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Abstract: In the construction industry, the construction process of rebar tying is highly dependent
on manual operation, which leads to a wide range of work areas, high labor intensity, and limited
efficiency. Therefore, robot technology for automatic rebar tying has become an inevitable trend in on-
site construction. This study aims to develop a planar rebar-tying robot that can achieve autonomous
navigation, precise positioning, and efficient tying on a plane rebar mesh without boundaries. Our
research covers the overall design of the robot control systems, the selection of key hardware, the
development of software platforms, and the optimization of core algorithms. Specifically, to address
the technical challenges of accurately recognizing the tying position and status, we propose an
innovative two-stage identification method that combines a depth camera and an industrial camera to
obtain image information about the area to be tied. The effectiveness of the planar rebar-tying robot
system, including the recognition method proposed in this study, was verified by experiments on a
rebar mesh demonstration platform. The following application of our robot system in the field of the
Shenyang Hunnan Science and Technology City Phase IV project achieved satisfactory performance.
It is shown that this research has made a unique and significant innovation in the field of automatic
rebar tying.

Keywords: rebar-tying robot; experimental study; automatic rebar tying; control system; deep
learning; machine vision

1. Introduction

In the construction industry, the rebar tying process has traditionally been regarded as
a heavy and labor-intensive task [1,2]. This is even more so when dealing with large-scale
bearing platforms and bridge deck slabs. As shown in Figure 1, the vast working area and
high-intensity labor requirements make the operating environment extremely harsh. This
manual-dependent operation imposes a heavy burden on the workers carrying out the tasks
and poses two serious challenges to projects: (1) the high-intensity and time-consuming
tying process poses a considerable threat to the health of the workers; (2) this inefficient
way of working also slows down the overall progress of the project [3,4]. More critically, as
a key step in almost all large-scale civil construction projects, the progress of rebar tying is
directly related to the completion time of the entire project [5]. The intelligent upgrading of
the construction industry is crucial for future development [6-8], and the implementation
of automated rebar tying is an indispensable and important part of this process [9,10].

In recent years, significant progress has been made in the field of construction rob-
otics [11-13]. Currently, there is little research on automatic rebar-tying robots. These
studies are mainly oriented to two core problems: (1) Traditional robots cannot walk on
the surface of complex planes of steel mesh. (2) They have difficulty identifying rebar
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intersections in complex environments. Momeni et al. [14] simulated the automated manu-
facturing process of rebar cages based on a 3D-BIM model and proposed a path-planning
algorithm for rebar tying. However, this research was conducted in a laboratory using a
stationary robotic arm to place rebar, no research was conducted on rebar tying. In addition,
it was not a mobile robot, which did not address the problem of practical application
on the construction site. Jin et al. [15] designed a crawler-type rebar-tying robot, but the
experiments showed that the robot was prone to displace untied rebar when traveling and
steering in practical tests and, thus, fails to be widely applied. Moreover, there are two
rebar-tying robots available on the market, TyBot and Ironbot, but both need to be used
with gantries [16]. These gantry robots are not only costly and time-consuming to install,
but also complex to operate and require specialized technicians to operate and maintain
them. In addition, these robots can only be used for linear construction projects such as
bridge decks and highways, but not for projects such as a building construction, which
lacks flexibility. In summary, there is a lack of small mobile rebar-tying robots that can be
flexibly applied to a variety of construction projects with a simple operation and low cost.

Figure 1. Rebar of the bridge deck slab.

To address the actual demand for planar rebar tying, we independently developed a
walking robot that can walk on the surface of rebar and designed a new control system for
this type of robot based on the robot operating system (ROS) [17-19] combined with visual
recognition technology. The self-developed rebar-tying robot can realize autonomous
navigation on large-scale bearing platforms and bridge deck slabs without boundary
conditions, the autonomous positioning of the tying of rebar intersection locations, and
the intelligent planning of tying paths. First, based on the ROS system, we designed and
researched the hardware and software of the robot control system. The final program
employed multiple sensors, edge computing devices, and an ROS system to connect the
communications of each node. The central control system and the servo motor used the
Modbus communication protocol and a bus transmission form for communication. This
approach breaks through the traditional use of PLCs or microcontrollers for servo control
and realizes the integrated solution of a sensor-central control system-servo control. The
automatic rebar-tying robot system recognizes the spatial position of the rebar intersection
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point through machine vision, and the tying module completes the tying, moves to the next
rebar intersection point according to the set path, and continues the tying operation.

The accurate visual recognition of rebar intersections is one of the key technologies for
rebar tying. Wang et al. [20] proposed a rebar intersection point detection algorithm based
on Mask R-CNN. Moreover, it also combines with the BIM software (Revit and Lumion 11)
and introduces a dataset enhancement method, which significantly reduces the difficulty of
deep neural network training and effectively improves the accuracy of recognition. Dong
et al. [21] proposed a YOLOv4-based identification and localization method for rebar tying,
which achieves the effective identification of the location of tying points, but this method
does not further judge the tying status of the rebar. It is worth noting that these methods
are mainly validated on a demonstration platform under laboratory conditions; they do
not use construction site rebar pictures for model training or validation and, thus, have not
yet fully taken into account the complex environment and variable factors of the actual
construction site; therefore, the proposed model may be overfitted and difficult to apply
in practice.

To reduce the difficulty of identifying rebar intersections, reduce the damage of the
tying head due to inaccurate identification, and achieve the long-term stable operation of
the robot in the field, we propose a two-stage identification method that can be applied
to the rebar-tying robot for the fast and accurate identification of the tying position and
state. The pictures of the area to be tied are obtained by the fusion operation of a depth
camera and a high-precision industrial camera, and the tying efficiency and accuracy are
optimized through the coordination of the two cameras. In the master module, a target
detection module based on deep learning and an outlier judgment module based on a
clustering algorithm is designed. The convolutional neural network model YOLOvVS5 [22],
which has been widely used in the task of target detection, is chosen for the target detection
module. YOLOV5 can directly determine the location of the rebar intersection position
and determine the tying status of the rebar-tying robot. The overall system architecture
diagram for this paper is shown in Figure 2.
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Figure 2. The overall system architecture diagram for this paper.

The principal contributions of this paper are summarized as follows. First, this paper
details the design and implementation of a planar rebar-tying robot that can walk on the
surface of rebar, and introduces a new control system for this robot. It addresses the gap
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of small mobile rebar-tying robots that can be flexibly applied to a variety of construction
projects with a simple operation. Second, this paper introduces an innovative two-stage
identification method that combines a depth camera and an industrial camera to accurately
recognize the tying position and status. This method overcomes a key technical bottleneck
in the automation of the rebar-tying process. Third, the effectiveness of the planar rebar-
tying robot system and its recognition method has been fully verified on a rebar mesh
demonstration platform and has been practically applied in a real-world construction
project. Therefore, this research has made a unique and significant innovation in the
field of automatic rebar tying. The outline of this paper is as follows: Section 2 presents
an overview of the robot control system scheme design. In Section 3, the robot target
recognition algorithm for navigation and tying is described and the results are validated
experimentally on the demonstration platform site in Section 4. In Section 5, we discuss the
idea in more depth. Finally, Section 6 summarizes the paper and presents and discusses
further future research directions.

2. Robot Control System Scheme Design

The developed planar rebar-tying robot is shown in Figure 3. The robot is oriented
toward planar rebar tying in the outdoor environment, and the robot can recognize the
location of the rebar intersection and the state of rebar tying independently, complete
automatic tying according to the recognized information, and move to the next area for
tying after the tying is completed with an autonomous planning path. The robot control
system needs to consider both accuracy and speed; that is, it needs to be based on the
machine’s vision to realize the accurate recognition of the state and position of the rebar
tying intersection, as well as the fast response and accurate execution of the tying and
walking mechanism.

Depth Camer

Sensing System

Figure 3. Photograph of the planar rebar-tying robot.
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2.1. Hardware Design

The hardware composition of the control system includes the sensing module, master
module, power supply module, and drive module. The sensing module consists of a depth
camera and an industrial camera and is responsible for transmitting the collected scene
information to the master module. The depth camera can increase the distance information
compared to the traditional camera. It is installed at the highest point of the whole robot and
is equipped with a two-axis pan tilt zoom (PTZ), which is responsible for robot navigation
and tying path planning; the industrial camera features high precision and is installed in
the vicinity of the tying head, which can improve the recognition accuracy. Our rebar-tying
robot system requires the utilization of both of the cameras. The master module adopts a
high-computing power edge computing device, which makes decisions on path planning,
autonomous positioning, and autonomous tying according to the type of task and then
sends commands to different motor drives. The tying drive employs a 24 V 100 W servo
motor, with a rated torque of 0.32 Nm, equipped with 1:7 planetary gearboxes, with a
control torque of 2.24 Nm. The walking drive employs a 48 V 400 W servo motor, with a
rated torque of 1.27 Nm, equipped with 1:50 planetary gearboxes, with a control torque of
63.5 Nm. The power module employs a lithium battery with a high energy density and a
voltage of 48 V. The specific parameters are shown in Table 1.

Table 1. Hardware parameters.

Name Parameters
Depth camera Intel RealSense D455 Structured Light Camera
Industrial camera Hikvision MV-CH120-10UC Industrial Camera
Camera lens Computar v0828-MPY 8 mm
Master module NVIDIA Jetson Xavier NX
Tying head servo motor TODE SDGA-01C12PD 24 V 100 W servo motor
Walking servo moto TODE SDGA-04C11PD 48 V 400 W servo motor
Relay JY-DAMO0888 8DO 8DI relay
Switch Mode Power Supply MEANWELL DDR-30L-5/DDR-120C-12/DDR-120C-24
Battery 32AH 48 V 15-cell lithium iron phosphate battery

The drive module consists of a servo motor and servo drive, in which the servo
drive adopts the CANopen and Modbus absolute servo drive, adopts the communication
control mode, and is controlled by the master module through the DB9 interface with
the R5485 protocol for bus communication. The master module sends and receives the
serial port signals via a Python series and sends hexadecimal commands to the servo
drive according to its Modbus dictionary, which directly controls the servo motor. The
communication between the various modules of this robot system is shown in Figure 4.
The servo motor uses RS485 bus communication, and the rest of the sensors use USB and
Ethernet communication.

2.2. Software Design

The software control module of the robot system in this paper is developed with a
Linux system based on Python. The main role of the software control module is to realize
mutual communication among system modules, display key information, and analyze the
data under the robot operating system (ROS). As the most widely used open-source robot
software platform, the ROS integrates a large number of tools, libraries, and protocols to
simplify the control of the robot and greatly improve the efficiency of robot development.
The main tasks of the planar rebar-tying robot include the following three steps: (1) the
robot can autonomously recognize the rebar intersection point and the rebar tying state;
(2) the robot can complete the automatic tying according to the recognized intersection point
information; and (3) the robot can autonomously navigate and plan the tying path. The
control system software design is divided into the following three layers: the perception
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layer, the decision layer, and the execution layer. The whole system software design

architecture is shown in Figure 5.

Depth camera Industrial camera

Master module

rs485

Tying hed
servo driver 1

Servo motor 1

Tying head Tying head
servo driver 2 servo driver 3 servo driver 1 servo driver 2

Servo motor 2 Servo motor 3 Servo motor 4 Servo motor 5
Figure 4. Communication between the hardware modules of the robot.

The control logic of walking and tying tasks is the core of the robot’s control. Figure 6
shows the flow chart of the robot detection, walking, and tying control logic designed in
this work, and Algorithm 1 shows the corresponding pseudocode. Large-scale bearing
platforms and bridge deck slabs are characterized by a large area, and it is impossible to
perceive the boundary state; therefore, in the execution of the walking task, the perception
layer adjusts the field of view of the depth camera through the PTZ, and the depth camera
obtains information about the number of rebar intersections in the field of view and sends
the results to the decision layer. The decision layer is responsible for the planning and
coordination of the walking behavior of the robot and uses the ‘master and navigation
program’ to process the received information and control the execution layer. The execution
layer includes the control of the PZT and the walking mechanism, which are controlled by
the ‘PZT control program” and the “walking motor control program’, respectively.
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Algorithm 1 Control Algorithms for the Robot’s Detection, Walking, and Tying Tasks

Robot Initialization:
Number of steps to the right direction: M = 0
PTZ forward /backward directional pointer: A =1 (forward)
PTZ left/right directional pointer: B =1 (right)
Threshold for intersections in the field of view (FOV): thresh = 10
Robot execution signal: Active = True
Robot execution:
while (Active=True) do
Detecting the number of intersections in FOV of A-direction: N1
if N1 > thresh do
Walking one step along A-direction
Completing tying task within FOV via dual-cam visual inspection (VIS)
else do
Detecting the number of intersections in FOV of B-direction: N2
if N2 > thresh do
Walking one step along B-direction
PTZ forward /backward directional pointer: A = —A
Completing tying task within FOV via dual-cam visual inspection (VIS)
if B=1do
Number of steps to the right direction: M =M + 1
end if
else do
ifB=1do
PTZ left/right directional pointer: B = —B
Walking M steps along the B-direction
PTZ forward /backward directional pointer: A = —A

else do
Robot execution signal: Active = False
end if
end if
end if
end
Perception layer
dual-camera visual
detection program
Number of Intersection points Detection results
P Start tying signal L
Decision layer master and navigation data buffer and position fine-

program " Execution result tuning progranm

PTZ rotation information

Walking movement information Rebar intersection coordinates

Execution l 3
layer

walking control tying control
PZT control program :
program program

Figure 5. Robot software design architecture.



Buildings 2024, 14, 838

8 of 20

Number of steps to the right M =0

i

PTZ pointerl: A

‘ default A=1 (forward)

3

PTZ pointer2: B

default B=1 (right)
|

Forward

)
Detecting the number of
intersections in FOV of
A-direction: N

N > Thresh ?
default thresh=10
No

o Walking one step

along A-direction

VIS

Completing tying task
within FOV via dual-cam

|

N
‘—\ Yes ©
Yes

™y
by

¥
Detecting the number of
intersections in FOV of [ ]
B-direction: N Left

Right

Yes

Z
v
[
| .

No | Backward

» Walking one step along B-
direction

e PTZ pointer]l: A=—A

e Record the step to right
M=M+1

- l e PTZ pointer2: B=—B
o V\lla]ku];gdgne c:itep g ZIVa]kmg Il;/l step Walking to the left
along B-direction ong -B-direction : i
e PTZ pointer]l: A=—A e PTZ pointerl: A=—A : ‘é\zalltﬂng to the I‘lght
l ar

'

End

Completing tying task
within FOV via dual-cam

VIS

Completing tying task
within FOV via dual-cam
VIS

|

Completing a walk
T

End

(@) (b)

Figure 6. Robot control logic flowchart. (a) Schematic diagram of the navigation details; (b) Schematic
diagram of the walking path.

3. Robot Target Recognition Algorithm

Since each rebar intersection is less than 32 x 32 pixels in the image, this type of
intersection is a type of small target detection problem with a low resolution and lim-
ited pixels. This paper proposes a two-stage recognition method that can be applied to
rebar-tying robots for the fast and accurate determination of the tying position and state.
A picture of the area to be tied is acquired by the fusion operation of a depth camera
and a high-precision industrial camera. In addition, the method integrates deep neural
networks and clustering algorithms to further improve the recognition accuracy of rebar
tying intersections.

3.1. Two-Stage Identification Method

The tying control flowchart based on the dual-camera visual detection is shown in
Figure 7. When performing the tying task, the perception layer obtains the location and
state information of the rebar intersection in the area to be tied through the ‘dual-camera
visual detection program” and sends the results to the decision layer; the decision layer
is responsible for planning and coordinating the tying behavior of the robot. It uses the
information obtained by the ‘master and navigation program’ to process the information
and then combines the ‘data buffer node and position fine-tuning program’ to control the
execution module.
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Depth camera acquires the
image of the area to be tied

First stage

YOLOVS5 detects all Clustering algorithm rejects outliers Plan the tying path and move it
intersection positions and counts N points to be tied to the vicinity of the tying point

Already tied

Second stage

YOLOV5 detects intersection
position and status

Industrial camera acquires the

Need tied image of the point to be tied

Figure 7. Flowchart of tying control based on dual-camera visual detection.

Once the automatic tying process begins, the total number of rebar intersections and
the corresponding coordinate information, which are ultimately detected by the ‘dual-
camera visual detection program’, are continuously sent via ROS topic communication.
The visual detection program is executed in two stages. The first stage is based on the
depth camera which obtains the image of the area to be tied. The trained YOLOvVS5 deep
neural network model is used to identify the location of all rebar intersections in the field
of view of the depth camera. The clustering algorithm rejects outliers and counts all the
points to be tied every ten frames. After the patient receives the message to start tying, the
detection result is sent. The “tying control program’ receives the coordinates and executes
the movement to the top of the tying point.

The second stage is as follows: For each intersection point to be tied, first, a high-
precision industrial camera fixed on the tying head is used to collect real-time images near
the target point. Based on the same well-trained YOLOvV5 deep neural network, the exact
location of the target rebar intersection point and the tying status are identified. If the
intersection point is not tied, the ‘data buffer and position fine-tuning program’ is used to
fine-tune the coordinates in real time. After accurately converting the obtained coordinates,
the system is resent to the ‘tying control program’, enabling the tying head to complete the
tying process with a precision of up to 1 mm or less. If the status of the intersection point is
tied, then this point is skipped.

When all the points counted by the clustering algorithm as to be tied are tied, the

‘master and navigation program’ receives this message, controls the depth camera on the

PTZ to rotate to the forward direction for navigation identification, sends the walking
mechanism’s movement message to the ‘tying control program’” after identification, and
repeats this process to complete all the automatic tying tasks in the plane.

3.2. YOLOu5 Algorithm

The core idea of the YOLOV5 algorithm is to take the whole map as the input and
divide it into several grids, combining the two steps of target determination and target
recognition into one. In other words, it directly gives the location of the prediction box and
the category to which the prediction box belongs in the output layer, which is suitable for
the task of target detection at rebar intersection points. Compared with two-stage target
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detection algorithms such as the RCNN [23,24], YOLOVS5 has a faster operation speed and
can directly detect rebar tying intersections and obstacles at construction sites. The image
from the high-precision industrial camera can replace the image segmented by the Generate
Region Proposals in the two-stage target detection method. Therefore, YOLOVS is selected
as the benchmark model for this method. The YOLOvVS5 network consists of four parts: the
input side, the backbone network, the neck network, and the output side.

The main functions of the input side are dataset enhancement and adjusting the
pixel size of the rebar intersection points for images from different sources. The backbone
network includes the Focus structure, the Residual module, and the SPP layer. The Focus
structure first performs the slicing operation on the input image, and the subsequent
Residual module implements multiscale feature extraction and feature transformation. SPP
is the abbreviation for spatial pyramid pooling, which can further solve the problem of
multiscale pixels at rebar intersections. The neck network consists of the Residual module,
up-sampling, and multichannel information fusion operation. The purpose is to fuse the
extracted semantic features with the positional features and to fuse the features of the
backbone layer with those of the detection layer, which can enable the model to obtain
richer feature information; the output side, also known as the head network, is used to
output the prediction results.

YOLOVS5 developers provide several versions, and the mainstream versions are s, m, 1,
and x. In sequential order, the number of Residual modules in the network is increasing, the
feature extraction and fusion ability is increasing, and the detection accuracy is improving;
however, the corresponding time spent is also increasing. In addition, several studies have
proposed improved algorithms with increased accuracy and speed based on the YOLOv5
architecture, including YOLOv5-P6 [25], LSK-YOLOVS5 [26], and Ghost-YOLOVS [27].

3.3. Clustering Algorithm

The density-based clustering algorithm (DBSCAN) [28] defines a cluster as the largest
set of densely connected points. It can classify regions with sufficient density into clusters
and find clusters of arbitrary shape in noisy spatial datasets. The DBSCAN algorithm
categorizes data points into three classes: core points, boundary points, and noise points.

For a sample p belonging to a certain dataset D, all the sample points within its radius
Eps form a set called the Eps-neighborhood NEys (p) of p, defined as shown in Equation (1),
where g represents the points in dataset D that satisfy the condition where the set of points
g whose distance from p is less than or equal to the radius Eps, which is the neighborhood
NEps (p) of point p.

Neps(p) = {q € D|dist(p,q) < Eps} (1)

(1) Core point: if the number of samples contained within the Eps neighborhood of
sample c is greater than or equal to MinPts, the object is considered a core point. The set
of core points is defined as shown in Equation (2), where p(Ngps(c)) denotes the neighbor-
hood density of sample point c, that is, the number of samples contained within the Eps
neighborhood of sample c.

Xc = {c € D|p(Ngps(c)) > MinPts} 2)

(2) Boundary point: if the Eps neighborhood of sample b contains fewer samples than
MinPts but sample b falls within the neighborhood of core point ¢, then the object is a
boundary point. The set of boundary points is defined as shown in Equation (3):

Xp = {b € Ngps(c)|c € Xc, p(NEps (b)) < MinPts } (3)

(3) Noise point: if sample a is neither a core point nor a boundary point, the object is a
noise point. The set of noise points is defined as shown in Equation (4).

Xo={a€Dla¢ Xc,a¢ Xy} (4)
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The DBSCAN algorithm can have one or more core points inside the cluster. If there is
only one core point, all the other noncore points in the cluster are in the Eps neighborhood
of this core point. If there is more than one core point, then any core point in the cluster
must have one other core point in its Eps neighborhood; otherwise, the two core points are
not density-reachable. The set of all samples in the Eps neighborhood of these core points
formed a DBSCAN clustering cluster.

3.4. Data Collection and Evaluation Metrics Overview

To verify the accuracy of the rebar-typing robot in terms of the control system and
target recognition algorithm, a 6 m x 8 m rebar mesh demonstration platform was con-
structed at the experimental site, with rebar spacings varying from 20 cm x 20 cm to
15 cm x 15 ¢m, and the rebar intersection points were manually tied at random locations.

3.4.1. Data Collection

The data are collected from the experimental site and the floor, bearing platform, and
bridge deck rebar photographs of 15 housing and bridge projects under construction by
the China Railway Nine Bureau Group Limited. The experimental site was photographed
by a D455 depth camera and an MV-CH120-10UC industrial camera. The MV-CH120-10UC
industrial camera is perpendicular to the rebar surface with a photographic distance of
approximately 50 cm, and there are approximately 15~25 rebar intersections in the field of
view. Moreover, the diversity and generalizability of the dataset are enhanced by randomly
changing the rebar position and adjusting the opening and closing of the shutters to change
the indoor lighting conditions. A total of 1338 images were taken, and the images were
labeled with the Labellmg labeling tool. An number of 50 images were selected as the test
set. The remaining data were randomly selected with 80% being for the training set and
20% for the validation set.

3.4.2. Evaluation Metrics

To comprehensively evaluate the performance of the above models, the performance
of the following five performance metrics is observed, including the Precision, Recall, mean
Average Precision (mAP@0.5, mAP@0.5:0.95), and time required to detect an image. Where
the definitions of Precision, Recall, and mAP are shown in Equations (5)—(7):

.. TP
Precision = TP+ EP 5)
TP
Recﬂll = m (6)
1 1 1
mAP = 5 </ P(R)dR +/ P*(R*)dR*) )
0 0

Precision (P) is the ratio of the number of samples correctly identified by the model
as belonging to the positive class (true positives, TP) to the total number of samples
identified by the model as positive (including both true positives, TP, and false positives,
FP). Recall (R) represents the ratio of the number of samples correctly identified by the
model as belonging to the positive class (TP) to the total number of samples that actually
belong to the positive class (including both true positives, TP, and false negatives, FN).
The mean Average Precision (mAP) is obtained by averaging the average precision (AP)
of all classes (both positive and negative). AP is the average of the precision at different
Recall levels, which can be obtained by calculating the area under the P-R curve. mAP@0.5
denotes the average precision of the two classes (positive and negative) at the IoU threshold
of 0.5. mAP@0.5:0.95 denotes the mAP for different IoU thresholds (from 0.5 to 0.95 in
intervals of 0.05), where IoU represents the ratio of the intersection area of the prediction
frame with the calibration frame to the concatenation area of the prediction frame with the
calibration frame.
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4. Results
4.1. YOLOvu5 Model Training

The training environment used Windows 10, Python 3.8, and the deep learning frame-
work PyTorch 1.12. GPU model NVIDIA RTX3090, CUDA version 11.3.1. The network
parameters were set to epochs = 3000 and a batch size = 8. The four models YOLOVS5,
YOLOV5-P6, LSK-YOLOVS5, and Ghost-YOLOVS are trained with the four depth parameters,
s, m, 1, and x, respectively. The evaluation performance metrics for the validation set of
different models are shown in Table 2.

Table 2. Comparison of the performance metrics of different models.

Model Size Precision Recall mAP@0.5 mAP@0.5:0.95 Time/img (ms)
small 0912 0.969 0.956 0.581 275
medium 0923  0.950 0.956 0.587 32.7
YOLOVS large 0920 0957  0.962 0.591 37
xlarge 0915 0957 0959 0.596 72.9
small 0903 0963 0.964 0.575 30.1
medium 0924 0974 0.963 0.604 342
YOLOVE-P6 1 ppe 0932 0962 0.964 0.609 469

slarge 0922 0.979 0.971 0.61 78

small 0934 0919 0.958 0.582 28.1
LSK- medium 0915 0974 0.961 0.587 329
YOLOVS large 0935  0.956 0.962 0.598 457
xlarge 0926 0.949 0.955 0.598 74.6
small 0913 0943 0.955 0.549 258
Ghost-  medium 0921 0941 0.963 0.551 28.8
YOLOVS large 0932 0919 0.954 0.554 35.8
xlarge 0939 0937 0956 0.558 459

To visually represent the recognition accuracy performance of the different models,
we computed the harmonic average of the Precision, Recall, and mAP@0.5 for the different
versions of each model presented in Table 2. These results are shown in Figure 8. It can be
observed that the YOLOv5-P6 model outperforms the other three models.

0.96
0.9517
0931 0.0447 0.9453
0.9394
0.94 1
0.93 4
0.92- T
YOLOvV5 YOLOvV5-P6 LSK-YOLOvV5 Ghost-YOLOvV5

Figure 8. Comparison of the performances of different models (harmonic average of the Precision,
Recall, and mAP@0.5 metrics).

When robots are operating at an actual construction site, they usually have high
demands for detection accuracy and detection speed. Consequently, the comparison
between the mAP@0.5:0.95 and the detection time for each model is shown in Figure 9.
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In this graph, the horizontal coordinate is the time required to detect an image, and the
vertical coordinate is the all-class average precision (mAP@0.5:0.95) of the validation set.

0.61 - -
X
0.60 -
8 0.59 -
=t
Ty
S 0.58-
®
%
E 0.57—
—— YOLOVS
0.56 — YOLOV5-P6
— LSKYOLOVS
0.55 - Ghost-YOLOV5
30 40 50 60 70 80

Time (ms/img)

Figure 9. Comparison of the performances of different models (the mAP@0.5:0.95 and speed metrics;
s, m, ], and x represents the four different size of networks mentioned in Section 3.2).

The experimental results show that for the rebar intersection recognition task, among
the four original models based on the YOLOVS5 architecture and their corresponding
improved algorithms, the best performance in terms of accuracy is that of YOLOv5-Péx, but
it also has the longest detection time. The best performance in terms of speed is obtained
with Ghost-YOLOV5s, but it exhibited the lowest detection accuracy. Overall, LSK-YOLOvV5
has a slightly better performance than YOLOVS5. In this work, we ultimately choose the
YOLOvV5-P6m model, whose mAP metric is basically consistent with that of YOLOv5-P61
and YOLOv5-P6x; this model has a much greater mAP than the other models and can thus
satisfy the demand for on-site detection accuracy. Moreover, its detection speed is much
greater than that of YOLOv5-P6l and YOLOv5-P6x. Therefore, in the practical application
of the robot, we chose YOLOV5-P6ém as the target detection model.

4.2. Combining DBSCAN Algorithm

The rebar-tying robot equipped with the trained YOLOv5-P6ém model was tested on a
rebar mesh demonstration platform at the experimental site. The machine frame detection
range is shown in Figure 10, and there are 25 rebar intersections in the field of view.

We counted the detection results of 10 image frames captured by the depth camera,
as shown in Table 3 and Figure 11. In Table 3, ‘\/’ means that the intersection is detected
in that frame of the image, and '~ means that it is not detected in that frame of the image.
We can observe that the points do not consistently appear within the machine detection
range under a single detection result. This inconsistency is attributed to varying lighting
conditions and machine edge occlusions encountered in the field. Therefore, the YOLOV5-
P6m model exhibits fluctuations in detection results during the recognition of each image
frame, resulting in missed and false detections that ultimately impact detection accuracy.
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Figure 10. Schematic of the machine frame detection range.

Table 3. Results of the rebar intersection recognition of each image frame.

Point Framel Frame2 Frame3 Frame4 Frame5 Frame6 Frame7 Frame8 Frame9 Framel0 Count

1-1 - V
2-1
3-1
4-1
5-1
1-2
2-2
3-2
4-2
5-2
1-3
2-3
3-3
4-3
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2-4
34
4-4
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4-5
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To improve detection accuracy, we further processed the detection results for every
10 frames based on the clustering algorithm before passing them to the decision layer for
the walking navigation and tying tasks. The results are shown in Table 4. After excluding
the three obscured points (1-1, 1-2, 2-2), the rebar intersection recognition accuracy of the
10-frame statistics reached 100%, which is a 32.5% improvement compared to the single-
frame recognition result of 75.5%. This approach effectively improves the identification
accuracy and reduces the fluctuations during single-frame identification.
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Figure 11. Statistics of the results of identifying rebar intersections in 10-frame images.
Table 4. Comparison of the number of single-frame and 10-frame overlay recognitions.
10-Frame Overlay Recognition Single-Frame Recognition Average
Number of rebar intersections 22 16.6
proportions 100% 75.5%

4.3. Tying Test at the Experimental Site

After the hardware commissioning, software debugging, and training of the YOLOv5
model, the rebar-tying robot was placed on a rebar mesh demonstration platform at the
experimental site. After the robot was powered up, the ROS main program and each node
were started and set to the fully automatic tying mode. A depth camera and an industrial
camera were used for rebar intersection point target identification. During the automatic
tying process, the robot completes navigation and tying based on the rebar intersections
detected by the depth camera; the industrial camera mounted near the tying head assists in
the positional fine-tuning of the tying process and skips over the intersections that have
already been tied.

The identification results are shown in Figure 12. The reliability and detection speed
of the tying robot under different light and shadow conditions meet the tying requirements.
As measured, the duration at each rebar intersection is approximately 5 s; the duration of
each machine frame detection ranged from approximately 9 to 12 tying points; and the
duration of the walking mechanism to the next area is approximately 12 s; therefore, an
average of 6 s is needed to tie an intersection. For the 6 m x 8 m rebar mesh demonstration
platform at the experimental site, the success rate of tying can reach 100%, and the total
time consumed is 140 min, which is highly practical.
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Figure 12. Identification of rebar intersection points under different conditions. (a) The industrial

camera recognizes the position and status of the tying point; (b) The industrial camera recognizes
intersection positions under light and shadow conditions; (c) The depth camera recognizes the tying

range; (d) The depth camera recognizes the front.
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5. Discussion

In this paper, a comprehensive experimental validation of the developed rebar-tying
robot is carried out to evaluate the accuracy and practicality of its control system and target
recognition algorithm. The experimental site simulated an actual construction environment;
a 6 m x 8 m rebar mesh was constructed using a 12 mm diameter rebar, and some rebar
intersections were manually tied randomly. During the training and validation of the
YOLOvV5 model, we employed a large number of real rebar photos from the experimental
site as well as from the construction projects of the China Railway Ninth Bureau. By
comparing the performance of different network models in the rebar intersection target
detection task, it was found that the YOLOv5-P6m model performed well in terms of both
its detection accuracy and speed; thus, it was selected as the target detection model for
this study. The experimental results show that the model recognizes the location of rebar
intersection points accurately and can effectively differentiate between points to be tied
and those already tied.

To further improve detection stability, we propose a method to combine the network
detection results with the DBSCAN clustering algorithm. The experimental results show
that, by analyzing the detection results for every 10 frames, the number of rebar intersection
points identified is improved by 32.5% compared to that of the single-frame identification,
which effectively reduces the fluctuation in the single-frame identification process and thus
improves the identification accuracy.

In the robot’s tying test, we placed the robot on the rebar plane at the experimental site
for the actual tying operation. The robot was able to complete the autonomous navigation
and tying task according to the rebar intersection points detected by the depth camera,
while the industrial camera assisted in the positional fine-tuning of the tying process.
The experimental results show that the reliability and detection speed of the robot under
different light and shadow conditions meet the tying requirements, and the tying time for
each rebar intersection is approximately 6 s. During the 140 min experiment, the robot
successfully tied all the rebar intersections at the experimental site, and the tying success
rate reached 100%.

In summary, the rebar-tying robot developed in this paper has a high level of automa-
tion and intelligence and is capable of accurately identifying and tying rebar intersections
in an actual construction environment. The research results are highly important for
improving the construction efficiency and quality of the construction industry and simul-
taneously provide strong technical support and a reference for the intelligent upgrading
of the construction industry. Based on the research results in this paper, the rebar-tying
robot has been redesigned with a more compact industrial design for on-site applications
on construction sites. It has been successfully applied in the Shenyang Hunnan Science and
Technology City Phase IV project. A schematic diagram of the robot’s field application is
illustrated in Figure 13, showcasing the functions of autonomously searching for working
areas, autonomously planning walking routes, autonomously locating rebar intersection
points, and autonomously tying.
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Figure 13. Schematic diagram of the robot’s field application.

6. Conclusions

To solve the problem of the heavy and inefficient rebar tying process in the construction
industry, we independently developed a walking robot that can walk on the surface of the
rebar. The robot adopts a unique stepping walk, which enables autonomous navigation
operations, the autonomous positioning of rebar intersections, and the intelligent planning
of tying paths on large-scale bearing platforms and bridge deck slabs under non-boundary
conditions. This paper introduces the core part—the new control system based on the ROS
and visual recognition technology we designed for this robot. To achieve the quick and
accurate identification of the tying position and status, and solve the problem of detecting
small targets at the intersections of rebars, this work proposes a two-stage recognition
method in which images of an area are tied through the fusion of a depth camera and a
high-precision industrial camera. A target detection module based on deep learning and
clustering algorithms is designed to solve the problem of the damage to the tying head
caused by inaccurate identification. The adequate experimental verification proves that the
self-developed rebar-tying robot in this paper is capable of completing actual rebar tying
tasks. It fills the gap and is the first small mobile rebar-tying robot with practical value
in the industry, which can improve work efficiency and construction quality and provide
strong technical support and a reference for intelligent upgrading in the construction
industry. A related video has been uploaded at: https://www.bilibili.com/video/BV1px4
2127dU(accessed on 4 March 2024).

There are potential improvements in rebar-tying robots we plan to research in the
future: first, because of the complexity of the construction site environment, we plan to
introduce laser sensing technology combined with camera sensing to develop advanced
navigation algorithms with obstacle avoidance; second, to further improve the efficiency of
the tying operation, we will explore more advanced robot walking and tying path planning
algorithms. These optimization measures are expected to improve our robot system’s
performance.
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7. Patents

Based on the research of this paper, one invention patent has been authorized.
Name: A kind of walking control system and method for a steel rebar tying robot.
Public Number: CN116225030A.

Patent Owner: China Railway NO. 9 Engineering Group Co., Ltd.

First Inventor: Ruocheng Feng.

Author Contributions: Methodology, software, investigation, data curation, visualization, writing—
original draft preparation, R.F.; conceptualization, formal analysis, resources, project administration,
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be found here: https://doi.org/10.6084/m9.figshare.25340662 (accessed on 5 March 2024).

Conflicts of Interest: Authors Ruocheng Feng and Youquan Jia were employed by the company
China Railway NO. 9 Engineering Group Co., Ltd. The remaining authors declare that the research
was conducted in the absence of any commercial or financial relationships that could be construed as
a potential conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Antwi-Afari, M.E; Anwer, S.; Umer, W.; Mi, H.Y,; Yu, Y.T.; Moon, S.; Hossain, U. Machine learning-based identification and
classification of physical fatigue levels: A novel method based on a wearable insole device. Int. J. Ind. Ergon. 2023, 93, 103404.
[CrossRef]

Lee, ].H.; Rhee, J. A study on the core confinement method of reinforced concrete piers. J. Korean Soc. Civ. Eng. A 2004, 24,
923-929.

Umer, W,; Li, H.; Szeto, G.P.Y.; Wong, A.Y.L. Identification of biomechanical risk factors for the development of lower-back
disorders during manual rebar tying. J. Constr. Eng. Manag. 2017, 143, 04016080. [CrossRef]

Aires, M.D.M.; Alonso, M.L.; Gago, E.J.; Pacheco-Torres, R. Technological advances in rebar tying jobs: A comparative analysis of
the associated yields and illnesses. Int. |. Civ. Eng. 2015, 13, 171-178.

Oudah, F; El-Hacha, R. Joint performance in concrete beam-column connections reinforced using sma smart material. Eng. Struct.
2017, 151, 745-760. [CrossRef]

Haas, C.; Skibniewski, M.; Budny, E. Robotics in Civil Engineering. Comput. -Aided Civ. Infrastruct. Eng. 1995, 10, 371-381.
[CrossRef]

Buchli, J.; Giftthaler, M.; Kumar, N.; Lussi, M.; Sandy, T.; Dorfler, K.; Hack, N. Digital in situ fabrication-Challenges and
opportunities for robotic in situ fabrication in architecture, construction, and beyond. Cem. Concr. Res. 2018, 112, 66-75. [CrossRef]
Gharbia, M.; Chang-Richards, A.; Lu, Y.; Zhong, R.Y.; Li, H. Robotic technologies for on-site building construction: A systematic
review. J. Build. Eng. 2020, 32, 101584. [CrossRef]

Salim, M.; Bernold, L.E. Design-integrated process planner for rebar placement. Comput. Civil. Eng. 1995, 9, 157-167. [CrossRef]
Zekavat, PR.; Moon, S.; Bernold, L.E. Holonic construction management: Unified framework for ict-supported process control.
J. Manag. Eng. 2015, 31, A4014008. [CrossRef]

Igbal, E; Ahmed, S.; Amin, F; Qayyum, S.; Ullah, F. Integrating BIM-IoT and Autonomous Mobile Robots for Construction Site
Layout Printing. Buildings 2023, 13,2212. [CrossRef]

Zhu, A.Y,; Pauwels, P.; De Vries, B. Smart component-oriented method of construction robot coordination for prefabricated
housing. Autom. Constr. 2021, 129, 103778. [CrossRef]

Melenbrink, N.; Werfel, ].; Menges, A. On-site autonomous construction robots: Towards unsupervised building. Autom. Constr.
2020, 119, 103312. [CrossRef]

Momeni, M.; Relefors, J.; Khatry, A.; Pettersson, L.; Papadopoulos, A.V.; Nolte, T. Automated fabrication of reinforcement cages
using a robotized production cell. Autom. Constr. 2022, 133, 103990. [CrossRef]

Jin, . H.; Zhang, WM.; Li, EX,; Li, M.Z,; Shi, Y.L.; Guo, Z.Y.; Huang, Q. Robotic binding of rebar based on active perception and
planning. Autom. Constr. 2021, 132, 103939. [CrossRef]

Advanced Construction Robotics, Inc. Construction Robots [Internet]; Advanced Construction Robotics, Inc.: Allison Park, PA,
USA; Available online: https:/ /www.constructionrobots.com/ (accessed on 5 March 2024).

Malavolta, I.; Lewis, G.A.; Schmerl, B.; Lago, P.; Garlan, D. Mining guidelines for architecting robotics software. J. Syst. Softw.
2021, 178, 110969. [CrossRef]


https://doi.org/10.6084/m9.figshare.25340662
https://doi.org/10.1016/j.ergon.2022.103404
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001208
https://doi.org/10.1016/j.engstruct.2017.08.054
https://doi.org/10.1111/j.1467-8667.1995.tb00298.x
https://doi.org/10.1016/j.cemconres.2018.05.013
https://doi.org/10.1016/j.jobe.2020.101584
https://doi.org/10.1061/(ASCE)0887-3801(1995)9:2(157)
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000316
https://doi.org/10.3390/buildings13092212
https://doi.org/10.1016/j.autcon.2021.103778
https://doi.org/10.1016/j.autcon.2020.103312
https://doi.org/10.1016/j.autcon.2021.103990
https://doi.org/10.1016/j.autcon.2021.103939
https://www.constructionrobots.com/
https://doi.org/10.1016/j.jss.2021.110969

Buildings 2024, 14, 838 20 of 20

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Zhang, S.; Li, S.Q.; Li, Y.; Li, X.; Wang, Z.G. A visual imitation learning algorithm for the selection of robots” grasping points.
Robot. Auton. Syst. 2024, 172, 104600. [CrossRef]

Romero, A.; Delgado, C.; Zanzi, L.; Li, X.; Costa-Perez, X. Oros: Online operation and orchestration of collaborative robots using
5g. IEEE Trans. Netw. Serv. Manag. 2023, 20, 4216-4230. [CrossRef]

Wang, H.Y,; Ye, ZM.; Wang, D.J.; Jiang, H.L.; Liu, P.P. Synthetic datasets for rebar instance segmentation using mask r-cnn.
Buildings 2023, 13, 585. [CrossRef]

Dong, G.; Zhang, L.; Xin, S. Target recognition and location of steel bar binding robot based on deep learning. Electron. Meas.
Technol. 2022, 45, 35—44. (In Chinese)

Yan, B.; Fan, P; Lei, X.Y.; Liu, Z.].; Yang, E.Z. A real-time apple targets detection method for picking robot based on improved
yolov5. Remote Sens. 2021, 13, 1619. [CrossRef]

Lei, M.F,; Zhang, Y.B.; Deng, E.; Ni, Y.Q.; Xiao, Y.Z.; Zhang, Y.; Zhang, ].]. Intelligent recognition of joints and fissures in tunnel
faces using an improved mask region-based convolutional neural network algorithm. Comput.-Aided Civ. Infrastruct. Eng. 2023,
1-20. [CrossRef]

Zhang, HM.; Li, Z.].; Yang, Z.S.; Zhu, C.H.; Ding, Y.H.; Li, P.C.; He, X. Detection of the corn kernel breakage rate based on an
improved mask region-based convolutional neural network. Agriculture 2023, 13, 2257. [CrossRef]

Huang, G.; Tran, S.N.; Bai, Q.; Alty, J. Real-time automated detection of older adults’ hand gestures in home and clinical settings.
Neural Comput. Appl. 2023, 35, 8143-8156. [CrossRef] [PubMed]

Li, Y,; Hou, Q.; Zheng, Z. Lsknet: Large selective kernel network for remote sensing object detection. In Proceedings of the
International Conference on Computer Vision, Paris, France, 4-6 October 2023.

Fan, Y.C.; Qiu, Q.L.; Hou, S.H,; Li, YH.; Xie, ] X;; Qin, M.Y.; Chu, EH. Application of improved yolov5 in aerial photographing
infrared vehicle detection. Electronics 2022, 11, 2344. [CrossRef]

Shen, ].B.; Hao, X.P;; Liang, Z.Y.; Liu, Y.; Wang, W.G.; Shao, L. Real-time superpixel segmentation by dbscan clustering algorithm.
IEEE Trans. Image Process. 2016, 25, 5933-5942. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1016/j.robot.2023.104600
https://doi.org/10.1109/TNSM.2023.3281976
https://doi.org/10.3390/buildings13030585
https://doi.org/10.3390/rs13091619
https://doi.org/10.1111/mice.13097
https://doi.org/10.3390/agriculture13122257
https://doi.org/10.1007/s00521-022-08090-8
https://www.ncbi.nlm.nih.gov/pubmed/36532882
https://doi.org/10.3390/electronics11152344
https://doi.org/10.1109/TIP.2016.2616302

	Introduction 
	Robot Control System Scheme Design 
	Hardware Design 
	Software Design 

	Robot Target Recognition Algorithm 
	Two-Stage Identification Method 
	YOLOv5 Algorithm 
	Clustering Algorithm 
	Data Collection and Evaluation Metrics Overview 
	Data Collection 
	Evaluation Metrics 


	Results 
	YOLOv5 Model Training 
	Combining DBSCAN Algorithm 
	Tying Test at the Experimental Site 

	Discussion 
	Conclusions 
	Patents 
	References

