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Abstract: The current lack of a high-precision, real-time model applicable to the control optimization
process of heat exchange systems, especially the difficulty in determining the overall heat transfer
coefficient K of heat exchanger operating parameters in real time, is a prominent issue. This paper
mainly unfolds the following work: 1. We propose a dynamic model for the control and optimization
of the heat exchanger operation. By constructing a system to collect real-time operating data on the
flow rates and temperatures on both sides of the heat exchanger, the parameter identification of the
overall heat transfer coefficient K is performed. Subsequently, by combining this with mechanistic
equations, a novel heat exchanger model is established based on the fusion of mechanistic principles
and reinforcement learning. 2. We validate the new model, where the average relative error between
the model’s temperature output values and the actual measured values is below 5%, indicating
the high identification accuracy of the model. Moreover, under variations in the temperature and
flow rate, the overall heat transfer coefficient K demonstrates the correct patterns of change. 3. To
further enhance the model’s identification accuracy, a study on the reward functions in reinforcement
learning is conducted. A model with the Logarithmic Mean Temperature Difference (LMTD) as the
reward function exhibits a high identification accuracy. However, upon comparison, a model using
the Arithmetic Mean Temperature Difference (AMTD) for relative error as the reward function shows
an even higher identification accuracy. The model is validated under various operating conditions,
such as changes in the flow rate on the hot side, demonstrating good scalability and applicability. This
research contributes to providing a high-precision dynamic parameter basis for the precise control
of heat exchange systems, offering significant guidance for the control optimization of actual heat
exchange system operations.

Keywords: heat exchanger; dynamic model; parameter identification; reinforcement learning; DDPG

1. Introduction

Heating, ventilation, and air conditioning (HVAC) systems are widely employed in the
field of construction. Research from the International Energy Agency (IEA) indicates that
the total energy consumption in the global construction sector constitutes approximately
40% of the overall energy consumption [1]. HVAC systems, in turn, contribute to 40–50%
of the total energy consumption in buildings [2]. The operational efficiency of a heating
system is particularly crucial for reducing its energy consumption [3]. Chen et al. [4] specif-
ically designed the heat transfer performance of a gradient thickness TPMS heat exchanger,
achieving a 4.2% improvement in the overall heat transfer efficiency through systematic de-
sign. Samer Ali et al. [5] introduced an innovative algorithm for the heat transfer coefficient
in heat exchangers, significantly aiding in the precision enhancement of energy-efficient
designs for heat exchangers, and consequently, improving the operational efficiencies of
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heat exchange systems. The rapid development of Internet of Things (IoT) technology has
significantly contributed to the improvement in the operational efficiency. Li, W.-T. et al. [6]
employed the IoT to formulate control strategies, enhancing the operational efficiencies
of solar water heating systems (SWHs) and substantially reducing the operational costs
associated with SWHs. Li et al. [7] employed a model predictive control method distinct
from traditional control approaches for district heating (DH) regulation. This approach led
to an improvement in the operational efficiency of DH, resulting in a 7.4% reduction in
system energy consumption. The popularity of reinforcement learning has also contributed
to the development of systems with an improved operational efficiency. Zhuang et al. [8]
utilized the Internet of Things (IoT) and reinforcement learning to enhance the operations
of heating, ventilation, and air conditioning (HVAC) systems. This approach resulted in
energy savings of 17.4%, accompanied by a significant improvement in the operational
efficiency. Jiang et al. [9] applied reinforcement learning techniques for the optimization
of control strategies in HVAC systems. The enhanced operational efficiency led to a 6%
reduction in the operating costs, underscoring the crucial importance of improving the
operational efficiency of heating systems.

To ensure the efficient operation of the heat exchange system, it is imperative to en-
hance the precision of internal dynamic parameters within the system. Achieving this
precision involves the dynamic modeling of the heat exchange system, particularly con-
cerning the accurate representation of its internal parameters. Numerous scholars have
conducted research on dynamic simulation modeling of heat exchangers. One approach
involves modeling based on mechanistic equations [10], utilizing mathematical equations
to describe the internal heat transfer processes within the heat exchanger. Gao et al. [11]
established a novel finned-tube heat exchanger, introducing radiation heat transfer coeffi-
cients and radiative heat absorption coefficients to obtain a new mathematical model. This
method, based on physical and thermodynamic principles, seeks to accurately predict the
system’s performance by constructing a mathematical model of the heat exchanger. The
significance of mechanistic equation modeling lies in providing a profound understanding
of the internal heat transfer mechanisms within the system. It is characterized by a high
precision and strong physical interpretability. However, it comes with a high complexity,
and modeling complex systems using this approach may encounter limitations. Another
approach involves modeling based on a large amount of actual operational data [12], uti-
lizing statistical and data analysis techniques to establish mathematical models through
data fitting. Cao [13] employed a data-driven approach to modeling, addressing issues
related to low data quality. This method places a greater emphasis on acquiring system
performance data through actual observations, making it widely applicable and relatively
straightforward. However, its accuracy is highly dependent on the data quality, and it may
result in a relatively limited understanding of the internal mechanisms of the system. Some
researchers have proposed a combined approach of utilizing both the mechanisms and data
to establish heat exchanger models. Zhong et al. [14] developed a thermodynamic gray-box
model to analyze the coupled characteristics of a self-circulating radiator and an air-source
heat pump. This gray-box model was established through a combination of mechanistic
and data-driven approaches. Lu [15], similarly, proposed a method for identifying the
parameters of a heating system model based on the least squares approach, combining
mechanistic modeling and historical operational data. In this approach, they primarily
utilize historical operational data, which does not ensure real-time information about the
system’s current operation. Therefore, to achieve a precise and real-time description of the
heat transfer parameters in the heat exchanger process [16], this paper proposes a modeling
approach for heat exchangers driven by a synergy of the mechanisms and data. The main
part of the heat exchanger model utilizes mathematical equations based on the principles
of heat transfer. Another component employs real-time operational data for the simultane-
ous identification of the heat transfer parameters. This approach ensures the accuracy of
the heat exchanger model while simultaneously guaranteeing the real-time nature of the
identified heat transfer parameters. However, the most crucial aspect of an accurate heat
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exchanger model lies in the identification of the dynamic parameters reflecting the heat
transfer performance within the heat exchanger.

Parameter identification technology is a technique that combines theoretical models
with the operational data for prediction, and there are various methods for parameter
identification. Parameter identification can be categorized into traditional parameter identi-
fication algorithms and intelligent parameter identification algorithms. The least squares
algorithm, a traditional parameter identification method, is the most fundamental and
widely applied approach in the field of system parameter identification. However, it is
limited to the identification of parameters for linear, steady-state systems. Miao et al. [17]
utilized a gray-box model to establish the identification of outlet temperatures in a plate
heat exchanger. Dong et al. [18] employed a small amount of heat exchanger performance
test data and accurately determined the model coefficients using the least squares method
embedded in MATLAB. This allowed them to obtain the heat transfer efficiency surface.
This identification, based on historical data, lacks real-time capabilities. Zhao et al. [19]
proposed a method for online parameter identification using a least squares recursive
algorithm, enabling real-time, online identification for the diagnosis of abnormal leakage
conditions in heat exchangers. Intelligent parameter identification methods include neural
networks [20,21], particle swarm algorithms [22], genetic algorithms (GA) [23], and rein-
forcement learning (RL) technology. Wang et al. [24] utilized a Radial Basis Function (RBF)
neural network to establish quantitative relationships between system input variables and
model parameters, enabling the identification of unknown parameters and obtaining a
relatively accurate model for the heat exchange energy-saving system. Wan et al. [25]
employed genetic algorithms to identify the thermal circuit model, effectively overcoming
the challenges associated with determining the equivalent thermal circuit parameters for
power devices. Francesco M. Solinas et al. [26] compared three different reinforcement
learning methods for optimizing heating, ventilation, and air conditioning (HVAC) systems.
The results, compared with simulation software like Energy Plus 23.2.0, indicated that the
proposed approach based on online and imitation learning could provide reliable and cost-
effective solutions for HVAC optimization problems. Therefore, reinforcement learning
techniques have made significant progress in their application to parameter identification.

This paper focuses on plate heat exchangers in building heating systems and pro-
poses a novel heat exchanger model based on the synergy of mechanism- and data-driven
approaches. The aim is to achieve real-time dynamic parameter identification for pre-
cise control in the heating system. Based on the new heat exchanger model, a method
for identifying the real-time dynamic parameter values within the heat exchanger using
reinforcement learning techniques is proposed by the authors. Different reinforcement
learning reward functions are introduced to enhance the model’s identification accuracy.
Through this approach, the accuracy and applicability of the new heat exchanger model
are validated. Various sets of actual operational data are employed in the system to verify
the interpretability and physical relevance of the model.

2. Methodology
2.1. Overview

The research methodology consists of three parts: first, the establishment of a new
heat exchanger model based on a combination of mechanistic equations and operational
data; second, the collection of real-time operational data for the heat exchanger; and third,
parameter identification based on reinforcement learning techniques. This paper aims to
create a novel heat exchanger model by integrating mechanistic equations with operational
data and utilizing reinforcement learning to identify the parameters, particularly the total
heat transfer coefficient (K). For the model based on the synergistic drive of mechanistic
equations and operational data in heat exchanger modeling, there are three main compo-
nents: operational data, reinforcement learning, and mechanistic equations. The process
begins by collecting data to obtain the real-time values of the Logarithmic Mean Temper-
ature Difference (LMTD) from the inlet and outlet temperatures and flow rates on both
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sides of the heat exchanger. Next, a portion of the operational data, specifically the inlet
temperatures and flow rates on both sides of the heat exchanger, is incorporated into the
mechanistic equations. Additionally, the reinforcement learning approach is employed to
train and obtain the overall heat transfer coefficient (K) values. This integration allows for
the identification of LMTD values. At this stage, the reinforcement learning agent evaluates
the relative error between the real-time LMTD values and identified LMTD values, using it
as a reward function. Actions that satisfy the reward function conditions, such as specific
values of K, are then output as the identified K values. This completes the establishment of
the new model.

The framework, as illustrated in Figure 1, involves combining the temperature, flow
rates, and other operational data with mechanistic equations primarily based on heat
transfer principles. The application of reinforcement learning facilitates the identification
of the total heat transfer coefficient (K) by integrating the mechanistic equations with the
operational data, resulting in the formation of a new heat exchanger model. The identified
K value is then utilized to regulate the flow rates and temperatures, enabling precise control
and meeting the requirements of modern construction for intelligent heating.
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2.2. Heat Exchanger Modeling Method

Plate heat exchangers, as one of the most widely used types of heat exchangers, operate
based on the principles of heat transfer and convective heat exchange. In these systems,
high-energy hot fluids and low-energy cold fluids undergo non-contact heat exchange.
The high-energy hot fluid loses heat energy through the exchange process, while the low-
energy cold fluid gains heat energy. The heat exchange quantity, which represents the heat
produced by the heat exchange system, can be expressed as:

Q = K·F·∆t (1)

Q represents the heat generated by the heat exchange system; K is the total heat transfer
coefficient of the heat exchanger; F is the heat transfer area; and ∆t is the temperature
difference between the hot and cold fluids. ∆t represents the temperature difference
between the two fluids on both sides of the heat exchanger. Introducing the concept
of Logarithmic Mean Temperature Difference (LMTD) within the framework of energy
conservation, the equation for LMTD is given by:
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LMTD =
(Thot,in − Tcold,out − Thot,out + Tcold,in)

ln (Thot,in−Tcold,out)
(Thot,out−Tcold,in)

(2)

Thot,in and Thot,out represent the temperatures of the input and output fluids on the hot
side of the heat exchanger, while Tcold,in and Tcold,out represent the temperatures of the input
and output fluids on the cold side of the heat exchanger. Combining Equations (1) and (2),
the expression is given by:

Q = K·F· (
Thot,in − Tcold,out − Thot,out + Tcold,in)

ln (Thot,in−Tcold,out)
(Thot,out−Tcold,in)

(3)

Similarly, the heat Q can be described using the heat transfer equation:

Q = U·Cmin·(Thot,in − Tcold,in) (4)

When the states of the cold and hot fluids are known, K or Q can be calculated through
Equation (3). In practical heating operations, the controllable state variables are only Thot,in
and Tcold,in. To achieve a more detailed and transparent heat transfer process, the heat
transfer effectiveness U is introduced, and the equation is given by:

U =
1 − e−NTU·(1−Rc)

1 − Rc·e−NTU·(1−Rc)
(5)

NTU (Number of Transfer Units) is the number of heat transfer units, representing
the fundamental unit of the heat transfer process in the heat exchanger. Rc is the ratio of
the minimum heat capacity to the maximum heat capacity in the cold and hot fluids. The
equations for NTU and Rc are given by:

NTU =
K·F
Cmin

(6)

Rc =
Cmin

Cmax
(7)

Cmax = max(Ccold, Chot) (8)

Cmin = min(Ccold, Chot) (9)

The plate heat exchanger consists of cold fluid and hot fluid. Starting from the basic
equations of energy conservation and mass conservation, the relationship between the heat
capacity and mass flow rates of the hot and cold fluids is considered:

Chot = Cp,hot·Mhot (10)

Ccold = Cp,cold·Mcold (11)

Cp,hot and Cp,cold are the specific heat capacities of the hot and cold fluids, respec-
tively. Chot and Ccold represent the heat capacities of the hot and cold fluids, respectively.
Equations (10) and (11) provide the basic physical properties of the hot and cold fluids.
Equation (7) imposes constraints on the design of the heat exchanger and offers valuable
information for analyzing its heat transfer performance. Combining these equations com-
pletes the mechanistic modeling of the heat exchanger, ensuring stability and precision.
Additionally, it allows for the solution of indirectly observed state variables. The value
of K in Equation (1) is an indirectly observed state variable. To construct a new heat ex-
changer model, real-time and accurate values of K are required. The use of reinforcement
learning facilitates the parameter identification of K, leading to the formation of the new
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heat exchanger model. The application of reinforcement learning relies on the support of
operational data for training and learning, necessitating the collection of such data.

2.3. Heat Exchanger Real-Time Operation Data Collection
2.3.1. Heat Exchanger System Description

The application scenario of the heat exchanger is based on the operation of a traditional
heat exchange system, and the schematic diagram of the heat exchange system is illustrated
in Figure 2. The heat exchanger is a crucial component of the heat exchange system, serving
as the heat exchange unit for the primary and secondary networks. The heat exchanger
adopts a liquid-to-liquid plate heat exchanger, specifically choosing the counter-current
flow design. The two liquids, cold and hot, achieve intermittent heat transfer through the
regularly arranged corrugated channels on the heat exchange plates, accomplishing the
goal of heat exchange. The heat source provides high-temperature water, which enters
the heat exchanger through the primary side inlet. Simultaneously, low-temperature
water from the secondary side enters the heat exchanger through the secondary side inlet.
Heat exchange occurs between the high-temperature water from the primary side and the
low-temperature water from the secondary side through the plate heat exchanger. The high-
temperature water from the primary side, after undergoing heat exchange and becoming
low-temperature water, re-enters the heat source for reheating. The low-temperature water
from the secondary side, having undergone heat exchange and become high-temperature
water, enters the user end for heat dissipation. This forms a cyclic process, constituting the
heat exchange system.
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2.3.2. Heat Exchange System Setup

The heat exchange system mainly includes equipment such as the primary heat source,
electromagnetic valves, flow meters, temperature sensors, plate heat exchangers, primary
network pump, and secondary network pump, with the main parameters and accuracy of
the system set up as shown in Table 1. On both sides of the heat exchanger are the cold
fluid and hot fluid, both consisting of water. The heat source is formed by a heater with
a certain power heating the hot water tank. The known boundaries are set as the cold
fluid inlet temperature, hot fluid inlet temperature, cold fluid flow rate, and hot fluid flow
rate. The inlet temperatures are measured using temperature sensors, and the fluid flow
rates are measured using flow meters, with flow regulation performed using a primary
network pump.
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Table 1. Main parameters and accuracy of system devices.

Device Name
and Manufacturer

Main Parameters and
Precision of the System Setup
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2.3.3. Data Preprocessing

The heat exchange system generates a considerable volume of operational data, often
containing numerous outliers and missing values. To improve the quality of the raw data, it
is essential to preprocess the data through data cleaning. For outlier detection, a univariate
outlier identification method is employed. The main approach involves observing the
distribution of the target variable itself and using statistical methods to identify samples
with a low probability, indicating anomalies. In this paper, the 2-sigma method is employed
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for the outlier data. This is a statistical method used to assess whether data deviates
from the normal range. In this approach, under normal circumstances, 68% of the data
should fall within one standard deviation from the mean, and 95% should be within two
standard deviations. By calculating the mean and standard deviation of the data, it is
possible to identify which values deviate from the normal range. Once the outliers are
identified, options include deleting them, replacing them with the mean, or using other
interpolation methods. Eliminating outliers helps maintain the consistency and accuracy of
the data. First, the mean and standard deviation of the variable are calculated, and then the
upper and lower limits for outliers are determined based on the formula, allowing for the
identification of abnormal samples.

The upper and lower limit formulas for outlier values are as follows:

min = µ − 2σ (12)

max = µ+ 2σ (13)

µ represents the mean; and σ represents the standard deviation. The processing of
outlier values is illustrated using the 2-sigma method for the cold-side flow rate of data set
one. As shown in Figure 3, the upper and lower limits are determined based on the formula,
and the data outside these limits are identified as outliers and subsequently removed, thus
completing the preprocessing of outlier values.
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In thermal exchange systems, sensors may experience data loss due to various reasons,
such as sensor malfunctions, communication failures, or other technical issues resulting
in partially missing data. In such situations, it is necessary to employ suitable methods to
impute or handle the missing continuous values, ensuring the continuity and availability of
the data. For missing values, the moving average method is employed for imputation. Since
operational data represent continuous values of the heat exchange system over consecutive
time intervals, exhibiting a strong continuity and dynamic patterns, the core idea of the
moving average method is that the value of a variable at a specific moment is close to
its values in the adjacent time segment. To fill a missing value, the average of the three
data points before the missing one is used, ensuring the continuity of the data. To handle
missing values, the exit temperature on the hot flow side is taken as an example, as shown
in Figure 4. At 40 s, there was a missing value in the outlet temperature. The missing
value was imputed by taking the average of the preceding three outlet temperatures at that
time, completing the preprocessing of the missing values. This approach maximizes the
improvement of the temperature at the missing point, minimizing the loss of data quality.
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The author selected two sets of data that underwent changes in two operating con-
ditions for preprocessing. Dataset 1 involved a change in the hot fluid flow rate from
0.79 m3/h to 0.69 m3/h and a cold fluid flow rate of 0.18 m3/h. The data collection
period included the period before and after the flow rate change, resulting in a total of
184 data points. Among them, there were 5 missing values and 9 outliers. The outliers were
removed, and the missing values were filled using the moving average method, resulting
in a final dataset of 184 data points. Dataset 2 involved a change in the hot fluid flow rate
from 0.69 m3/h to 0.93 m3/h and a cold fluid flow rate of 0.18 m3/h. The total number of
data points was 434, with 11 missing values and 20 outliers. After data cleaning, the final
dataset consisted of 434 data points.

2.4. Parameter Identification Using Reinforcement Learning
2.4.1. Reinforcement Learning Process

The key components of reinforcement learning are the intelligent agent, environment,
state, action, and reward. During the process of parameter identification for the overall
heat transfer coefficient K, the dynamic parameters of K are considered as the actions of
the intelligent agent. The heat exchanger unit serves as the environment, and key state
parameters from the mechanistic model are treated as the state variables. The relative error
between the model output and experimental output for the Logarithmic Mean Temperature
Difference (LMTD) is utilized to construct the reward function, where smaller relative
errors result in higher rewards. The choice of using temperature differences in the reward
function will be explained in subsequent sections. The Deep Deterministic Policy Gradient
(DDPG) algorithm [27] is employed for the parameter identification process. This allows for
the real-time overall heat transfer coefficient K under the system operation to be obtained by
utilizing the LMTD output from the reinforcement learning approach. Thus, the construc-
tion of the heat exchanger model based on the collaboration between mechanistic equations
and operational data is completed. The reinforcement learning process is illustrated in
Figure 5.

Reinforcement learning is a data-driven training and processing approach. The re-
inforcement learning system we built relies on the Python language and is developed
in the PyCharm environment. The agent serves as the brain of reinforcement learning,
responsible for recording the state variables, receiving real-time reward information, and
adjusting its actions. Through these processes, the agent interacts with the environment.
The environment setup includes describing the mechanistic equations and importing the
operational data, creating an environment specific to the heat exchanger. The environment
provides feedback to the agent on the current state variables (temperature and flow rate).
The agent evaluates the process through a reward function, storing states and actions that
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satisfy the reward function and receiving corresponding immediate rewards. To meet
the criteria, the agent adjusts the actions, re-enters the environment, and continues the
learning process until all operational conditions in the running data are learned. Once
all conditions meet the reward function, the agent outputs all identified values of K and
the maximum cumulative reward value, completing the identification of the overall heat
transfer coefficient K. The overall heat transfer coefficient K is a non-directly observable
state variable in heat transfer parameters and is influenced by various factors. The use of
reinforcement learning technology for parameter identification can effectively address the
issue of dynamically uncertain parameters, especially for physically unobservable state
quantities. This application extends the scope of dynamic parameter identification work to
various fields.
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The reward is calculated through a reward function, and its core is that if the action
results in a smaller error, the reward for that action will be larger. If an action exploration
does not receive a reward, it indicates that the action produces results higher than the set
error’s lower limit, and the agent will continue to explore action values that satisfy the
reward. The specific reward function equation is described as follows:

R = 10(|e| < 0.05) + 5(|e| < 0.1) + 1(|e| < 0.15) (14)

R represents the accumulated reward value, and e represents the relative error between
the model output and the data output of the LMTD. The reward values are assigned as
follows: if the relative error is less than 15%, the reward value is 1; if the relative error is
less than 10%, the reward value is 5; if the relative error is less than 5%, the reward value
is 10. The magnitude of the reward value primarily depends on the design of the reward
function. However, the selection of action values for different operating conditions also
has some impact on the heat exchanger. Therefore, tuning before applying reinforcement
learning for parameter identification is crucial. According to the research experience of this
paper, tuning the hyperparameters not only affects the exploration of high reward values
but also influences the efficiency of exploring high reward values. For instance, when
setting the range of action K, this study selected a set of operating data from the database
for identification. Since the system operation is a dynamic process, it is not possible to
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directly calculate the real-time value of K based on the mechanistic equation. Instead, it can
be assumed that all state variables at a certain moment take on steady-state values, thereby
calculating a reference value for K. This calculated value cannot be used as a standard for
comparing K but only serves as a reference for selecting the action range. Firstly, the data
should be observed, and then, based on Formulas (3) and (4), the maximum and minimum
values corresponding to the observed data can be identified. In these two transient states,
the maximum instantaneous K value and the minimum instantaneous K value can be
obtained. Based on this, the range of parameter identification action values can be selected,
providing strong support for the efficiency and accuracy of the identification.

2.4.2. Markov Decision Process

The fundamental framework of reinforcement learning is the Markov Decision Process
(MDP) [28], used to simulate the stochastic policy and rewards achievable by an agent in an
environment where the system state exhibits the Markov property. The essence of Markov
refers to the fact that the next state of a system model depends only on the current state and
is independent of earlier states. This is also the main reason for identifying the parameters
of the total heat transfer coefficient K for the heat exchanger. By utilizing the Markov
Decision Process, the next action K can be determined based on various directly observable
heat exchange state variables of the current heat exchanger. This helps in judging how the
action K changes, thereby determining all the state variables and actions in the next state,
independent of the previous state. This process completes real-time training on operational
data and can be defined as follows:

P[St+1|St ] = P[St+1|S1, · · · , St] (15)

P represents the state transition probability, S denotes the system state, and t represents
the moment in time.

In the Markov Decision Process (MDP), a policy is the probability distribution of an
agent choosing actions at each state. Due to the uncertainty of the environment, the agent
may opt for a random policy, meaning it selects different actions with varying probabilities
in the same state. This helps strike a balance between exploration and exploitation, en-
abling the agent to better understand the environment and gain more rewards. The agent
obtains rewards through interactions with the environment. A reward is a numerical value
representing the goodness or badness of the agent’s current action. The combination of a
random policy and rewards allows the agent to adjust its strategy based on the received
rewards, aiming to maximize the cumulative rewards. In reinforcement learning, the agent
learns and trains on the operating data using a random policy and implemented rewards,
with the MDP providing the fundamental structure for the operating data.

The key assumption of the MDP is the Markov property, which states that given the
current state and action, the future state depends only on the current state and action,
independent of the previous states and action sequence. The MDP is used to model and
solve reinforcement learning problems, where an agent learns and optimizes its strategy
to maximize long-term rewards. Various reinforcement learning algorithms, such as Q-
learning and deep reinforcement learning, operate within the MDP framework. Similarly,
the DDPG algorithm chosen in this study is also based on the MDP framework.

2.4.3. The Deep Deterministic Policy Gradient (DDPG) Algorithm

Reinforcement learning techniques that can be applied for dynamic parameter identifi-
cation of heat exchangers include algorithms such as Q-Learning [29], Deep Q Network [30],
Actor–Critic [31], etc. Dynamic parameter identification of heat exchangers involves contin-
uous parameter adjustment requirements, forming a high-dimensional state space with
multiple state variables. Moreover, the heat exchanger is part of a nonlinear and highly
complex system. Therefore, this paper opts for the DDPG algorithm.

The DDPG (Deep Deterministic Policy Gradient) is a reinforcement learning algorithm
that falls within the realm of deep reinforcement learning. It is designed to address
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problems in continuous action spaces, combining policy gradient methods with deep
learning techniques. DDPG is effective in learning and optimizing deterministic policies.
The DDPG algorithm was introduced by Lillicrap et al. [32] to address problems involving
continuous action control. It incorporates an Actor–Critic structure and an experience
replay mechanism to enhance its performance; Gu et al. [33] improved the DDPG algorithm
by proposing a method that combines the use of a model to enhance the sample efficiency
in real-world environments; Haarnoja et al. [34] further introduced the Soft Actor–Critic
(SAC) algorithm, building upon the DDPG and incorporating the maximum entropy theory
to enhance its robustness to randomness; Fujimoto et al. [35] reviewed the development of
the DDPG and proposed a method to address function approximation errors, aiming to
further enhance the algorithm’s performance.

The DDPG algorithm consists of five components: the actor network, the critic network,
an experience replay buffer, target actor network, and target critic network. The algorithm
framework is illustrated in Figure 6.
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The actor network is responsible for outputting the actions that should be taken given
a certain state. The input to the policy network consists of various directly observable
state variables in the current heat exchange system, such as parameters like the inlet
temperature and flow rate of the hot fluid, the inlet temperature and flow rate of the cold
fluid, etc. The output is the selection of the corresponding action K within the specified
action range. Specifically, the policy network is represented by a deep neural network,
typically with parameters, comprising fully connected layers and activation functions.
The activation function of the output layer is typically the tanh function, ensuring that
the output lies within the range of the continuous action space. The critic network is
used to estimate the state value of performing a certain action, and this network helps the
policy network learn better action strategies. The input to the Q-value network includes
various state variables of the current heat exchange system and the action K, already
determined by the actor network. However, the output is a scalar variable, representing
the estimated cumulative reward based on the execution of action K. The experience replay
buffer is designed to stabilize training and improve the sample efficiency. At each time
step, the algorithm stores information such as the current state, action, reward, and next
state in the buffer. This allows for the re-use of past experiences during training. During
training, batches of data are randomly sampled from the replay buffer to update both the
policy network and the Q-value network. The target policy network and target Q-value
network are designed to enhance the stability of the algorithm. The parameters of these
two target networks are gradually updated through a process known as soft updates. This
involves smoothly updating the target network parameters by blending them with the
current network parameters. This approach helps reduce oscillations during training and
improves convergence.
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The DDPG algorithm is an extension of the deterministic policy gradient method
introduced by DeepMind, building upon the foundation of deep deterministic policy
gradients. Similar to the DQN algorithm, it employs techniques such as experience replay
and the separate handling of Temporal Difference bias. DDPG combines deep learning
with deterministic policy gradient methods, utilizing neural networks to approximate the
state-value function for the actor and the state-action value function for the critic. The
weight parameter update formula is as follows:

ωt+1 = ωt + αω [rt + γQ(st+1, at+1)− Q(st, at)] (16)

θt+1 = θt + αθ∇µθ(st)∇Q(st, at) (17)

ω represents the critic’s weight parameters; θ represents the actor’s weight parameters;
αω is the learning rate for the critic; αθ is the learning rate for the actor; and the TD (Temporal
Difference) bias is expressed as rt + γQ(st+1, at+1)− Q(st, at). The update steps for the
DDPG algorithm are outlined in Table 2.

Table 2. The update steps for the DDPG algorithm.

Steps Algorithm Update Process

Step 1 Randomly extract state transition data (st, at, rt, st + 1) from the database
Step 2 The actor provides at+ 1 to the critic based on st+1

Step 3 The critic calculates Q (st, at) and Q (st + 1, at + 1) based on (st, at) and (st + 1, at + 1), then computes the TD
(Temporal Difference) error

Step 4 The critic updates the weight parameters based on the TD error
Step 5 The actor updates the weight parameters based on the Q (st, at) provided by the critic

The DDPG algorithm, as a reinforcement learning method suitable for continuous
actions and states, possesses the advantages of the Actor–Critic structure. Therefore,
choosing the DDPG algorithm allows us to better address the nonlinear policy issues
involved in heat exchange systems, where continuous operations and complex state spaces
are prominent.

2.4.4. The Training of Reinforcement Learning

In this approach, training is conducted using a subset of effective data obtained from
two selected sets of operating data. The states include the outlet temperature of the hot
fluid, outlet temperature of the cold fluid, flow rate of the hot fluid, flow rate of the cold
fluid, and Logarithmic Mean Temperature Difference (LMTD). The action is the overall heat
transfer coefficient (K). The heat exchanger model, driven by both the mechanism and data,
is considered as the environment. The reward function is defined by Equation (14). The
choice of using the relative error between the model output LMTD and the operating data
LMTD as the reward function has two reasons. First, identifying the overall heat transfer
coefficient K cannot be compared directly with the operating data, making it difficult
to determine the accuracy of the model’s parameter identification. Second, temperature
differences are comprehensive indicators of direct state quantities. The model explores the
action K to determine the outlet temperatures of the hot and cold fluids, and subsequently
obtains the LMTD value. The identified values of LMTD from the model output with the
calculated values of LMTD from the operational data can be compared to evaluate the
achieved identification accuracy of the training effect. The hyperparameter settings in the
algorithm are shown in Table 3.
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Table 3. Hyperparameter settings.

Parameter Value

Actor learning rate 3 × 10−4

Critic learning rate 3 × 10−3

Training epochs 1000
Discount factor 0.98

Experience replay buffer size 10,000
Neural network hidden dimension 64

Soft update parameter 0.001
Minimum stored experiences in the experience replay buffer 1000

Sample size per extraction 64
Gaussian noise standard deviation 100

3. Results and Discussion
3.1. Real-Time Operation Results of the Heat Exchanger

In this section, the operational state of the system was investigated based on the
real-time operation data collected from the selected heat exchanger. Figure 7 illustrates the
variation in the hot fluid flow rate for Dataset 1, where the flow rate changes from 0.79 m3/h
to 0.69 m3/h while the cold fluid flow rate remains constant at 0.18 m3/h. Following the
flow rate change, a period of fluctuation is observed. This is attributed to minor oscillations
in the primary network pump, with the fluctuation amplitude not exceeding 1% of the
flow rate.
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Figure 7. Variation of hot fluid flow rate in Dataset 1.

Figure 8 depicts the fluctuation in the inlet temperatures for Dataset 1, with the
hot fluid side’s inlet temperature set at 70 ◦C. In Figure 8a, a marginal increase in the
temperatures on the hot fluid side is observed as the flow rate decreases. This phenomenon
is attributed to the composition of the heat source, which comprises a hot water tank and
a heater operating at peak efficiency. Consequently, despite a decrease in the flow rate,
the heater’s efficiency remains constant, leading to an elevation in the temperature of the
hot water tank, and consequently, the inlet temperature on the hot fluid side, where the
temperature is around 71 degrees. Simultaneously, the inlet temperature on the cold fluid
side experiences a corresponding increase, and the temperature is around 52 degrees.
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In Figure 9 for Dataset 1, the variation in outlet temperatures on both sides is depicted.
With a decrease in the flow rate, the total heat remains constant over a short period, leading
to an increase in the temperature difference. Consequently, the outlet temperature on the
hot fluid side decreases. Subsequently, as heat diminishes, the temperature difference
decreases, causing an elevation in the outlet temperature on the hot fluid side. Due to lag,
the outlet temperature on the cold fluid side experiences a delayed response compared to
the changes observed on the hot fluid side during this time interval.
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Figure 10 illustrates the variation in the hot fluid side flow rate for Dataset 2, where
the flow rate changes from 0.69 m³/h to 0.93 m³/h, while the flow rate on the cold fluid
side remains constant at 0.18 m³/h.

Figure 11 depicts the variation in the inlet temperatures for Dataset 2. In the scenario
where the flow rate on the hot fluid side increases, Figure 11a shows a decrease in the inlet
temperature on the hot fluid side, followed by a slow upward trend. This is attributed to the
insufficient power of the heater, which cannot provide high-power heating for an extended
period, leading to a situation where the inlet temperature on the hot fluid side cannot be
maintained at 70 ◦C. Similarly, the inlet temperature on the cold fluid side continues to rise
due to the sustained heating by the heater.

Figure 12 illustrates the variations in outlet temperatures for Dataset 2. The increase in
the flow rate on the hot fluid side results in a significant decrease in the outlet temperature
across the entire hot fluid side pipeline. As the inlet temperature on the hot fluid side rises,
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the outlet temperature on the hot fluid side gradually increases. A similar trend is observed
for the outlet temperature on the cold fluid side.
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3.2. Training Results of the New Model
3.2.1. Dataset Results Analysis

Under the guidance of the real-time operation results of the heat exchanger, reinforce-
ment learning is employed to train the two sets of data based on the new heat exchanger
model. For the first dataset, 184 sets of effective data were trained, achieving a maximum
accumulated reward of 1540. According to the reward function (16), if the relative errors of
all data are less than 0.05, the maximum accumulated reward would be 1840. If all data
have relative errors less than 0.1, a minimum accumulated reward of 920 can be obtained.
The attainment of a maximum reward value of 1540 indicates satisfactory training results
with a high level of precision. This is also the reason for setting the training rounds to 1000.
The quality of the training results depends on the number of training rounds, suggesting
that there is still room for improvement in achieving a higher maximum cumulative reward.

Figure 13 compares the model output results of the reinforcement learning parameter
identification method for Dataset 1 with the real-time operation data. It can be observed
that the LMTD values in both situations are very close, with a minimum difference of
0.85 ◦C. The LMTD remains in a stable fluctuation state before the change in flow rate.
After the flow rate decreases, the LMTD slowly rises and then stabilizes in a fluctuating
state. The results identified by the reinforcement learning method are distributed around
the real-time operation data. The intelligent agent continuously explores by maximizing
the accumulated reward, recording values that satisfy the reward function. Values with a
better exploration than the previous step’s exploration are replaced, and the exploration
amplitude of actions varies, causing the LMTD parameter identification values to fluctuate
continuously. This is a normal exploration path for the agent’s actions. The LMTD is a
comprehensive temperature indicator. From a physical perspective, when the heat fluid
flow rate suddenly decreases within a very short period, due to the thermal inertia of the
temperature, the heat on the heat fluid side remains constant for a short time. After the flow
rate abruptly changes, the outlet temperature of the heat fluid starts to decrease, leading to
an increase in the temperature difference on the heat fluid side. As time passes, the heat
decreases, and the flow stabilizes. Hence, the temperature difference on the heat fluid side
decreases. After the heat stabilizes, the outlet temperature begins to rise, and once the heat
stabilizes, the outlet temperature also stabilizes. Therefore, the LMTD tends to be in a stable
fluctuating state. From this, it can be observed that the new model parameter identification
process has a clear physical significance and interpretability support.
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In order to validate the scalability and applicability of the new model parameter
identification, Dataset 2, which had an increase in the hot-side flow rate, was selected.
Dataset 2 obtained a total of 336 valid data points, achieving a maximum cumulative
reward of 2950. If all valid data points have a relative error less than 0.05, the maximum
cumulative reward would be 3360. From the perspective of identification reward values,
the K values identified through reinforcement learning parameter identification in the new
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heat exchanger model exhibit an extremely high precision. Figure 14 compares the output
results of the reinforcement learning parameter identification method in Dataset 2 with the
real-time operating data. With an increase in the hot fluid flow rate, the LMTD decreases in
the short term, then gradually rises with a slow trend, and finally stabilizes within a small
fluctuation range, continuously oscillating. The sudden increase in the heat flux causes
the hot fluid inlet temperature to not reach the set fixed value, leading to a decrease. This
is also the reason for the short-term decrease in the LMTD. As time progresses, the inlet
temperature will gradually increase to reach the set temperature value, causing the LMTD
to slowly rise. The identified parameter values align with their physical meanings. This
indicates that the model has good scalability and applicability under different real-time
operating data, suitable for all flow rate variation operational data.
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Dataset 2.

The identification results from the two datasets, as indicated by the maximum accu-
mulated reward during training and the figures, demonstrate a high level of accuracy in
the reinforcement learning for this model. The average relative errors were calculated,
resulting in 2.7% for Dataset 1 and 2.9% for Dataset 2. Both training sets exhibit an identifi-
cation accuracy within 5%. This confirms that the new model achieves a high precision in
identifying the parameter K, meeting the accuracy requirements for the precise control of
the K value.

3.2.2. Verification Analysis of Overall Heat Transfer Coefficient K

Using reinforcement learning techniques on the new heat exchanger model, the total
heat transfer coefficient K is subjected to parameter identification. The identified values of
K are then utilized to validate the effectiveness of the dataset, paving the way for the precise
control of the heat exchange system in the subsequent stages. The real-time operational
data are collected before and after the change in the heat flow rate. Therefore, the identified
values of the total heat transfer coefficient K at these two instances are chosen for validation.
Figure 15 illustrates the variation in the identified values of the total heat transfer coefficient
K obtained through model parameter identification when the heat flow rate decreases
in Dataset 1. As the flow rate decreases, the overall heat transfer in the heat exchanger
system decreases, leading to a reduction in the heat transfer capacity of the heat exchanger.
Consequently, the K value also decreases, aligning with the physical interpretation of the
flow rate variation. Figure 16 depicts the increase in the identified values of the total heat
transfer coefficient K in Dataset 2 when the heat flow rate on the hot side increases. In this
scenario, the identified K value increases after training, as the higher flow rate enhances
the heat transfer capacity of the heat exchanger. The accurate identification of the K values
by the model demonstrates its precision, laying the foundation for the precise identification
of dynamic parameters before achieving accurate control in subsequent heat exchanger
system model predictions.
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3.3. Further Exploration of Identification Accuracy Improvement

The new heat exchanger model has already demonstrated a high level of identification
accuracy. However, aiming for further improvement in its identification precision, the
authors introduce a new reward function based on the arithmetic mean temperature
difference (AMTD). In contrast to the previous reinforcement learning, which utilized the
relative error between the model’s output LMTD identification value and the calculated
LMTD value from operational data, the authors investigate the potential enhancement in the
model identification accuracy through the utilization of the AMTD. From the perspective
of the reward function, the selection of parameters in the reward function is directly related
to the operating parameters of the heat exchanger unit. Therefore, we only consider the
parameter selection under temperature and flow rate conditions. From the perspective
of the operating principle of the heat exchanger, the flow rate, as an actively controlled
state variable, cannot be chosen. If only the outlet temperature of one side is selected, the
results are not comprehensive. Therefore, we considered the comprehensive capabilities of
average temperature differences such as the AMTD or LMTD. Thus, a comparative study
was conducted on the AMTD and LMTD. The expression for AMTD is:

AMTD =
Thot,in − Thot,out + Tcold,out − Tcold,in

2
(18)

A comparative analysis of the identification performance under the two reward func-
tions is conducted using standard deviation, relative error, and average relative error
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metrics. Figure 17 represents the standard deviation values of the identification results
and data values for the two training sets. The shaded areas depict the standard devia-
tion between the identification values and the data values, where a smaller shaded area
indicates a smaller standard deviation. The graph indicates that using the relative error
based on the AMTD as the reward function results in a smaller shaded area compared to
using the relative error based on the LMTD as the reward function. From the perspective
of standard deviation, this suggests that the former, relying on the new model, exhibits a
higher identification accuracy than the latter. References [36,37] indicate that reducing the
complexity of the dataset can potentially improve the accuracy of deep learning models. In
future research, we will further consider the impact of data complexity on the model.
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Based on the analysis of the standard deviation, the authors further compare the two
using relative error values, as shown in Figure 18. The relative error ranges for both are
within 10%, and the fluctuation in the relative error is attributed to the same reasons as the
fluctuation in the identification results. To achieve better reward results more quickly, a
relatively large exploration amplitude was set. The identification accuracy already meets
the basic requirements of the heat exchanger. If more stable identification errors are desired,
a longer exploration with a smaller exploration amplitude can be conducted. The results in
the figure indicate that the settling rate near zero values using the AMTD relative error as
the reward function is higher than the settling rate with the other reward function. This
suggests that this reward function is more adaptable to the model than the other. Finally,
both are analyzed based on their average relative error. Using the LMTD relative error
as the reward function results in average relative error values of 2.7% and 2.9%, while
using the AMTD relative error as the reward function yields average relative error values
of 2.26% and 2.64%. The comparative analysis using three numerical methods suggests
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that under the given operating conditions, using the AMTD relative error as the reward
function leads to a higher match with the model, with an average relative error within 5%,
indicating an extremely high identification accuracy.
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The exploration of the model’s identification accuracy has been completed in this
paper. Through the analysis of the training set, the new model demonstrates a clear
physical significance and exhibits good scalability and applicability to different operating
data. The application of reinforcement learning for parameter identification based on the
new model shows a high identification accuracy. Furthermore, the comparison of different
reward functions with the model’s match and identification accuracy has been conducted.
The training results indicate that using the AMTD relative error as the reward function
leads to a higher model match and identification accuracy compared to using the LMTD
relative error as the reward function.

This study conducted parameter identification for the overall heat transfer coefficient
K of plate heat exchangers. Traditional models were unable to identify the real-time K
value of plate heat exchangers in the heat exchange system solely based on the temperature
and flow rate values. We addressed this issue by combining mechanistic modeling with
reinforcement learning. Similarly, it has provided significant assistance in addressing the
lack of high-precision models for control and optimization problems in heat exchange
system operations. The identification of the overall heat transfer coefficient K serves as
one of the indicators for evaluating heat exchanger performance. It is directly related to
various heat exchange performance indicators through equations, such as the thermal
resistance defined by heat dissipation. There exists a certain nonlinear relationship between
the two. By accurately identifying the K value, we can determine the current state’s
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thermal resistance defined by heat dissipation. According to the principle of minimizing
thermal resistance defined by heat dissipation, the lower the thermal resistance defined by
heat dissipation, the higher the operational efficiency of the heat exchange system. This
facilitates optimal control by identifying the most efficient coupling point of the flow rate
and temperature under system operation, enabling equipment regulation. Therefore, the
precise identification of K becomes the implementation basis for the operation and control
of heat exchange systems.

4. Conclusions and Future Work
4.1. Conclusions

A modeling approach based on the collaboration of mechanisms and data for heat
exchangers is proposed. Due to the challenge of obtaining accurate real-time K values in
the heat exchanger, reinforcement learning is introduced for the parameter identification of
the heat transfer coefficient K based on operational data. The accuracy of the model and
the identification precision under different reward functions are compared. The results are
as follows:

1. Under the collaborative mechanism and data driving of the heat exchanger model,
the average relative error of the identified values obtained through parameter iden-
tification is within 5%, demonstrating a high level of identification accuracy. This
heat exchanger modeling approach proves to be highly applicable, and the compar-
isons under various operating conditions reflect the model’s versatility and physical
relevance.

2. Due to the adoption of two temperature differences as reward functions in this paper,
and since the reward function is only related to the temperature values, the control of
the flow rate only considered operating condition changes in the hot-side flow rate.
In the comparison under various operating conditions, using the relative error of the
AMTD as the reward function showed a higher matching degree and identification
accuracy compared to using the relative error of the LMTD as the reward function.

3. Proposing the method of using reinforcement learning for parameter identification of
the real-time heat transfer coefficient K in heat exchanger units, the identified K values
lay the theoretical foundation for the precise control of the heat exchange system.
Moreover, based on these results, model predictive control can be applied to achieve
control optimization of the system operation.

4.2. Future Work

Intelligent heating in the HVAC field has always been an industry goal, with the
key challenges being precise heating and on-demand heating. Identifying the real-time
operating heat transfer coefficient K is just the first step. There is still significant room
for improvement in applying the real-time variation of coefficients to the control of heat
exchange systems. We believe that Model Predictive Control (MPC) is an intelligent
cornerstone in the future of HVAC control. The losses and risks brought about by manual
regulation need to be completely eliminated. The research model on the identification of
K is just a foundation for achieving intelligent HVAC control. The real challenge in the
future of HVAC control is to integrate dynamic model identification with automatic device
regulation based on the system’s state. Currently, only by thoroughly understanding the
theoretical research underpinning the heat transfer mechanism can we make the application
of Model Predictive Control more convenient. This represents both a challenge and an
opportunity in the future of HVAC control strategies.
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