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Abstract: A new type of assembled integral multi-ribbed composite floor system with novel wet joint
and steel sleeve connections, which exhibits satisfactory strength and stiffness, was proposed in the
previous study. To further study the flexural performances of the joints, six groups of specimens, in-
cluding two cast in situ concrete slabs and four composite slabs sized 4700 mm × 1200 mm × 300 mm
and 2450 mm × 1200 mm × 300 mm, were investigated under four-point flexural tests. Four main
influence factors were experimentally studied, i.e., casting methods, joint amounts, shear span lengths,
and steel sleeve layout directions, on the failure modes, crack distributions, and deflection–load
carrying capacity relationship. Test results indicated that the proposed composite slab system could
provide the ultimate bearing capacity lower by 7% than that of the cast in situ concrete slabs, largely
exceeding the code-predicted strength. No strain difference between the steel sleeve connections
and steel rebars indicated good wet joint connection behavior. More hollow-core sections and long
shear spans increased the potential of interfacial splitting cracks, leading to a shorter elastic stage
and lower elastic stiffness. A finite element model was further parametrically conducted to explore
the structural performances. Finite element results also indicate that the precast concrete slab had a
more significant influence on the failure loads than the influences of concrete compressive strength
and lap-splice steel rebar strength. These findings indicate that the proposed composite slab systems
possess a satisfactory performance in the ultimate bearing capacity and deformability. Thus, such an
assembled integral multi-ribbed composite floor system can be widely applied in construction.

Keywords: assembled integral structure; composite slabs; precast slabs; steel sleeve connections;
flexural performances

1. Introduction

Floor systems are horizontal load-bearing components in buildings that carry and
transmit gravity and live loads to the vertical load-bearing members. Especially when
an earthquake occurs, the floor system could effectively distribute the seismic force in
the entire building through the lateral force members [1]. So far, three types of floor
structures have been widely used: cast in situ floor, precast floor with cast in situ concrete
topping, and untopped precast floor. As a labor-saving, environment-friendly, and low-
carbon construction method, the precast concrete (PC) technology shows great potential in
promoting construction efficiency and improving product quality since such a composite
floor system reduces the amount of formwork, wet work, and construction pollution
compared to casting in situ [2–7]. Thus, precast composite floor systems have always been
of interest and widely used in buildings to fully combine the advantages of both cast in
situ construction and prefabricated elements [8–12].

Currently, studies on the development and performance of precast composite systems
have been conducted and evaluated comprehensively. Test results [9,10,13] indicated that
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cast in situ concrete toppings enabled an enhancement of the shear capacity of the precast
concrete slab when the interfacial bond strength was ensured. Additionally, the use of
autoclaved aerated concrete blocks filling into the precast concrete slab was demonstrated
to remarkably reduce the self-weight under the same flexural capacity requirements [14,15].
A new type of discrete connected precast reinforced concrete diaphragm floor system,
comprising the precast flat slabs and slab joint connectors [16], was proposed. Test results
indicated that the load-bearing capacity and stiffness of such a composite system increased
considerably as the hairpin and cover plate hybrid slab joint connectors effectively ensured
their cooperation in transmitting the shear and moment force. In addition, the self-weight
of the floor system accounted for over 40% of the entire structural mass. A reduced
self-weight of the composite slab would decrease the dead load, contributing to a lower
seismic response of the structure, thereby reducing the lower requirement for the bearing
capacities of the beam, column, and shear wall [17,18]. The lightweight composite slab had
an additional advantage in facilitating the hoist and installation during its construction.
Therefore, precast hollow-core and double tee slabs were commonly used [2].

In addition, the joint configurations in the precast concrete slab system played a crucial
role in improving the performance of composite floors. It is demonstrated that a lap-
spliced rebar placed on the top of precast concrete units could provide comparable flexural
performance to cast-in-place concrete slabs [19]. A novel precast concrete slab with crossed
bent-up rebar was proposed and tested on its flexural mechanism by Chen et al. [20]. It
was found that the horizontal component force of the bent-up ends increased the flexural
strength of the joint, whereas the vertical component force of the bent-up ends enhanced the
anchorage performance between the precast units and top-covering concrete. To improve
the ease of construction of large-span floors, Huang et al. [21] developed an assembly
integral floor structure voided with steel mesh boxes. Experimental results supported
that the design had a high bi-directional vertical bearing capacity. Additionally, a test
on lightweight engineering cementitious composite-normal concrete precast slabs with
lattice girders by Deng et al. [22] confirmed that such a composite system reduced its
self-weight and improved the flexural performance. Similarly, the flexural behavior of
steel–concrete ultra-shallow floor beams with precast hollow-core slabs was established and
studied to overcome the shortcomings of the need for heavier steel profiles, maximizing
costs, and higher floor sections with the increase in span. Increasing the thickness of the
concrete topping increased the resistance and stiffness of the composite section, whereas
the reinforcement ratio showed a slight influence on the resistance.

To reduce the self-weight of the floor system and improve the construction efficiency,
a new type of assembled integral two-way multi-ribbed composite floor system was pro-
posed by Zeng et al. [23]. It is shown in Figures 1 and 2 and comprised four main parts:
precast multi-ribbed bottom slab (PRBS), lightweight infills, cast in situ upper slab (CUS),
and joints. Using the PRBS and a lightweight infill cavity could lead to a high hollow ratio
of 43% and an assemble ratio of 87%, respectively, showing a tremendous economic benefit.
The force transfer between the PRBS and CUS was realized by the interfacial friction, stir-
rups, and cast in situ joints. Lightweight infills were used to form the hollow core of the
whole floor slab and increase the capability of maintaining the room temperature and sound
absorption, which were fixed on the precast bottom slab through the positioning rebars.
Steel sleeves connected the lap-splice rebars in the joint to facilitate the construction and
ensure connection behavior. In reference [23], a full-scale static experiment has been carried
out, revealing that the anti-crack property, elastic stiffness, and load-carrying capacity are
all greater than the Chinese design codes and have enough safety redundancy.
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Figure 2. Typical wet joint of the assembled integral multi-ribbed composite floor system.

The mechanical performance of the joint is the key to the assembled integral structures
according to research around the world. The assembled integral two-way multi-ribbed
composite floor system with steel sleeve connections has been validated to have superior
anti-crack strength, elastic stiffness, and load-carrying capacity using full-scale tests [23].
However, such a structure’s performance, including the steel sleeve connection, has not
been understood clearly in the one-way multi-ribbed composite floor system, which has
delayed its wide engineering application. In order to close the gap, six specimens were
tested to consider the influences of span lengths, concrete casting methods, and steel
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sleeve directions on the failure loads, crack distribution, and load-midspan deflection. The
prediction of the ultimate bearing capacity was also compared with the current design codes,
and numerical analysis was further conducted to explore the structural performances.

2. Experimental Program
2.1. Specimen Details and Material Properties

As aforementioned, a full-scale specimen of the proposed assembled integral multi-
ribbed composite floor system sized 9600 mm × 9600 mm has been tested under uniform
area load. The typical forms of the composite joint could be easily identified from the
designed files, as presented in Figure 2. Roughly concluded, the wet joints could be
categorized into four types, which are 2450 mm specimens with one or two joints and
4700 mm specimens with one or two joints.

Six precast composite slabs with steel sleeve connections were fabricated to study
the mechanical performance of one-way precast composite slabs with sleeve connections.
All specimens had the same width of 1200 mm and height of 300 mm. The investigated
parameters are listed as follows: two beam lengths (2450 and 4700 mm), the casting type of
slabs (cast in situ and precast composite slab), the sleeve layout directions (longitudinal
and transverse direction), the number of wet joints (0, 1 and 2), and shear span length
(500 and 1225 mm). The dimensions and details of the specimen are shown in Figure 3a–d
and Table 1. Table 1 lists the specimen ID by the casting method, loading type, joint
amount, beam length, and sleeve directions. For example, the specimen CB-F-0-24-0 refers
to the cast in situ concrete slab of 2450 mm span length without joints and sleeves under a
flexural loading test, whereas specimen PB-FS-2-47-L denotes the precast composite slabs of
4700 mm span length with two joints and longitudinal sleeves under flexural-shear loading.
The longitudinal and transverse directions refer to the beam span and cross-sectional
directions. Specimens CB-F-0-24-0 and CB-FS-0-47-0 were used as the control beams. Each
group had two repeated samples. Note that the specimens CB-F-0-24-0 and CB-FS-0-47-0
had the same configuration as specimens PB-F-1-24-L and PB-FS-2-47-L, except for the
joints and sleeves due to the cast in situ method used.

The steel reinforcements of 8, 16, and 20 mm diameter had an average yielding strength
of 436.4, 451.2, and 420.3 MPa, respectively, whereas their ultimate strengths were tested
for 580.5, 616.6, and 620.1 MPa. Accordingly, the elastic modulus was tested for 213.5, 209.6,
and 217.7 GPa. The 16 mm diameter sleeves had yield and ultimate strengths of 450 and
604 MPa, while the 20 mm diameter sleeves were tested for 431 and 610 MPa, respectively.

The cubic compressive strength and elastic modulus of concrete were 39.5 MPa and
29.6 Gpa, respectively.

Table 1. Details of the tested specimens.

Specimen ID Joint
Amount Dimension/mm Sleeve

Direction
Loading

Type
Casting
Method Duplicate Sd/mm

CB-F-0-24-0 0 2450 - F Cast in situ 2 1250
CB-FS-0-47-0 0 4700 - FS Cast in situ 2 2050
PB-F-1-24-T 1 2450 Transverse F Precast 2 1250
PB-F-1-24-L 1 2450 Longitudinal F Precast 2 1250

PB-FS-2-47-L 2 4700 Longitudinal FS Precast 2 2050
PB-FS-2-47-T 2 4700 Transverse FS Precast 2 2050

Note: F refers to the specimen in flexure, FS indicates the specimen in flexural shear, and Sd refers to the distance
between two loading points.
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2.2. Test Setup and Measuring System

Figure 4a,b shows a schematic diagram of the test loading setup. All specimens were
placed horizontally on a fixed hinge device at the left end and a sliding hinge device at
the right end. As presented in Table 1, the distances between the two loading points are
1250 and 2050 mm, respectively, for the specimens with 2450 and 4700 mm length. Two
spreading steel plates were placed along the slab width direction at two loading points
to transfer the loads from the hydraulic jack to the specimen. The loading process was
conducted following the Chinese standard for test methods of concrete structures [24], in
which, when the major crack width achieved above 1.5 mm or the mid-span deflection
exceeded 1/50 of the span length, the loading was ended. Before the formal loading of
the specimen, the pre-loading to 10 kN and then unloading to 0 kN was conducted to
ensure the function of the measure and loading system. When the specimen was formally
loaded, an increment of 15 kN was applied to the specimen until the midspan deflection of
20 mm, after which the load increment was reduced to 5 kN and maintained for 5 min to
observe the stable values of the strain gauges and deflections, ensuring the safety of the
experimental person.
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To distinguish the differences in the loading transfers and crack propagations between
the cast in situ slab and composite slabs, the strain gauges for the concrete and steel
reinforcements were employed to observe the strain evolutions, especially for the steel
reinforcements and the concrete in the joints. Figure 5a,b shows the strain gauge layout
for the steel reinforcements in the 2450 and 4700 mm length specimens, respectively. In
addition, to observe the structural behavior of the 2450 mm length slabs, four Linear
Variable Displacement Transducers (LVDTs) were placed at two supports, and one LVDT
was used to detect the midspan deflection (also at the joint), as shown in Figure 5c. In
contrast, for the 4700 mm length specimens, two LVDTs were put at two supports, whereas
three LVDTs were located at each joint within the midspan, as presented in Figure 5d.
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Figure 5. Schematic diagram of the measuring points for the tested specimens.

3. Results and Discussion
3.1. Failure Modes and Crack Patterns

Figure 6a–l shows the failure modes, and Figure 7a–l presents the schematic diagram
of crack patterns of all tested specimens. For the cast in situ 2450 mm length specimens,
the flexural-shear failure occurred for specimen CB-F-0-24-0 (Figure 6a,b), with the flexural
cracks on the bottom (Figure 6(a-1,b-1,e-1,f-1,g-1,h-1,i-1,j-1,k-1,l-1)), top (Figure 6(a-2,b-2,e-
2,f-2,g-2,h-2,i-2,j-2,k-2,l-2)) and lateral surface (Figure 6(c,d,e-3,f-3,g-3,h-3,i-3,j-3,k-3,l-3)) of
the concrete slab and diagonal cracks occurring on the shear span of the slabs. At failure,
the concrete within the flexural-shear span was crushed; the major crack width achieved
was up to 10 mm, and the tensile strain in the longitudinal steel reinforcements yielded
up to 2000 µε. In contrast, specimen CB-F-0-47-0 (see Figure 7c,d) cracked earlier than
specimen CB-F-0-24-0 (see Figure 7a,b) at the loading and constant moment regions. With
the increasing load, the transverse cracks along the slab direction gradually occurred at the
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intersection of the rib and web of the beam and penetrated through the whole cross-section.
When the diagonal cracks appeared, a rapid increase in the deflection was observed. The
specimen’s deflection (up to 80 mm) and maximum crack width (up to 15 mm) were
too large to bear further loads. Therefore, no pronounced crushing failure occurred, as
presented in specimen CB-F-0-24-0, indicating that the governed failure was determined by
the structural deformability rather than the ultimate bearing capacity.
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For specimen PB-F-1-24-T, with precast concrete layers and transversely installed
sleeves (see Figure 7e,f), transverse cracks along the slab width direction gradually initiated
at the hollow-core section within the constant moment region and propagated through the
whole cross-section. As the load increased to 105 kN, visible cracks initiated at the interface
between the cast and precast concrete. Compared to the cracks developed earlier, the
interfacial cracks did not propagate along the whole slab width but toward the ribbed slabs.
When the longitudinal steel reinforcements yielded, numerous diagonal cracks formed
near the wet joints on the lateral surface of the slab. The maximum crack width increased
up to 10 mm, eventually resulting in the shear failure of the composite slab. However,
when the sleeves were installed along the longitudinal direction, as shown in specimen
PB-F-1-24-L (see Figure 7g,h), the concrete near the loading point at the bottom surface of
the slab cracked earlier. Then, the flexural cracks continuously formed and opened with
an increasing deflection. At a load of 190 kN, shear failure of the inner embedded cavity
occurred, indicating the control of failure by the weakened wet joint.

When the beam span length increased to 4750 mm for specimen PB-FS-2-47-L (see
Figure 7k,l), the concrete cracks initiated from the bottom surface within the constant
moment region and passed through the entire cross-section rapidly. The joints within two
loading points then cracked and propagated across the slab’s width, and the cross-section
at the intersection between the precast ribbed slab and cast in situ concrete layer began
to crack until 45 kN. Afterward, no new cracks occurred in the constant moment region
while new diagonal cracks developed and accumulated. The loading process ended with
the maximum crack width reaching its limit. In contrast, the elastic stage was shorter when
the sleeves were installed along the slab width direction in specimen PB-FS-2-47-T (see
Figure 7i,j). The crack first occurred at the joint interface between the precast ribbed beam
and the cast in situ concrete layer. The flexural cracks on the bottom surface of the slab
continuously developed while the previous crack at the joint just gradually opened. As
the load increased to 40 kN, the crack occurred at the abruptly changed cross-section and
rapidly crossed through the entire section. Afterward, no new crack appeared within the
constant moment region but occurred at the shear span. The specimen could not bear
further loads with increasing deflections and maximum crack width.

3.2. Moment–Midspan Deflection Relationships

Figure 8 presents the moment–midspan deflection curves of all tested specimens. It is
observed that all curves show three typical stages, including the elastic stage, the concrete
cracking until the yielding of steel reinforcements, and the post-yielding stage. Compared
with the cast in situ specimens CB-F-0-24-0 and CB-F-0-47-0 (see Figure 8a,b), the precast
composite slab had a comparable ultimate moment within a decrease by 7%, except for
a 13% decrease in specimen PB-F-1-24-L (see Figure 8c,d). It indicates that such a precast
composite slab system using the sleeve connections had a good ultimate bearing capacity.
However, note that the sleeve along the longitudinal direction of the slab more significantly
reduced the composite slabs’ ultimate strength relative to that of transversely placed sleeves.
The longitudinal sleeves negatively affected the continuous load transfer of the normal
stress induced by the moment. The joint between the precast slab and cast in situ concrete
was easier to crack, and more cracks developed near the joint, preventing the load from
being transferred to the uncracked parts. In addition, the joint crack caused interfacial slip
between the precast slab and the cast in situ concrete layer. It resulted in an additional
midspan deflection and wider cracks, leading to failure at a smaller ultimate load. Also,
the ductility, defined as the ratio of yielding deflection to the ultimate deflection, was
decreased by 40% and 34%, respectively, compared to the cast in situ specimens of 2450 mm
length, whereas 42% and 27% decreases were observed for the specimens of 4700 mm
length. The smaller reduction indicated that failure caused by a larger shear span-to-depth
ratio (in specimen with 4700 mm length, see Figure 8e,f) had better flexural deformability.
More shear keys in the longer shear span resulted in a smaller shear slip, resulting in
fewer splitting interfacial cracks but more flexural cracks, as validated in Figure 7, which
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increased the ductility. Therefore, the precast composite slab had a lower post-yielding
deformability than the cast in situ slabs.
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3.3. Strains in the Sleeves and Steel Reinforcements

Figure 9 shows the strain evolution in the sleeves and steel reinforcements, the labels
of which are marked in Figure 5. The red and blue lines refer to the yielding strains
of steel reinforcements and steel sleeves, respectively, which were tested for 2000 and
2400 µε. This figure shows no noticeable strain difference between steel reinforcements
and connected sleeves. The sleeves achieved 2000 µε, corresponding to the yielding strain
of steel reinforcements. The maximum strains for specimens CB-F-0-24-0, PB-F-1-24-T,
and PB-F-1-24-L were measured for 3000 µε, 2500 µε, and 4000 µε, which were tested for
3000 µε, 6000 µε, and 6000 µε for specimens CB-F-0-47-0, PB-F-2-47-L, and PB-F-2-47-T. The
larger strain values obtained in the latter specimen indicated that the steel reinforcements
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with sleeves could still ensure the connection strength and deformability, showing a reliable
connection construction, particularly for large deflections in the longer-span slabs.
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4. Evaluation of Ultimate Bearing Capacity

The ultimate bearing capacity of the tested specimens was predicted based on the
Chinese design codes [24], in which the effective compressive flange width was deter-
mined, and the self-weight of the slabs was not considered. Two 16 mm diameter steel
reinforcements were used to carry the longitudinal tensile stress, while the 6 mm diameter
steel reinforcements were provided as the constructional reinforcements. The hollow-core
composite slab was regarded as a wide flange I-shaped section. The flange width in the
compressive zone was calculated using Equation (1). Then, the flexural strength of the
composite slab can be calculated as a rectangular cross-section, shown as the following
Equations (2) and (3):

b = b0 + 12h′f (1)
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M = α1 fcbx(h0 − x/2)+ f ′y A′
s(h0 − α′s

)
(2)

α1 fcbx = fy As − f ′y A′
s (3)

where b0 is the width of the ribbed beam, hf is the flange depth, α1 is the coefficient,
which is set as 1.0 for a compressive strength smaller than 50 MPa, fc is the compressive
strength of the concrete, As and As

′ are the area of the steel reinforcements in the tensile
and compressive zones, respectively, h0 is the effective slab depth, fy and fy′ are the yield-
ing strengths of the tensile and compressive steel reinforcements, respectively, αs

′ is the
resultant compressive force from the steel reinforcements in the compressive zone.

Table 2 lists the comparisons between the test and theoretical values of all specimens.
It is seen that the test-to-prediction results ratio was above 1.91, which largely exceeded
the regulated value of 1.6 in the design code [25]. Thus, the proposed precast composite
slab systems with ribbed slabs and sleeve connections could provide a reliable resistance
satisfying the code requirements.

Table 2. Comparisons between test and calculation results.

Specimen ID CB-F-0-24-0 CB-FS-0-47-0 PB-F-1-24-T PB-F-1-24-L PB-FS-2-47-L PB-FS-2-47-T

Ultimate moment/Mu 111.16 105.46 103.58 96.46 99.98 95.95
Predicted moment/Mc 50.28 50.28 50.28 50.28 50.28 50.28

Mu/Mc 2.21 2.09 2.06 1.92 1.99 1.91

5. Finite Element Analysis of Assembly Integral Floor System
5.1. Finite Element Model

A refined finite element (FE) model was established using the commercial software
ABAQUS 6.14 [26] for a more profound and parametric understanding of the mechanical
properties of the assembly integral floor system with sleeve connections. This model (see
Figure 10) used a three-dimensional eight-node element with reduced integral element
(C3D8R) to simulate the PRBS, CUS, and sleeves. Three-dimensional two-node (T3D2) truss
elements were applied to simulate the steel reinforcement behavior. The structured mesh
method was used for all parts, and 8548, 15,096, 17,774, 13,951, 35,356, and 27,724 elements
were obtained for specimens CB-F-0-24-0, CB-FS-0-47-0, PB-F-1-24-T, PB-F-1-24-L, PB-FS-2-
47-L, and PB-FS-2-47-T, as in the reference of Figiel et al. [27]. The concrete damage plasticity
model modeled the material properties of the concrete in the software. Parameters, i.e., the
density, Poisson’s ratio, dilation angle, eccentricity, biaxial-to-uniaxial compressive strength
ratio of σb0/σc0, the influencing parameters of yielding surfaces Kc, and the viscosity
parameter, were defined as 2450, 0.2, 30, 0.1, 1.16, 0.6667, and 0.005, respectively. The
constitutive laws for steel reinforcements and concrete were adopted as defined in the
Chinese design code [24].
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Figure 10. FE model of the composite slabs.

All steel reinforcements were embedded in the concrete without considering the bond-
slip behavior. The frictional constraint was used to simulate the connection behavior of
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both shear keys and the sleeve connections, in which the normal direction was set as “hard
contact” and the tangential direction was set as “penalty friction” with a coefficient of 0.4.
The loading points, set as reference points, are coupled with the loading surfaces on the
slabs. The boundary conditions for simply supported composite slabs were defined as
a pinned support at the left and sliding support at the right. The general static solution
method is adopted, and the load is applied by automatic increments with a minimum
tolerance for convergence of 10−5 of externally applied loads.

5.2. FE Model Validation and Discussion

The influence of the span length of the composite slabs was not considered herein.
The FE results for the 2450 mm length specimen were considered and validated with
test results as stated earlier from both the crack pattern and load-midspan deflection
curves. Figure 11 compares the crack pattern of specimens PB-F-1-24-T and PB-F-1-24-L,
respectively. The maximum strain region in the contour confirmed the observed crack
locations in the test for PB-F-1-24-T and PB-F-1-24-L. Figure 12 compares load-midspan
deflection relationships of the tested cast in situ and precast composite slabs. It is seen
that the FE-predicted curves agree well with the test curves, especially for the ultimate
bearing capacity. However, note that the ultimate midspan deflection had a large error
with the tested values. This was because the concrete in the tested slabs was not crushed
as simulated in the FE model. The slip of sleeves and cracking behavior along the precast
and cast in situ concrete interface might occur on approaching the failure, which leads
to a large ultimate midspan deflection. Thus, the FE-predicted midspan deflection was
relatively larger than the test values. Overall, the FE model could accurately predict the
load-midspan deflection relationships.
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Figure 11. Comparisons between the test and FE results for the crack evolution.
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To understand the flexural behavior of the proposed composite system, parametric
FE analysis of PB-F-1-24-L was further conducted, as listed in Table 3, including the influ-
ences of concrete compressive strengths, bottom precast ribbed slab tensile strengths, and
diameters of longitudinal tensile reinforcements at the joints and the lap-splice steel rebars.
Figure 13a–c shows the load-midspan deflection curves affected by various parameters.
Figure 13a indicates that, as the compressive strength increased from 30 MPa to 45 MPa,
the ultimate strength increased by 20%. The approximate elastic stiffness and increas-
ing post-cracking stiffness were observed with varying concrete compressive strengths.
This was because increasing the concrete compressive strength positively decreased the
midspan deflection and the cracking propagation under the same load level in the FE model.
Figure 13b shows that, as the tensile strength increased from 1 MPa to 4 MPa, the ultimate
loads increased by 87%. This was due to the fact that larger tensile strength delayed the
crack propagation and increased the effective sectional stiffness, thereby leading to a higher
ultimate load.

Additionally, the ultimate load increased with an increasing diameter of longitudi-
nal and lap-splice steel reinforcements in the joints. When the diameter of longitudinal
reinforcements increased from 16 to 20 mm, and the diameter of the lap-splice steel rein-
forcements increased from 6 to 8 mm, the failure load increased by 24% (see Figure 13c).
The cracking loads and post-cracking stiffness also increased correspondingly. In contrast,
the tensile strength of bottom precast slabs had a more significant influence on the ultimate
loads of the composite slabs than the influences of the concrete compressive strength and
joint connection strengths. It indicates that the tensile strength of precast slabs should be
designed carefully to improve the ultimate bearing capacity of such composite slabs.
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Table 3. Main parameters for the FE analysis.

Group Parameters Values

G-C-30

Concrete compressive strength fc (MPa)

fc = 30
G-C-35 fc = 35
G-C-40 fc = 40
G-C-45 fc = 45

G-T-1

Precast ribbed slab tensile strengths ft (MPa)

ft = 1
G-T-2 ft = 2
G-T-3 ft = 3
G-T-4 ft = 4

G-L6 + 2D16
Diameter of lap-splice steel rebars (L) and

tensile steel reinforcements (D) (mm)

L6 + 2D16
G-L6 + 2D20 L6 + 2D20
G-L8 + 2D16 L8 + 2D16
G-L8 + 2D20 L8 + 2D20
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6. Conclusions

This study experimentally studied the flexural performances of precast composite
floor systems with novel wet joints and steel sleeves. The influences of joint amounts, steel
sleeve directions, casting methods, and shear span-to-depth ratio were considered. Based
on the results of this study, the following conclusions can be drawn:

(1) The precast composite slabs with steel sleeve connections in the joints could provide
an ultimate bearing capacity comparable to the cast in situ concrete slabs. The cracks
at the cast in situ and precast concrete interface and slip along the longitudinal steel
reinforcements led to a smaller cracking load and larger midspan deflection.
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(2) The 2450 mm length composite slabs failed in flexural shear, while the flexural failure
occurred for 4750 mm length composite slabs, characterized by the maximum crack
width. Relative to the cast in situ concrete slabs, the precast composite slab had a
relatively lower flexural capacity and stiffness due to interfacial splitting cracks.

(3) No strain difference in the steel sleeves and longitudinal steel reinforcements was
observed, and no failure occurring at the wet joints indicated that the proposed sleeve
connection ensured reliable load transfer. The sleeve perpendicular to the moment
had a minor influence on the interfacial cracking.

(4) The tested ultimate moment was about 1.9 times the obtained design values calculated
by the Chinese code. FE results indicated the tensile strength in the bottom precast
slabs had a more significant influence on the ultimate bearing capacity than the influ-
ences of concrete compressive strength and wet joint strength when the connection
strength was ensured.
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