needed. Loads were
calculated from the hydraulic jack pressure and effective piston area, which gave almost
identical results to the load cell measurements. The displacements of helical anchors were
also measured with a linear variable displacement transducer or dial gauge fixed to the
reaction beam. All instruments were integrated with a data acquisition system and laptop
computer. Additionally, the process of unloading used the same method.

3. Results

The load–displacement curves obtained through the site test are shown in Figure 6,
where the single-helix anchor under the uplift load is shown in Figure 6a,b, the single-helix
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anchor under the lateral load is shown in Figure 6c, the double-helix anchor under the
uplift load is shown in Figure 6d, and the grouped helical anchor under the uplift and
lateral load is shown in Figure 6e,f. Note that the load was adjusted to remove both the
weight of the anchor and connector and the initial slack in the system as the load was
applied.
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Figure 6. The relationship between load and displacement.

It can be found that as the load increases, the displacement increases continuously.
During the loading stage under the uplift load, the load–displacement curve of the helical
anchor can be divided into three stages, namely the initial straight-line segment, the inter-
mediate curve segment, and the later straight-line segment. During the unloading stage, the
load–displacement curve exhibits nonlinear characteristics. Due to the compression of the
soil surrounding the anchor plate caused by the load, the stiffness of the soil surrounding
the anchor increases, so the slope of the load–displacement curve in the loading stage is
smaller than that in the unloading stage. That is to say, the initial elastic modulus of the
soil is smaller than the rebound modulus of the soil. During the loading stage under lateral
load, the load–displacement curve of the helical anchor is basically linear. During the
unloading stage under lateral load, the load–displacement curve also exhibits nonlinear
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characteristics. For the same reason as above, the initial elastic modulus of soil under lateral
load is also smaller than the rebound modulus of soil.

There are several methods that can be used to evaluate the uplift failure capacity of
helical anchors such as the Brinch–Hansen criterion, Davisson criterion, Federal Highway
Administration FHWA (5% of the helix diameter), L1–L2 method, and ISSMFE (10% of
the helix diameter). The ISSMFE deals with finding the load at a displacement value of
the helix plate diameter [8,36–38]. Many researchers have unanimously agreed that the
failure of helical anchors can occur at the displacement of 10%D [33]. However, research
on the failure capacity of helical anchors under lateral loads is limited. The selection of
failure criteria will lead to different bearing capacities, further affecting the study of group
anchoring effects. In this study, different failure criteria were used to determine the failure
capacity of the helical anchor, including the 5%D, 10%D, and 20%D displacement criteria.
To standardize the results, the uplift and lateral capacities were normalized. The uplift
capacity factor (Nc) was calculated by Equation (3),

Nc =
Qu

γAH
(3)

where Qu is the uplift failure capacity and γ is the soil effective weight.
Due to the linearity of the load–displacement curve under lateral load, the lateral

bearing capacity of helical anchors can be directly calculated by the lateral slope kL and dis-
placement uL, and the lateral bearing capacity coefficient can be calculated by Equation (4).

NL =
QL

γAH
=

kLuL

γAH
(4)

where QL is the lateral failure capacity.
A summary of the different calculated uplift capacity factors, namely Nc-5%, Nc-10%,

Nc-20%, and lateral slope kL, is shown in Table 3.

Table 3. Uplift capacity factor and lateral slope.

Test Number Nc-5% Nc-10% Nc-20% Test Number kL

S1 3.33 7.04 12.29 S8 0.27
S2 8.63 13.71 19.51 S9 0.20
S3 8.63 16.40 25.47 S10 0.31
S4 6.28 15.11 29.64 S11 0.55
S5 7.20 11.38 19.44 G1-H 4.85
S6 12.62 18.96 25.91 G2-H 2.57
S7 3.96 7.25 12.07
S12 3.72 7.46 12.17
D1 16.94 26.43 39.89
D2 13.30 20.21 30.89
D3 20.35 39.17 59.34
D4 23.26 38.77 58.37

G1-U 12.29 47.72 64.99
G2-U 26.87 33.45 78.84

4. Discussion

The site test was designed to study the bearing capacity of deep large-sized anchors
considering four key variables: embedment depth, plate number, inclination angle, and
group effect. The results in Table 3 are used to evaluate each of these variables.

4.1. Effect of the Embedment Depth and Plate Number

Figure 7a shows the relationship between the embedment depth ratio (H/D) and the
uplift capacity factor of a single-helix-plate anchor, where the embedment depth ratio is
the ratio of the embedment depth of the anchor plate to the diameter of the anchor plate.
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Figure 7. The relationship between the embedment depth ratio and the uplift capacity factor.

It can be observed that the uplift capacity factor is basically constant as the H/D
increases. The results show that the influence of the failure criterion on the uplift capacity
factor at different embedment depths is mainly reflected in the magnitude of the value,
with little effect on the trend in the curve. In addition, this trend in the curve indicates that
the helical anchor at this embedment depth is a deep helical anchor.

Figure 7b shows the capacity factors of helical anchors with different numbers of
anchor plates but the same embedment depth. It can be seen from Figure 7b that the uplift
capacity factor does not increase continuously with the increase in the number of anchor
plates adopted with the 5%D or 10%D failure criterion. This is because when the number
of anchor plates exceeds three, due to the shallow embedment depth of the top anchor
plate, the overall structure is more likely to be damaged, and the uplift capacity factor is
degraded instead. However, the curve trend of the 20%D failure criterion is different from
that of the 5%D and 10%D failure criteria. In the S4 test, the uplift capacity is higher than
that of other tests. This may be because for the helical anchor with a shallow embedment
depth of the top anchor plate, local shear failure occurred, and a small increase in load led
to a large displacement.

It can be seen from Table 3 that under lateral load, the lateral slope kL remains basically
unchanged. The lateral capacity of a helical anchor includes the lateral resistance of the
anchor shaft, the resistance of the upper and lower deflection edges of the helical plate,
and the frictional resistance on the surface of the anchor plate. As the number of anchor
plates increases, the resistance of the upper and lower deflection edges of the helical plate
increases. There should be an increase in the lateral capacity that is provided. However, the
lateral capacity of helical anchors with varying numbers of anchor plates was essentially the
same in this field test. The lateral load is not transmitted to the anchor plate, so increasing
the number of anchor plates will not significantly improve the lateral capacity. Since the
load is only transmitted to the shaft, the lateral slope kL can be used to characterize the
stiffness of the soil.

Comparing Figure 7a,b, it is found that for every 1D increase in embedment depth,
the uplift capacity increases by 5 kN. For each additional anchor plate, the uplift capacity
increases by 74 kN, 30 kN, and −14 kN, respectively. The uplift capacity can be enhanced
by increasing the embedment depth; it is not always enhanced by increasing the number of
anchor plates. However, a longer shaft will result in a higher slenderness ratio. The shaft’s
thickness and diameter must be increased in the design, and the capacity of construction
equipment must be increased during construction.

Therefore, it is essential to consider the design embedment depth and the number of
anchor plates during the design stage. As a deep foundation, it is advisable that helical
anchors should be buried as deep as possible according to soil conditions. On this basis,
adding appropriate anchor plates can provide higher uplift capacity. It is important to give
the top anchor plate’s embedment depth more consideration. When the design’s lateral
load increases, it is advisable to change the geometrical shape of the shaft.
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4.2. Effect of the Inclination Angle

Figure 8 shows the uplift capacity factors of single-helix anchors with three different
inclination angles with a shaft of the same length. Interestingly, the increase in inclination
angle may lead to an increase or decrease in the uplift capacity factor. This may be because
the increase in different inclination angles will lead to changes in the embedment depth
of the bottom and top anchor plates with the same length shaft. The disturbance area
surrounding the anchor plate during installation is also different. If the length of the anchor
is increased and the same embedment depth is adopted, the results may be more regular.
Therefore, due to limited experimental data, the influence of the inclination angle needs
further research.
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4.3. Group Effect

Consistent with conventional deep foundations, one approach to quantifying group
effects on uplift capacity is through finding the group efficiency, which is defined by the
following equation [21]:

η =
Qu

∑ qi
(5)

where η is group efficiency, Qu is the capacity of a grouped helical anchor, and ∑qi is the
sum capacity of the single-helix anchor corresponding to the grouped helical anchor.

The group efficiencies of double-helix anchors and grouped helical anchors are calcu-
lated as shown in Figure 9. When determining the group efficiency of the G1-U, roughly
four S4 tests were used for the calculation.

It can be found from Figure 9 that the group efficiency of double-helix anchors is
greater than 1. This phenomenon is also mentioned by Lutenegger [30]. This indicates
that there is an interaction between single-helix anchors with a spacing of 3D or 4D. This
phenomenon may be related to soil conditions. Compared with two single-helix anchors,
the soil between the double-helix anchors is more mobilized, resulting in an increase in
bearing capacity. Moreover, as the spacing increases, the group efficiency of the double-
helix anchors decreases. That is to say, the mobilized soil decreases with increasing distance.
This phenomenon deserves further study. In addition, it can be found that with the increase
in failure displacement, the efficiency of group anchors continues to decrease.
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From Figure 9, it can be found that the group efficiency of the grouped helical anchor
adopted by the G1 configuration does not exceed 1, especially when using the 5%D failure
criterion, where the group efficiency is only 0.49. However, using the 5%D and 20%D failure
criterion, the efficiency of the grouped helical anchor adopted by the G2 configuration
exceeds 1. In addition, the group efficiencies of G1-L and G2-L are 2.19 and 1.54, respectively,
indicating that both configurations can improve lateral bearing capacity. Therefore, the G2
configuration of the grouped helical anchor is more highly recommended for this design.

5. Conclusions

This field experiment investigated the performance of helical anchors in clay in terms of
uplift and lateral load. The study included 12 single-helix anchors, 4 double-helix anchors,
and 4 grouped helical anchors (in two different configurations). The field technique is
expected to provide a more accurate representation of the overburden stress and installation
circumstances that might potentially arise in a full-scale system. This study examined the
effects of embedment depth, number of anchor plates, spacing between anchor shafts,
choice of failure criterion, and group effect. The following conclusions may be drawn.

The installation torque increases linearly with depth, which can be represented as
T = 0.8042 (kN) × H. Simply increasing the number of anchor plates in the design of single-
helix anchors while keeping the anchor shaft length the same does not result in a higher
uplift and lateral bearing capacity. A suitable inclination angle may enhance the uplift
bearing capability. In this soil condition, the group efficiency of double-helix anchors is
higher than 1, with different failure criteria. As the failure displacement increases, the group
efficiency decreases continuously. However, the maximum group efficiency of grouped
helical anchors is 1.05 with a 20%D failure criterion. The group efficiency values of G1 and
G2 under lateral loads are 2.19 and 1.54, respectively. After comparing the group efficiency
and economy of G1 and G2 grouped helical anchors, we can recommended using the G2
configuration. Choice of failure criterion is crucial. The failure criterion affects the uplift
bearing capacity trend of single-helix anchors with varying anchor plates as well as the
group efficiency trend in grouped helical anchors. However, the failure criterion does not
affect the uplift capacity trend of single-helix anchors with varying embedment depths and
inclination angles.
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