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Abstract: Disc buckle steel pipe brackets are widely used in building construction due to the ad-
vantages of its simple structure, large-bearing capacity, rapid assembling and disassembling, and
strong versatility. In complex construction projects, the uncertainties affecting the stability of disc
buckle steel pipe support need to be considered to ensure the safety of disc buckle steel pipe supports.
A surrogate model based on a deep neural network is built and trained to predict the ultimate
load-carrying capacity of a stent. The results of the finite element model calculations are used to
form the sample set of the surrogate model. Then, we combined the computationally efficient DNN
surrogate model with the Monte Carlo method to consider the distribution of the ultimate load
capacity of the disc buckle bracket under the uncertainties of the bracket node pin wedge tightness,
the wall thickness of the steel pipe, and the connection of the connecting wall member. At the same
time, based on the DNN model, the SHapley Additive exPlanations (SHAP) interpretability analysis
method was used to study the degree of influence of various uncertainty factors on the ultimate
bearing capacity of the stent. In practical engineering, the stability analysis of a disc buckle tall
formwork support has shown that a surrogate model based on a deep neural network is efficient in
predicting the buckling characteristic value of the support. The error rate of the prediction is less than
2%. The buckling characteristic values of the bracket vary in the range of 17–25. Among the various
factors that influence the buckling characteristic value of the bracket, the joint wedge tightness has
the greatest impact, followed by the bottom and top wall-connecting parts.

Keywords: disc buckle steel pipe support; uncertainty factor; DNN; buckling characteristic value;
semi-rigid joint

1. Introduction

Steel pipe support is a temporary support structure used to ensure that the shape
and position of the formwork do not change. It is required to bear various loads such as
formwork, newly poured concrete, steel bars, equipment, and workers in construction. Due
to their simple structure, large bearing capacity, rapid disassembly, and strong versatility,
disc buckle steel pipe supports are widely used for their safety and stability.

The disc buckle-type steel pipe bracket joint comprises octagonal plates, fastener
heads, latches, and other components. The structural characteristics of disc buckle steel
pipe support joints lead to different mechanical properties from those of consolidated and
articulated joints. As a typical semi-rigid joint [1–4], the stiffness of the joint will affect
the stability of the steel pipe bracket. Liu et al. [5] obtained the nonlinear function fitted
bearing-capacity node-stiffness curve and the optimal equivalent stiffness of the semi-rigid
joints of the stent by comparing the finite element method and the experimentally measured
bearing capacity of the stent nodes based on the experiments of the simple stent model.
According to Zheng [6], researchers used a combination of a quadratic function and a
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primary function to describe the semi-rigid curve of the support node on the base of a
single-node experiment. Wang et al. [7] used a segmented three-fold function to fit the semi-
rigid joint performance of the support while considering the tightness of the plug wedge
based on the experimental results. For typical support forms, Zhang [8] analyzed the effect
of the interaction behavior between support joints on rotational stiffness by considering
material plasticity and different horizontal bar forces. Also, Pieńko [9] determined the brace
node load-carrying capacity with numerical analysis by considering the two conditions
of the brace material nonlinearity and the interaction between the specific elements. Liu
et al. [5] and Dong [10] developed a basic model for a disc buckle steel pipe support. They
analyzed its load-bearing capacity under full load and single vertical rod conditions using
a finite element model. For the monolithic support, Dong [11] and Chen [12] studied the
ultimate bearing capacity under the influence of material nonlinearity and initial defects
through simulation and experiment. Additionally, they analyzed the effect of step length
and column spacing on the ultimate bearing capacity of the support.

Certain studies have revealed that the maximum load capacity of disc buckle steel
pipe supports can be impacted by the semi-rigid stiffness of joints, material nonlinearity,
and initial defects. Due to the intricate nature of the construction project, the factors that
can influence the safety of disc buckle steel pipe supports often have distinct uncertainties.
For instance, the tightness of the support joint latch is significantly influenced by manual
installation, and the anchoring of different support rods is caused by production or corro-
sion reasons. An analysis of the impact of uncertainties on the load-bearing capacity of disc
buckle steel pipe brackets has not been reported yet. Therefore, it is of utmost importance
to identify the main uncertain factors [13] and study the stability of disc buckle steel pipe
brackets based on statistical analysis to ensure the safety of the tall formwork bracket.

In this paper, the researchers have established a surrogate model based on the analysis
of buckling characteristic values and used the Monte Carlo method combined with a deep
neural network model to quickly analyze the distribution law of the buckling characteristic
value of supports considering various uncertain factors. To measure the degree of influence
of uncertain factors on the buckling characteristic value of the support, the researchers have
used SHAP interpretability analysis. The key monitoring items to ensure the safety of the
support system have been identified through this analysis. The main content of the article
is shown in Figure 1.
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Figure 1. Flowchart.

2. Uncertainty Factors in Disc Buckle Steel Pipe Support

During the actual construction process, there are many uncertainties in the structure,
material, and installation process of the steel pipe support system. It is necessary to deeply
analyze the influence of uncertainty factors on the bearing capacity of steel pipe brackets.
To ensure the safety of the support system, it is crucial to deeply analyze the impact of these
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uncertain factors on the bearing capacity of the steel pipe support. For disc buckle steel
pipe support, some common uncertain factors that need to be considered are the layout of
anchoring, the wedge tightness of disc buckle joints, and the wall thickness of standard,
ledger wall, diagonal brace wall hand jack, and base jack.

Disc buckle-type steel pipe brackets are formed by connecting horizontal and inclined
rods to a disc buckle using rod end joints. Wedge-shaped pins and riser disc connections
are used to form an invariant structural geometry system. As shown in Figure 2, the special
connection mode between the ledger and the standard of the disc buckle steel pipe bracket
results in the stiffness of the connecting joints between the articulated and rigid joints. The
wedging depth between the wedge pin and the standard disc determines the stiffness of
the joint. In actual construction, workers’ non-standard construction will lead to obvious
differences in the stiffness of semi-rigid joints. In the design and calculation of the support,
the rotational stiffness of the semi-rigid joint of the disc buckle steel pipe support is taken
as k = 20 kN·m/rad, according to the technical code for temporary support structures in
construction (JGJ 300-2013) [14]. In order to analyze how the tightness of latch wedges
affects the rotational stiffness of disc buckle joints, a three-fold model of scaffold semi-rigid
joints was proposed by literature [7]. The model, illustrated in Figure 3, includes different
wedge-tightness scenarios and the corresponding values of each section are presented in
Table 1. Wedge tightness is calculated by Equation (1).

Wedge tightness =
di − d0

dm − di
(1)

where, di is wedge depth, d0 is the initial wedge depth, dm is the maximum wedge depth.
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Table 1. Parameters of the segmental folding line model of Φ48 disc joint members with different
wedging tightness [7] (stiffness unit: kN·m/rad).

Wedge Tightness k1 θ1/rad k2 θ2/rad k3 θ3/rad

10% 9.295 0.009 4.708 0.019 1.479 0.148
20% 13.232 0.012 7.122 0.040 2.558 0.144
30% 20.691 0.013 10.373 0.054 3.691 0.125
40% 23.636 0.013 13.077 0.055 4.912 0.123
50% 30.054 0.014 15.418 0.060 5.448 0.115
60% 35.124 0.015 17.199 0.061 5.522 0.112
70% 41.159 0.015 19.471 0.065 5.813 0.107
80% 57.337 0.017 27.843 0.071 6.578 0.104
90% 58.991 0.020 28.405 0.086 7.746 0.100

100% 44.070 0.017 20.068 0.087 5.736 0.109

Due to production quality and loss and other reasons, the thickness of the steel
pipe used in the actual project is also changed within a certain range. Based on the
field investigation data of pipe usage [15], the statistical characteristics of pipe thickness
considered in this paper are shown in Table 2.

Table 2. Statistical characteristics of steel pipe wall thickness.

Uncertainty Factor Distribution Law Mean Value Standard Deviation Coefficient of Variation

Steel pipe wall thickness Normal distribution 0.879 0.085 0.097

The tall support structures of buildings are often equipped with anchoring to improve
their stability against buckling. However, in practical construction, the process of installing
anchoring can be laborious, which sometimes results in the construction unit deviating
from the standard guidelines. As a result, certain layers of anchoring may be missing or
not installed correctly, which can have an impact on the bearing capacity of the support.
This research aims to quantitatively study the effects of the absence of certain anchoring
layers on the support’s bearing capacity.

3. Finite Element Modeling and Bearing Capacity Analysis of Ultra-High Bracket

In this paper, the super high support system of the main body of a large commercial
building is selected as the research object. As shown in Figure 4, the support system adopts
a disc buckle steel pipe support. The overall size is 15.6 m × 6.6 m × 32 m, the distance on
the x-axis is 1.8 m, the distance on the y-axis is 1.5 m, and the lift height is 1.5 m. The red
box in Figure 4c shows the position of the top frame beam of the high support die, and the
bottom of the beam is the encryption area of the support standard, with a spacing of 0.6 m.
The anchoring is arranged at the height of 5.93 m, 11.43 m, 16.93 m, 22.43 m, and 27.93 m to
strengthen the lateral stiffness of the support. According to the technical standard for the
safety of disc lock steel tubular in construction (JGJ 231-2021) [16], a support system with a
height of more than 24 m needs to be specially designed and checked.

The materials and material parameters used for each member of the bracket are shown
in Table 3. Poisson’s ratio of materials is 0.33. Density is 7850 kg/m3. Elastic modulus is
206 GPa.

ANSYS finite element software is used to model and analyze the disc buckle steel
pipe support system. The standard and the ledger are beam elements (Beam188). The
diagonal braces are rod elements (Link180). The connection between the standard is rigid.
The connection between the diagonal brace and the standard is hinged. The connection
between the standard and the ledger is semi-rigid, which is simulated by a spring element
(Combin39), and only the rotating semi-rigidity of the ledger in the vertical plane is
considered. All translational degrees of freedom at the bottom end of the bracket are
constrained. The constraining effect of the bracket anchoring is simplified to the fixed



Buildings 2024, 14, 828 5 of 14

constraint of the anchoring near the end of the standard. The top of the support adopts a
beam bottom support form (Shell181) to connect with the standard and bear the top load.
The beam load is assumed to act uniformly on the beam bottom support formwork. Actual
engineering loads are applied to the top of the model as shown in Figure 5. Surface loads
of 30, 136.3 N/m2, 20, 412.3 N/m2, 20, 412.3 N/m2 are applied to frame beams at the top of
the bracket, and 9468.8 N/m2 is applied to the remaining positions.
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Table 3. Type and material parameters of the rod.

Bar Outside
Diameter/mm

Wall
Thickness/mm Materials Yield

Strength/MPa

Standard 48.3 3.2 Q355 355
Ledger 48.3 2.8 Q235 235

Diagonal brace 42.8 2.8 Q195 195
Hand jack and

Base jack 38.0 5.0 Q355 355

(The standard is a vertical rod with a welding of a connected steel pipe scaffold with a connection plate and a
connecting sleeve. The ledger is a buckle head welded at both ends, and the horizontal rod can be buckled with
the connecting plate on the standard. The diagonal brace is equipped with a buckle head at both ends, which can
be buckled with the connection on the standard. The base jack is a base that can be adjusted at the bottom of the
standard. The head jack is a height support for inserting the top of the standard.)

According to the Technical Code for Temporary Support Structures in Construction
(JGJ 300-2013) [14], the rotation stiffness of semi-rigid joints of disc buckle steel pipe support
is set at k = 20 kN·m/rad. During the eigenvalue buckling analysis of the disc buckle
steel pipe support system, it was found that the first order buckling characteristic value is
23.109. The first order buckling characteristic value refers to the first unstable form under
the influence of external pressure or load in the material or structure. The buckling position
was observed at the bottom of the support and in the middle of its height direction. Due
to the buckling position at the bottom, a certain amount of lateral displacement of the
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standard was observed. However, there was no significant displacement in the top bracket.
According to the code, the buckling characteristic value of the temporary rod system should
be greater than four [17]. The analyzed support met the stability requirements and had a
certain safety margin, as its buckling characteristic value exceeded the required limit. The
corresponding buckling modes are shown in Figure 6.
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4. Surrogate Based on Deep Neural Network Model for Predicting Buckling
Characteristic Value

The buckling characteristic values of the disc buckle steel pipe support system in
Section 2 are obtained under the condition of deterministic parameters. The uncertainty
factors of actual engineering will change the stability of the support system. The Monte
Carlo method is a common method to analyze problems with uncertainty, but its main
drawback is that it requires a large number of calculation results based on the sample.
When analyzing the influence of various uncertain factors on the bearing capacity of the
support, using a finite element method to calculate a large number of samples will lead
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to heavy calculation burden. The neural network has a good nonlinear-mapping ability
and can describe the implicit relationship between the uncertainty factor and the buckling
characteristic value of the bracket. Therefore, a high-precision neural network model can be
trained using the sample set obtained by the finite element method. As an alternative to the
finite element method, the neural network can quickly predict the buckling characteristic
value of the bracket according to the input parameters, which significantly improves the
analysis efficiency of the Monte Carlo method.

Given the better ability to express nonlinear relationships, deep neural networks
(DNN) are used as surrogate models [18–21] for the bearing capacity of brackets. A DNN
consists of one or more fully connected layers, each containing multiple neurons. Each
neuron multiplies the output of the previous layer with a weight matrix and adds a
bias vector, which is then transformed by a nonlinear activation function [22–25]. The
parameters of each layer of the DNN model are shown in Table 4.

Table 4. Parameters of each layer of the neural network.

Block Layer Number of Neurons/Nodes Input Size Output Size Para

Input layer Input 1 (None, 6) (None, 6) -

Hidden layer

Dense 16 (None, 6) (None, 16) 112
Dense 32 (None, 16) (None, 32) 544
Dense 32 (None, 32) (None, 32) 1056
Dense 32 (None, 32) (None, 32) 1056
Dense 16 (None, 32) (None, 16) 528

Output layer Dense 1 (None, 16) (None, 1) 17

4.1. Sample Data

A sample data set for disc buckle steel pipe support was created by considering
six variables that may affect the outcome. These variables included the layout form of
the anchoring, tightness of the wedge, thickness of the standard wall, thickness of the
ledger wall, thickness of the diagonal brace wall, and thickness of the hand jack and
base jack walls. The steel pipe bracket was divided into five layers, and each layer was
provided with anchoring parts. The samples were randomly selected according to uniform
distribution considering six cases, such as intact anchoring and missing anchoring in a
certain layer. Similarly, wedge tightness was divided into 10 working conditions, and
the samples were randomly selected according to uniform distribution. Standard wall
thickness, ledger wall thickness, diagonal brace wall thickness, hand jack, and base jack
wall thickness were sampled according to normal distribution using a PC loop through
the ANSYS APDL command. A total of 3000 arrays of input parameters were generated,
and the corresponding eigenvalue buckling values were labeled. The randomly selected
sample datasets were divided into training and test sets in the ratio of 7:3, which were used
for training and testing the DNN agent model, respectively.

4.2. Model Training and Testing

The loss function of the DNN surrogate model is “mse”, and its expression is shown
in Equation (2). The optimizer uses “Adam”. The learning rate was 0.001. The nonlinear
function is a Relu function. We wrote DNN models in python and used the built-in
functions of the “keras” library to build a DNN surrogate model. The results of the training
set and test set loss function are shown in Figure 7. In Figure 7, the blue line is the training
set loss curve, and the red line is the validation set loss curve. The results of the loss
function of the training set and the verification set become smaller rapidly, and the results
of the loss function stabilize after 100 iterations. The model with 500 iterations is used for
prediction. The comparison between the prediction results of the DNN surrogate model
and the calculated values of the support buckling characteristics is shown in Figure 8. The
gray band is the 2% relative error band, and the red line is the 1% relative error line in
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Figure 8. Most of the prediction results of the DNN surrogate model are within a 1% error
band, and the rest of the data points are also distributed within a 2% error band.

mse =
1
n ∑n

i=1

(
Yi − Ŷi

)2 (2)

where n is the number of training samples, Yi is the true value, Ŷi is the predicted value.
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The DNN surrogate model not only has good prediction accuracy but also reflects
obvious advantages in computational efficiency. Take the calculation time of 1000 sets
of sample data as an example. The finite element calculation took about 12 h, while the
DNN surrogate model using the brace buckling eigenvalue was calculated in less than 10 s.
Therefore, the DNN surrogate model can balance the calculation accuracy and efficiency.
Also, the DNN surrogate model and Monte Carlo method can effectively analyze the degree
of uncertainty in the stability of the stent.

4.3. Model Prediction

Randomly generated input samples of 100,000 sets of uncertainty factors were com-
puted using the trained DNN buckling characteristic value surrogate model. The distribu-
tion of prediction results of scaffold buckling eigenvalues is shown in Figure 9. Under the
influence of six uncertain factors, the brace buckling characteristic value will vary between
17 and 25, with a mean of 21.245 and a standard deviation of 1.9832. When the prediction
results are fitted with a normal distribution, the mean and standard deviation are 21.2453
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and 1.4262 (shown by the red line in Figure 9). The graphic results show that even under the
influence of uncertain factors, the buckling characteristic value of the disc buckle steel pipe
support system is still significantly greater than the stability requirements of the temporary
rod support system in the project (the buckling characteristic value is greater than 4 [17]),
which meets the safety requirements.
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5. Significance Analysis of Random Variables Based on SHAP Method

To further analyze the effect of different values of uncertainty factors on the buckling
characteristic value of the backet, this paper calculates the SHAP contribution degree of the
characteristics of the sample set based on the SHAP framework. SHAP is a method used
to interpret the output of a machine learning model by assigning a SHAP value to each
feature that represents the feature’s contribution to the model’s output.

The SHAP method, proposed by Lundberg and Lee in 2017 [26], can be used to
interpret the output of various network models (including classification and regression
models), especially some black box network models that are difficult to understand. SHAP
is a framework of additive feature interpretation methods that attributes the output of
model results to the Shapley value of each feature. The output of the model result is:

yi = ybase + f (xi, 1) + f (xi, 2) + · · ·+ f (xi, k) (3)

where xi represents the ith sample as xi. k is the kth feature of sample i. yi represents its
predicted value. ybase is the baseline of the entire model (usually equal to the mean of the
target variable of all samples). f (xi, k) is the Shapley value of the kth feature. That is, if
f (xi, k) is greater than 0, it means that the kth feature has a positive enhancement effect on
the model output result. Otherwise, it means that the feature has a negative impact on the
model output result, that is, it will reduce the predicted value.

The core of the SHAP method is to calculate the Shapley value of each feature. The
Shapley value of each feature is calculated as follows:

fi(u) = ∑S⊆V\{i}
|S|!(|V| − |S| − 1)!

|V|! (u(S ∪ {i})− u(S)) (4)

where S is a subset of features in the model. V is the number of features. | |S|!(|V|−|S|−1)!
|V|! is

the weight of subset S. u(S ∪ {i})− u(S) is the marginal contribution of feature i. Equation
(4) shows that the Shapley value of each feature is the mean of the sum of the marginal
contributions of the feature.

The SHAP feature importance graph shows the influence of the input data on the
output data. The greater the influence, the more important the feature. Otherwise, the
feature is not important. This article uses SHAP to interpret the entire dataset globally, and
the results are shown in Figure 10.
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Figure 10. Importance diagram of SHAP features.

Based on the data presented in Figure 10, it is evident that the tightness of the wedge
has the greatest impact on the buckling characteristic value of the bracket. The anchoring
layout and the thickness of the standard and ledger walls also have some influence on the
buckling characteristic value of the bracket. However, the wall thickness of the diagonal
brace, hand jack, and base jack appear to have little effect on the buckling characteristic
value of the bracket.

The general summary map of SHAP describes the importance of features and the
feature effects. Each point shown in the figure represents the SHAP value of the sample
point corresponding to all features, and the color of the points from red to blue indicates the
value of the feature from high to low. The x-axis in the figure represents the SHAP value.
When the SHAP value of the feature is greater than 0, it indicates that it has a positive
impact on the output of the model; when the SHAP value of the feature is less than 0, it
indicates that it harms the output of the model. The y-axis represents features (uncertainty
factors) and where the features are ranked on the y-axis is according to their importance.
Select 1000 groups of data and the relationship between their SHAP values and various
features are shown in Figure 11.
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The importance ranking of the features in Figure 11 is consistent with that of the
features in Figure 10. Figure 11 illustrates the relationship between the SHAP value
distribution form of each feature and the value distribution of each feature itself. It shows
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that the SHAP value of the feature ‘Wedge tightness” is concentrated at 10, and according
to the color bar on the right of the figure, the value of the feature “Wedge tightness” is
equal at each concentration. The distribution law of SHAP values corresponds to the 10
kinds of wedge tightness. The wedge tightness corresponding to the maximum SHAP
value is not the maximum. According to Table 1, there is a positive correlation between
the angular stiffness of the “Wedge Tightness” feature and its corresponding SHAP value.
A higher SHAP value corresponds to a higher joint stiffness and a greater likelihood of
bracket buckling. When the wedge tightness is at 50% or below, the SHAP value is negative.
This means that the bracket’s contribution to the buckling characteristic value is lower than
the average of the total contribution. On the other hand, if the wedge tightness is greater
than 50%, then the opposite is true.

There are six different values for anchoring, but the SHAP value of the feature “An-
choring” is not scattered in six places. Instead, it is only clustered in three places. By
examining the value of the specific sample, we can see that the SHAP point set on the
leftmost part of the anchoring corresponds to the missing anchoring on the first floor
(5.93 m), and the second SHAP point set on the left corresponds to the missing anchoring
on the fifth floor (27.93 m). The SHAP values of these two-point sets are lower than the
average contribution of the total anchoring, which means that the absence of the first or fifth
anchoring significantly reduces the stability of the bracket. It appears that the SHAP values
for the absent anchoring at other positions are comparable, suggesting that the missing
wall parts at those positions have little impact on the bracket’s buckling characteristic value.
This is similar to the performance under normal working conditions without any missing
wall parts. As can be seen from the buckling mode of the bracket shown in Figure 6, the
first layer wall connection is in the buckling position, and the fifth layer wall connection
is at the bottom of the “free end” of the bracket. The buckling characteristic value of the
support is most sensitive to the missing of these two walls connecting parts. Therefore,
in the construction process, construction supervisors should focus on checking the wall
connecting parts in the buckling position of the support.

Take the influence factors and support bearing capacity data of two working conditions
in the data set as examples and visualize the local interpretation of the data under the
SHAP method, as shown in Figure 12.
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Figure 12 describes the influence of each feature on the model’s forecasted output
from the base value ybase to the model’s final output (yi) on a single sample. The value of
each feature is the “force” that increases or decreases the prediction. In the figure, the red
part indicates that the contribution of features has a positive impact on the output of the
model, and the blue part indicates that the contribution of features has a negative impact
on the output of the model. The base value represents the mean value of all samples on
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the model, and f (x) represents the predicted output value of the model for the samples to
be interpreted.

The corresponding working condition in Figure 12a is “the fifth layer (27.93 m) an-
choring missing, 100% wedge tightness, standard wall thickness of 2.84 mm, ledger wall
thickness of 2.42 mm, diagonal brace wall thickness of 2.53 mm”. The influence of wall
thickness on the hand jack and base jack is small and not listed in the figure. According to
Figure 11, joint wedge tightness (100%), standard wall thickness (2.84 mm), and diagonal
brace wall thickness (2.53 mm) all have a positive influence on the increase in the SHAP
value, that is, it is conducive to improving the stability of the bracket. The fifth layer
(27.93 m) is missing the anchoring, and the wall thickness of the ledger (2.42 mm) is less
than the average. The corresponding change in the SHAP value also shows that the value of
the ledger wall thickness harms the bearing capacity of the support. Finally, the predicted
buckling characteristic value of this working condition is 21.90, which is greater than the
average output value of 21.393.

The corresponding working condition in Figure 12b is “the second layer (11.43 m)
anchoring missing, 20% wedge tightness, standard wall thickness 2.90 mm, ledger wall
thickness 2.51 mm, diagonal brace wall thickness 2.60 mm”. The influence of wall thickness
on the hand jack and base jack is small and not listed in the figure. Combined with
Figure 11, the large negative SHAP value corresponding to wedge tightness (20%) is the
main reason for the decrease in the buckling characteristic value of the bracket. Larger
standard wall thickness (2.90 mm), ledger wall thickness (2.51 mm), diagonal brace wall
thickness (2.51 mm), and the second layer (11.43 m) wall parts are missing, then the average
value corresponds to a positive SHAP value, which is conducive to the improvement of the
stability of the bracket. Finally, the predicted buckling characteristic value is 20.52, which is
less than the average output value of 21.393.

6. Conclusions

In this study, six uncertain factors of the disc buckle bracket were selected: missing
anchoring, wedge tightness, standard wall thickness, ledger wall thickness, diagonal brace
wall thickness hand jack, and base jack wall thickness. Using the finite element method,
the buckling eigenvalues of the ultra-high bracket are calculated under the control of the
six uncertain factors. The statistical characteristics of the scaffold buckling eigenvalues
were obtained using the surrogate model and the Monte Carlo method. The SHAP method
was used to analyze the influence of uncertain factors on the buckling characteristics of the
bracket. The overall summary of the SHAP values of each uncertainty factor in the sample
set is drawn. The following conclusions are drawn:

(1) DNN bracket buckling eigenvalue surrogate model has a good ability to predict
bracket buckling eigenvalue, and the predicted results are distributed within a 2%
error band of the actual results.

(2) Under the control of random variables, the buckling characteristic value of an actual
engineering disc buckle steel pipe support as analyzed is distributed between 17 and
25, and the buckling characteristic value of some working conditions is significantly
smaller than that of the support without considering random factors (23.109), but it
still meets the stability requirements of the specification.

(3) The wedge tightness has the greatest influence on the buckling characteristic value
of the support, and the buckling characteristic value of the support is positively
correlated with the stiffness corresponding to the wedge tightness.

(4) The effect of the layout of the anchoring on the buckling characteristic value of the
bracket is less than that of the wedge tightness. In the layout of the anchoring, only
the buckling position and the top “free end” of the anchoring are removed, which has
a great impact on the buckling characteristic value of the bracket, and the removal of
the other positions has little impact on the buckling characteristic value of the bracket.

(5) Standard wall thickness and ledger wall thickness have a certain impact on the buck-
ling characteristic value of the bracket, but the impact is small; the wall thickness of
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the diagonal brace hand jack and the base jack wall have little effect on the buckling
characteristic value of the bracket.
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