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Abstract: The complexity of finite element analysis for composite structures can be significantly
reduced by representing the connector and adjacent concrete as a macroscopic element. Nevertheless,
the prevailing macroscopic models for shear connections predominantly employ nonlinear elastic
theory. This approach introduces inaccuracies in estimating structural stiffness and load-bearing
capabilities, primarily due to its inability to precisely capture the cumulative effects of plastic damage.
In response, this study introduces a novel macroscopic elastoplastic model grounded in plasticity
theory, aimed at accurately characterizing the nonlinear behavior of stud connections subjected
to concurrent shear and tensile forces. This paper meticulously delineates the implementation of
the elastoplastic constitutive model using the backward Euler method for numerical integration. It
further articulates the derivation of the consistent tangent stiffness, which aligns with the convergence
efficiency of the Newton–Raphson iterative approach. The computation of the element stiffness matrix
for a two-node element is executed via the governing equation inherent to the finite element method.
An exemplar macroelement test conducted in ABAQUS affirms the implicit backward Euler scheme’s
stability and consistency across varying tolerances. Validation of the elastoplastic model against
empirical test outcomes corroborates its efficacy, demonstrating the model’s precision in predicting
the load–displacement behavior of stud connections under the influence of shear and tensile forces.

Keywords: stud connection; constitutive integration algorithm; elastoplastic model; consistent
tangent stiffness; back Euler method

1. Introduction

In the domain of composite structural design, accurate forecasts of shear connections’
performance are critically important. These connections serve as a means for transferring
both axial and shear loads between distinct components of composite structures, and
should they fail, the resulting consequences may prove to be catastrophic [1–4]. When
a composite beam is only subject to bending moments and shearing forces, the inherent
force within the shear connections is predominantly shearing [5–9]. Accordingly, past
research has tended to concentrate on the shear strength of these connections under such
circumstances [10–14]. However, when subjected to torque or localized loadings, these
shear connections experience an amalgam of shear and tensile forces [15–18]. Evidence
of the coupling effect within stud connections concerning tensile and shear strength was
presented in investigations by Lin et al. [19]. Studies by Tan et al. [20] examined the
capabilities of demountable steel–concrete connectors under the simultaneous presence of
shear and tensile loads. This study highlighted a noteworthy reduction in shear resistance
when tensile forces were introduced, signifying the complex interplay between the two
types of forces. Practical applications of stud shear connections in both homogenous
concrete slabs and composite slabs were explored by Shen and Chung [21]. Their findings
revealed substantial variations in ductility at minimal and substantial deformation levels.
Collectively, these investigations stress the imperative nature of factoring both shear and
tensile forces into stud connection designs. By doing so, the connections are optimized
for efficient load transmissions, thereby decreasing potential safety hazards. Thus, an
investigation into the behavior of shear connections under the concurrent influence of
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shear and tensile loading certainly holds great potential for enhancing safety provisions for
composite structures.

Throughout regular usage, failures of shear connections occur comparatively infre-
quently. Consequently, the impact of shear connections on the load-bearing capacity of
composite structures mainly manifests through the load–slip relationship [19,22–24]. Prior
research attests to the nonlinear elastoplastic behavior that shear connections display dur-
ing the loading process [25,26]. In prior analyses, a nonlinear elastic constitutive model
was employed, primarily due to the absence of an elastoplastic constitutive model [27,28].
Nonetheless, the utilization of a nonlinear elastic constitutive model can introduce inac-
curacies in the examination of structural rigidity and load-bearing capability. It fails in
accurately portraying the internal force redistribution and cumulative accrual of plastic
damage under realistic circumstances [29,30]. Therefore, the development of the constitu-
tive elastoplastic model of shear connections under the simultaneous influence of shear
and tensile loads becomes of paramount importance.

Plasticity theory has long found its application in the constitutive modeling of materi-
als such as metals and soils [31–33]. Current trends see the theory being increasingly lever-
aged to stimulate the multiaxial loading behavior of shallow foundations or oil pipelines
on a macroscopic level [34–38]. These constitutive models offer a holistic representation of
foundation behavior, establishing a direct linkage between the load and the corresponding
displacement. Since the foundation response is articulated in consistent terms as struc-
tural mechanics, the load–displacement relationship can be seamlessly integrated into the
numerical structural analysis. In a similar vein, assorted phenomenological models are
routinely employed to recreate the macroscopic nonlinear behavior of complex materials
and structures [39,40]. These macro-level constitutive models bypass any special interface
or contact, providing a practical approach for the interactive modeling of foundations and
the overall structures.

Borrowing from the macroscopic constitutive models of shallow foundations and oil
pipelines, this paper proffers an exploration of the elastoplastic constitutive model of stud
connections facing combined shear and tensile loads. Through experimental results and
finite element analysis, coupled with an extensive literature review, a formula reflecting the
load–plastic displacement interaction of stud connections under taxing load conditions is
proposed. A formulation for the final failure surface under the simultaneous effects of shear
and tensile loads is set down, which births the surface expression for an elastoplastic model.
Based on experimental results and finite element analysis, alongside an extensive review of
the literature, an expression for the load–plastic displacement of stud connections under
complex loading conditions is proposed. An expression for the ultimate failure surface
under the simultaneous impacts of shear and tensile loads is formulated, yielding the
surface expression for an elastoplastic model. An isotropic hardening rule specific to stud
connections is proposed, followed by the introduction of a flow rule and a plastic potential
to accommodate the plastic deformation characteristics. By utilizing an implicit integration
algorithm grounded on a backward Euler method, updating the force vector and capturing
plastic deformation behavior becomes achievable in the overall constitutive model. This
facilitates the realization of an elastoplastic model for stud connections and prompts its
numerical implementation. By developing user-defined subroutines, the elastoplastic
model is applied to the calculation of push-out tests to verify the performance of the
constitutive model of stud connections.

2. Outline of the Model

Positioned at the intersection between the steel beam and concrete slab, the stud
connector is subjected to diverse permutations of vertical and horizontal movements under
the simultaneous impacts of shear and tension, subsequently engendering a complex stress
state. The meticulously defined macroscopic elastoplastic constitutive model successfully
captures the response of the stud connection through defining the relationship between
the force vector, denoted as F, and the relative interface displacement vector, denoted as U.
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This relationship, designated in-plane, is hereinafter referred to as the load–displacement
correlation. The definitions of F and U imply that the composite response of both the stud
connector and the adjoining reinforced concrete are implicitly encapsulated within the
model. This observation further dictates that any variations—be they material properties
or geometrical nuances—within either constituent of the stud connection exert a significant
influence on the parameters of this model. The directions of the net positive force and the
consequent relative displacement at the steel–concrete interface resulting from the forward
force can be inspected in Figure 1. Given this backdrop, it is indeed pertinent to define F
and U in the following manner:

F =
[

N V
]T (1)

U =
[

u v
]T (2)

Attention should be directed to the fact that within this paper, variables presented in
bold typeface consistently signify vectors or matrices.

N

N

V

V
The current position

The original position

u

ν

Figure 1. Positive direction of forces and displacements.

In the context of capturing the nonlinear behavior of stud connections under the
synergistic influence of shear and tensile loads, the macroscopic elastoplastic model is
primarily composed of the following elements:

(1) An empirical formulation of the yield surface within the force plane, labeled as (N, V).
This is achieved by delineating the contour of the yield surface, which is informed by
the shape of the failure envelope;

(2) A strain hardening scheme that elucidates the functional interrelation between the magni-
tude of the yield surface and the plastic deformation. The expansion of the yield surface
is a function of the evolution of plastic displacement Up (where Up =

[
up vp

]T).
The extent to which the yield surface expands is quantified by the shear force V0 that
corresponds to a given plastic displacement;

(3) An aptly chosen flow rule that enables the prediction of increments in plastic displace-
ment, denoted as dUp, which results from the yield surface’s dilation or constriction.

(4) An elastic load–displacement relationship is employed to delineate the load–displacement
behavior that occurs within the confines of the yield surface.

The acquisition of the components integral to the above-outlined elastoplastic model
mandates the undertaking of an adaptation process. This process involves fitting expres-
sions, representative of these components, to data derived either experimentally or through
the deployment of finite element simulations. This article espouses the utilization of three
distinct loading paths, which serve to offer ancillary data support pivotal to the fabrication
of the elastoplastic model. These chosen trajectories are illustrated in Figure 2:

(1) Load path 1: shear direction loading under different drawing force levels. The shape
enclosed by the extremities of the load path may be posited as depicting the trajectory
of the yield surface which is apt for the elastoplastic model. This load path is instru-
mental in deducing both the hardening rule and the flow principle inherent to the
elastoplastic material model;

(2) Load path 2: radial loading. These loading trajectories inform the hardening prin-
ciple as well as the flow rule characteristic of the elastoplastic model. The instance
of pure shear loading does indeed represent a specific case within this load path,
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from which the shear–slip hardening principle applicable to the stud connection can
be extrapolated;

(3) Load path 3: elastic stiffness test. By introducing minimal displacements in both
planar directions while concurrently unloading the stud connection, it is feasible to
establish an estimation of the elastic stiffness coefficient.

Load path 2

V

N

Load path 1
Load path 3

Figure 2. Load path diagram.

To this end, a series of push-out tests on stud connections were conducted, using the
test setup depicted in Figure 3. The employed configuration incorporated a hydraulic jack
positioned between the concrete slabs designated to impose tensile stress upon the stud
connections, extending along with a separate jack linked to the reaction frame to exert shear
forces. The mutable parameters within the push-out test specimens included the elastic
modulus of the concrete, the diameter of the stud, and the intensity of the applied tensile
force onto the stud. The shear–slip curve under different tensile forces was thus obtained
through these tests for the stud connections. Subsequently, a finite element modeling
approach was implemented to simulate the push-out tests under shear load for the stud
connections, using the finite element model shown in Figure 4. The finite element method
empowered us to imitate a broader spectrum of loading paths and engage in parametric
analysis. This occasioned an intensive exploration into the ramifications of variables such
as the length and diameter of the stud, the elastic modulus of both the concrete slab and the
stud, and the volume ratio of reinforcement. Whilst a summary of the elastoplastic model
is present, a more comprehensive breakdown of the push-out tests and the finite element
models is available in the cited work [41].

Hydraulic jack

Loading

Concrete slab

Loading device

Steel beam

Figure 3. Setup of push-out test.
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Y

X

X

Y

Z

V

Base plate

Steel plate

Steel bar

Stud connector

V

X

Y

Z

N

Base plate

Concrete slab

Steel beam

Figure 4. Finite element model of push-out test.

3. Details of the Model
3.1. Elastic Behavior

The elastic stiffness inherent in the stud connection constitutes a critical facet of its associ-
ated elastoplastic model. In the pursuit of computing any load or displacement increment
occurring within the yield surface, it is imperative to furnish a characterization of the stud
connection’s elastic response. The elastic relationship between the increment of force ∆F and
the corresponding increment of elastic displacements ∆Ue can be expressed as follows:

∆F =

[
∆N
∆V

]
= Ke∆Ue =

[
k11 k12
k21 k22

][
∆ue
∆ve

]
, (3)

where Ke represents the elastic stiffness matrix, k11 and k22 denote the elastic tensile and
shear stiffness, respectively, and k12 = k21 is the coupling stiffness.

The elastic stiffness matrix Ke is obtained by fitting the result of the finite element
simulation of the stud connections under load path 3 [41], and it can be expressed as follows:

Ke =

[
0.002059(ds − 7.62)E0.5

c E0.5
s −0.0001552(ds − 7.4)E0.65

c E0.35
s

−0.0001552(ds − 7.4)E0.65
c E0.35

s 0.00133(ds − 3.58)E0.75
c E0.25

s

]
, (4)

where ds, Ec, and Es are the stud diameter, the elastic modulus of the concrete, and the
elastic modulus of the stud, respectively.

3.2. Yield Surface

The demarcation between the purely elastic and the combined elastic–plastic states is
referred to as the yield surface. Specifically identifying the first transition from an elastic to
an elastoplastic state, the defined yield surface can be called the initial yield surface for the
stud connection. As the loading process progresses, this initial yield surface undergoes a
constant expansion, generating what can then be described as the subsequent yield surface.
Bringing this process to conclusion, when the connection attains its point of failure, the yield
surface present at that juncture is coined the failure surface. Figure 5 provides a graphic
representation of these stages, displaying schematic outlines of the initial yield surface,
the subsequent one, and, ultimately, the failure surface. Regarding the shape of the failure
surface, established experimental data and data from finite element simulations [42–45]
have collectively affirmed that it approximates to the envelope of a convex arch. On this
evidence, we can represent the failure surface through an equation that captures the form
of such a convex envelope.
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ffailure (N, V) =

(
N

N0 max

)β1

+

(
V

V0 max

)β1

− 1 = 0, (5)

where N0max and V0max are the radius of the horizontal and vertical axes of the failure
surface, respectively, and β1 is the aspect ratio defining the surface shape. The initial path
of the yield surface in the (N, V) load plane can be obtained by shrinking the shape of the
failure surface as follows:

f (N, V) =

(
N

n0V0i

)β1

+

(
V
V0i

)β1

− 1 = 0. (6)

In order to derive the mathematical expressions for both the failure surface and the
initial yield surface, as denoted in Equations (5) and (6), it is imperative to ascertain the
formulae for the characteristic parameters N0max, V0max, V0i, and β1. The values of these
parameters are deduced by fitting them to the empirical outcomes obtained from push-out
tests, as well as the results from finite element simulations corresponding to load path 1, as
documented in the study by Qin [41]:

V0 max = min{0.8 fußd2/4, 0.29α1ds
2( fcEc)1/2}

N0 max = min{k0 ·
√

fc · h1.5
e , As fu}

V0i = 0.1V0 max

β1 = 1.135

. (7)

Presuming that the morphology of the subsequent yield surface mirrors that of both
the initial yield surface and the failure surface, we can formulate the subsequent yield
surface. This is achieved by implementing an expansion of the initial yield surface, specified
as follows:

f (N, V) =

(
N

n0V0

)β1

+

(
V
V0

)β1

− 1 = 0. (8)

The size of the yield surface is represented by V0, the shape of the yield surface is
determined by n0 (n0 = N0max/V0max), and the centroid of the yield surface is (0, 0).

N

V

V0  

O

Failure surface

N0  

Initial yield surface

Expanding direction

N0max  

V0max  
Subsequent yield surface

Figure 5. Yield surface diagram.

3.3. Hardening Law

Building on the hypothesis that an augmentation in plastic displacement within the
shear dimension contributes to the expansion of the yield surface, the size of the yield
surface when the system is in a pure shear state is dictated by the principles of isotropic
hardening. The isotropic hardening law delineates the interdependence of the shear force V0
and the plastic slip vp pertinent to the shear direction in the stud connectors. To encapsulate
this, we draw on the shear–slip correlation derived from the insights of push-out tests
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complemented by finite element analysis simulations. The equation representing this
correlation is:

V0

V0 max
= f (v). (9)

Further, the relation between the shear force V0 and the plastic slip vp in the shear
direction of the stud connection during the elastic–plastic stage is

V0

V0 max
= f (vp + V0/k22), (10)

where vp represents the cumulative outcome of integrating the incremental plastic displace-
ments dvp along the shear vector. Drawing from the empirically derived shear–slip response
curves of the push-out tests under pure shear conditions, as documented by Qin [41], a
functional relationship is established between the shear force V0 and the total slip v. To
isolate the plastic component, one subtracts the elastic part from the total slip v, thereby
obtaining the plastic slip vp. By differentiating the shear force V0 with regard to the plastic
slip vp, we arrive at a differential equation that articulates the dynamic interplay between
the shear force V0 and the plastic slip vp within the realm of the shear direction:

dV0

dνp
=

1.418V0maxk22 − 1.283V0k22

k22 + 1.283k22νp + 2.566V0 − 1.418V0max
. (11)

Although Equation (11) might be sufficient to fit the shear–slip curve, it does not
account for complex loading conditions that entail plastic displacement in both the shear
and tensile directions simultaneously. To account for the influence of plastic displacement
in the tensile direction on the size of the yield surface V0, an alternative methodology is
necessary. To maintain consistency with the hardening law for both the pure shear and
shear–tensile states, a new parameter called the plastic displacement strength, denoted as
∆p, is introduced to replace vp in the formula when the stud connection experiences plastic
displacement in both the shear and tensile directions, namely

∆p = vp + f
(
up

)
. (12)

The plastic displacement strength ∆p is a function of the plastic displacement vp in
the shear direction and the plastic displacement up in the tensile direction, which can be
obtained by integrating the plastic displacement increments dvp and dup, respectively. It is
crucial to ensure the hardening law observed in the shear–tensile states aligns seamlessly
with that strictly within the pure shear domain. To discern the dimensions of the yield
surface, one must compute the value of V0 as derived from the vertical plastic displacement
vp0 during a pure shear state. Under shear–tensile conditions, ∆p equates to vp0. This
conclusion can be reached by replacing the corresponding values of vp and up at any point
on the yield surface with ∆p. By adhering to these guiding principles, one can acquire the
optimally fitted value for Equation (12) as follows:

∆p = vp + 3.74up
2 (13)

3.4. Flow Rule

The increase in plastic displacement at yield defines an appropriate flow rule. The
flow rule within the two-dimensional (N, V) load plane is informed by load paths 1 and 2,
and a non-associated flow criterion espoused by the elastoplastic stud connection model
is exhibited [41]. To model the interplay between load and incremental displacement, it
becomes requisite to charter an expression for the plastic potential g, which retains its
identity distinct from the yield surface. Herein, our focus shifts to presenting a formulation
for the plastic potential, one that mimics the equation for the yield surface closely, but
introduces modifications at the apex and shape of the plastic potential surface. This
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adaptation is enabled using plastic potential parameters V′0, αn, and β2. Consequently, the
equation delineating the plastic potential can be articulated as follows:

g(N, V) =

(
N

αnn0V′0

)β2

+

(
V
V′0

)β2

− 1 = 0, (14)

where V′0 is the maximum shear value of the plastic potential at the present time, which is
similar to V0 in the expression of the yield surface. By regulating the parameters αn and β2,
one can subtly alter the form of the plastic potential surface.

The ideal values of αn fluctuate in accordance with the varying ratios of plastic dis-
placement iterations dvp/dup. To uphold the flow rule’s consistency across an assortment
of dvp/dup values, this nuance must be carefully addressed. To accurately emulate this
dynamic, an escalation in αn is required as dvp/dup increases, highlighting an intensified
degree of non-associated flow. One can chart the fluctuation pattern of αn employing
hyperbolic functions. In this context, the plastic displacement iteration dvp, as observed
in the shear direction, is rendered normalized by the corresponding plastic displacement
iteration dup within the tensile direction:

αn =
k′nαn0 + αn∞

(
dvp/dup

)
k′n +

(
dvp/dup

) , (15)

where αn0 represents the parameter value of αn with no increase in plastic displacement,
αn∞ represents the limiting value attainable by the parameter, and k′n represents the rate at
which αn attains its limiting value αn∞. Figure 6 depicts the evolution of αn. The impact of
fluctuating αn values on the theoretical prediction curve is depicted in Figure 7: During the
initial timeframe at point A, where αn = αn0, a compelling proximity is observed between
the experimental and finite element results in conjunction with the theoretical prediction
curve. With load application, the experimental and finite element outcomes progressively
gravitate towards the theoretical prediction curve, under circumstances of αn = αn∞. The
pace of this transition is dictated by the expansion rate of the plastic potential surface,
which, in turn, is determined by k′n.

dv
p
/du

p

α
n

α
n∞

α
n0

(α
n∞
-α

n0
)/k

n
’

Figure 6. The relationship between αn and dvp/dup.

Equation (14) articulates the theoretical variations in the plastic displacement within
both the shear and tensile directions:

dup = λ
∂g
∂N

= λ

[
β2

αnn0V′0

(
N

αnn0V′0

)β2−1
]

, (16)

dvp = λ
∂g
∂V

= λ

[
β2

V′0

(
V
V′0

)β2−1
]

, (17)
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where λ can be derived from the consistency condition intrinsic to the strain hardening law.
The enhancement observed in the plastic displacement ratio can be represented through an
expression relevant to the current state:

dvp

dup
= αnn0

(
αnn0V

N

)β2−1
. (18)

As depicted in Figure 8, the angle θvu (theory) (= arctan
(
vp/up

)
(theory) ) signifies the

direction of the theoretical plastic displacement increment, as calculated by Equation (18).
On the other hand, θvu (exp) (= arctan

(
vp/up

)
(exp) ) characterizes the direction of the plastic

displacement increment, as derived from experimental and finite element simulation results.
In seeking a fit between θvu (theory) and θvu (exp) , the values of the parameters intrinsic to
the flow rule emerge as follows: β2 = 1.69, αn0 = 1.00, αn∞ = 2.40, and k′n = 3.00 [41].

Figure 7. The theoretical prediction curves with different values of αn.

To calculate the size of the plastic potential surface (i.e., the size of V′0), the parameter
x(= V′0/V0) is defined. The size of x is obtained by the following numerical solution:

x =

[(
N

αnn0

)β2
+ Vβ2

]1/β2

[(
N
n0

)β1
+ Vβ1

]1/β1
(19)

N

V

θ
vu(theory)

=arctan(dv
p
/du

p
)

(theory)

θ
vu(exp)

=arctan(dv
p
/du

p
)

(exp)

θ
vu(theory)

θ
vu(exp)

Plastic potential 

surface

Figure 8. The definition of the plastic displacement increment angle.

4. Constitutive Integration Algorithm

The elastoplastic behavior of stud connections can be represented through integration
with a macroelement, which directly delineates the force–displacement interactions specific
to stud connections. This macroelement can be effortlessly integrated into the compre-
hensive finite element analysis of the structure as a cohesive component. To aid in the
customization of macroelement characteristics, Abaqus offers a User Element Subroutine
(UEL) [46]. The load–displacement curve of the elastoplastic model is encapsulated within
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this user-defined subroutine. The initial load Fn and the plastic state variable V0n at time
tn are passed to the subroutine by the primary analysis program. Upon receiving the
displacement increment ∆Un+1, the subroutine is tasked with computing the subsequent
load Fn+1 and plastic state variable V0n+1 at the conclusion of the interval tn+1 using the
constitutive integral method, and then relaying these results back to the main program.
This symbiotic exchange between the main program and the subroutine is graphically
represented in Figure 9.

F
n
,V

0n
,U

n
p and ΔU

n+1
 at t

n

F
n+1

,V
0n+1

and U
n+1

p at t
n+1

Main program Subroutine

Constitutive 

integration

Figure 9. The interaction between the main program and the subroutine.

Prior to constitutive integration, it is assumed that the plastic state variables remain
unchanged (∆Up

n+1 = 0, ∆V0n+1 = 0) after loading Ftrial
n+1:

Ftrial
n+1 = Fn + ∆Fn+1 = Fn + Ke∆Un+1. (20)

This phase is commonly referred to as the elasticity prediction since the trial load Ftrial
n+1

is derived, presuming solely elastic behavior. Within each incremental step, the trial load
Ftrial

n+1 is assessed, utilizing either the pure elastic or elastoplastic formulation depending on
the load step’s termination condition. Five potential scenarios (depicted in Figure 10) are
employed to establish the position of the loading state in relation to the currently defined
yield surface:

1
2

3

Yield surface 

f = 0

F
n+1

trial     

4

5

F
n 

F
n 

F
n F

n+1

trial     

F
n+1

trial     

F
n+1

trial     

F
n+1

trial     

Figure 10. Possible cases of the loading state.

Case 1: If ftrial < 0, it suggests that the test load resides within the yield surface; hence,
an elastic increment should be implemented. The trial load state, Ftrial

n+1, is deemed the final
load state. Thus, Ftrial

n+1 is recognized as the actual force Fn+1, and the value of Ftrial
n+1 should

be set as Fn+1:
Fn+1 ← Ftial

n+1. (21)

Case 2: If ftrial = 0, it signifies that the test load exactly falls on the yield surface.
Similarly, an elastic increment is prescribed, and the trial load state Ftrial

n+1 is finalized. Here
again, Ftrial

n+1 embodies the actual force Fn+1, and Ftrial
n+1 is assigned to Fn+1.

Cases 3, 4, and 5: When ftrial > 0, this signifies that the test load is located outside the
current yield surface, and, thus, plastic behavior is expected. The constitutive equation will
need to integrate the displacement increment:

∆Fn+1 =
∫ Un+1

Un
Ke

(
dUn+1 − dUp

n+1

)
=

∫ Un+1

Un
Ke

(
dUn+1 − λn+1

∂g
∂Fn

)
. (22)
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Hence, the primary aim of the constitutive integration is to determine the plastic
displacement increment ∆Up

n+1 in cases 3, 4, and 5. This research utilizes the backward
Euler method for integration [47], which is recognized for being an implicit algorithm. The
selection of the backward Euler method is attributed to its computational efficiency and
robust theoretical foundation. It is especially beneficial for addressing highly nonlinear
issues due to its inherent stability, straightforwardness, and ease of implementation. The
implicit algorithm sets out to compute the plastic displacement increment ∆Up

n+1 and the
plastic state variable V0n+1, beginning from the trial load’s final state Ftrial

n+1, and adjusts the
load state back to the yield surface at tn+1. Throughout the iteration process, it carries out
constitutive integration based on the increment’s final state and calculates the load Fn+1 at
the increment’s conclusion.

Fn+1 = Fn + ∆Fn+1 = Fn + Ke
(

∆Un+1 − ∆Up
n+1

)
= Fn + Ke∆Un+1 −Ke∆Up

n+1 = Ftrial
n+1 −Keλn+1

∂g
∂Fn+1

.
(23)

The plastic multiplier λ and the differential of plastic potential energy ∂g/∂Fn+1 in
the equation are evaluated using the state at the end of the increment.

As demonstrated in Equation (23), an iterative process is needed to navigate the test
load back to the yield surface. In the context of the elastoplastic model, Fn+1, Up

n+1, and
V0n+1 should concurrently satisfy the conditions on the updated yield surface. Conse-
quently, alongside Equation (23), it becomes crucial to perform integration in accordance
with the hardening law to derive the revised plastic state variable:

V0n+1 = V0n + ∆V0n+1 = V0n + λn+1
∂V0

∂∆p

(
∂∆p

∂vp

∂g
∂Vn+1

+
∂∆p

∂up

∂g
∂Nn+1

)
. (24)

In addition, at the end of the step, the yield condition should be applied:

fn+1 =

(
Nn+1

n0V0n+1

)1.135
+

(
Vn+1

V0n+1

)1.135
− 1 = 0. (25)

By defining the residual Rn+1, Equations (23)–(25) can be solved by the Newton–Raphson
iterative method. In essence, through iteration, the load, displacement, and state variables
adhere to the equation of the yield surface, flow rule, hardening law, and consistency condition:

Rn+1 =



Nn+1 − Ntrial
n+1 + k11λn+1

∂g
∂Nn+1

+ k12λn+1
∂g

∂Vn+1

Vn+1 −Vtrial
n+1 + k21λn+1

∂g
∂Nn+1

+ k22λn+1
∂g

∂Vn+1

V0n+1 −V0n − λn+1
∂V0
∂∆p

(
∂∆p
∂vp

∂g
∂Vn+1

+
∂∆p
∂up

∂g
∂Nn+1

)
(

Nn+1
n0V0n+1

)1.135
+

(
Vn+1
V0n+1

)1.135
− 1

. (26)

The above equation solution of xn+1 = (Nn+1, Vn+1, V0n+1, λn+1) can be obtained
through iteration, until the residual Rn+1 ≤ ϵtol, and ϵtol is the allowable error. The
iterative procedure is as follows:

Jn+1 =
∂Rn+1

∂xn+1

dxn+1 = −Rn+1

Jn+1

xn+1 ← xn+1 + dxn+1.

(27)

In the formula, Jn+1 is the Jacobian matrix of the above nonlinear Equation, (26), which
is a 4× 4 square matrix.
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To improve the clarity and understanding of the integration algorithm process, a
detailed flow diagram was constructed, as illustrated in Figure 11.
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Figure 11. Process of the integration algorithm.

5. Continuum and Consistent Tangent Stiffness

The fundamental approach for addressing nonlinear finite element problems is through
Newton–Raphson iteration. A crucial step in implementing this iterative method for finite
elements is calculating the tangent stiffness matrix, which characterizes the relationship
between force and displacement gradients based on the current force and displacement states.

5.1. Continuum Tangent Stiffness

The conventional tangent stiffness method usually adopts the continuum elastic–plastic
tangent modulus. For the incremental load–displacement relationship of pure elasticity, its
expression is

dF = KedU. (28)

The expression of the elastoplastic incremental load–displacement relationship is

dF = KepdU, (29)

where Kep is the elastoplastic stiffness matrix, also known as the continuum elastoplastic
tangent modulus.

If the load increment remains entirely within the yield surface, the elastic displacement
can be determined using Equation (3). Upon yielding, the increment vector of plastic dis-
placement, dUp, is oriented perpendicularly to the plastic potential surface. The magnitude
of the plastic displacement increment, dUp, is defined by the scaling factor λ,

dUp =

[
dup
dvp

]
= λ

[ ∂g
∂N
∂g
∂V

]
. (30)

Whenever there is an increment in load or displacement that crosses the yield surface,
the variation in the value of f for the yield function must be zero (i.e., d f = 0) to ensure
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that the load point, characterized by the normal force N and shear force V, remains on
the yield surface. In accordance with the strain hardening rule, a solution for λ must exist
signifying that a certain magnitude of plastic displacement is achievable which fulfills the
yield criterion

d f =

(
∂ f
∂N

dN +
∂ f
∂V

dV
)
+

∂ f
∂V0

dV0 = 0, (31)

where V0 and dV0 depend on the plastic displacement strength ∆p. According to the chain
rule and the plastic potential relationship, Equation (31) can be written as

d f =

(
∂ f
∂N

dN +
∂ f
∂V

dV
)
+

∂ f
∂V0

∂V0

∂∆p
λ

(
∂∆p

∂vp

∂g
∂V

+
∂∆p

∂up

∂g
∂N

)
= 0. (32)

Therefore, the solution of λ can be obtained from the consistency condition,

λ = −
∂ f
∂N dN + ∂ f

∂V dV
∂ f

∂V0

∂V0
∂∆p

(
∂∆p
∂vp

∂g
∂V +

∂∆p
∂up

∂g
∂N

) . (33)

The continuum elastoplastic tangent modulus Kep can be derived from Equations (28)–(33),

Kep = Ke −
Ke

∂g
∂F

∂ f
∂F

T
Ke

− ∂ f
∂V0

∂V0
∂∆p

(
∂∆p
∂vp

∂g
∂V +

∂∆p
∂up

∂g
∂N

)
+ ∂ f

∂F
T

Ke
∂g
∂F

. (34)

5.2. Consistent Tangent Stiffness

The Newton–Raphson iterative method is characterized by a second-order rate of
convergence. However, when applied to the computations of the continuum elastic–plastic
tangent modulus Kep, the backwards Euler method generally achieves only first-order
accuracy. This results in a discrepancy between Kep and the updating format of the path-
independent variables. Consequently, the Newton–Raphson iterative technique cannot
guarantee a quadratic convergence rate. To ensure the second-order convergence rate of the
tangent stiffness method, it is necessary to devise an updating scheme for path-independent
variables that yields first-order precision, aligning it with a consistent elastoplastic tangent
modulus Dep [48]. Moreover, in finite element analysis, it is crucial to define Dep to derive
the Jacobian matrix essential for equilibrium iteration. Dep is defined as

Dep =
d∆F
d∆U

, (35)

where ∆F is the force increment and ∆U is the displacement increment. We know that

∆U = Un+1 −Un, (36)

so Equation (35) can be written as

Dep =
d∆F

d(Un+1 −Un)
=

d∆F
dUn+1

=
∂∆F

∂xn+1

∂xn+1

∂Un+1
, (37)

where
∂xn+1

∂Un+1
=

∂xn+1

∂Fn+1

∂Fn+1

∂Un+1
=

[
I 0

]
Kep, (38)

in which I denotes a (2× 2) identity matrix and 0 denotes a (2× 2) matrix with zeros. To
obtain ∂∆F/∂xn+1, we reformulate Equation (26) as

Rn+1(∆F(xn+1), xn+1) = 0. (39)
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Differentiating Equation (39) yields

dRn+1 =
∂Rn+1

∂∆F
∂∆F

∂xn+1
+

∂Rn+1

∂xn+1
=

[
I
0

]
∂∆F

∂xn+1
+ Jn+1 = 0, (40)

where the relation d∆F = dFn+1 is used. Therefore, it can be deduced that

∂∆F
∂xn+1

=

[
I

0T

]
Jn+1. (41)

Inserting Equations (38) and (41) into Equation (37) finally yields

Dep =

[
I

0T

]
Jn+1

[
I 0

]
Kep=

(
ATJn+1A

)
Kep, (42)

where A=
[

I 0
]

is used to obtain a concise form.

6. Finite Element Formulation

While defining the macroelement through the User Element Subroutine (UEL), the
structure of a two-node element is adopted. These two nodes might either coincide or
possess a certain distance between them. For the purpose of this explanation, we designate
these nodes as i and j. As a result, the displacement increment function vector for the
element, denoted as {∆δ}e, can be construed as follows:

{∆δ}e =
[

∆ui ∆vi ∆uj ∆vj
]T, (43)

and the vector of force increment function {∆F}e for the element is

{∆F}e =
[

∆Ni ∆Vi ∆Nj ∆Vj
]T. (44)

The strain–nodal displacement parameter relation of the element is

{∆ε}e =

[
∆εx
∆εy

]
=

1
L

B{∆δe}, (45)

in which L is the length of the element; B is the strain–displacement transformation matrix
given by

B =

−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1

. (46)

According to the constitutive relations, the stress vector of the element could be written as

{∆σ}e =

[
∆σx
∆σy

]
=

1
A

Dep{∆ε}e, (47)

where A denotes the cross-section area of the element.
Considering the element contribution to the equilibrium of the system, the nodal

forces {∆F}e that the element provides are

{∆F}e =
∫

V
NT{∆fV}dV +

∫
V

BT{∆σ}e dV, (48)

in which V is the volumn of the element, N is the shape function of the element, and
{∆fV} is the volume force increment. No volume force is considered in this element, so the
equation could be written as

{∆F}e =
∫

V
BT{∆ε}e dV. (49)
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One integration point is adopted and the weight factor is one. Substituting Equations
(45) and (47) into Equation (49) results in

{∆F}e =
1
V

∫
V

BTDepBdV{∆δe} =
(

BTDepB
)
{∆δe} = {K}e{∆δe}. (50)

Thus, the element stiffness is

{K}e = BTDepB. (51)

7. Application and Validation
7.1. Application of Integration Algorithm

The efficacy of the elastoplastic constitutive model is substantiated through a numeri-
cal illustration. This instance makes use of a singular macroelement force-resultant model
(as demonstrated in Figure 12). This study sought to scrutinize the influence of allowable
errors, denoted as ϵtol, amidst the application of the backward Euler integration scheme,
particularly with respect to computational precision and efficiency.

V
1
, v

1

V
2
, v

2

V, v

N, u

i

j

Node

Element

Figure 12. The single macroelement model in Abaqus.

In this example involving a single macroelement, the stud’s diameter was estab-
lished at 16 mm, with the concrete’s compressive strength for a cubic sample measured at
54.06 MPa. The elastic modulus for concrete was set at 35,188 MPa, and for steel, it was
206,000 MPa. The stud’s tensile strength was identified as 496.79 MPa. This numerical
demonstration utilized displacement loading, where the axial and shear directions under-
went proportional radial loading until reaching a predetermined displacement threshold.
The analysis procedure was segmented into 1000 incremental steps, with each step approx-
imating a 0.007 mm increment in the shear direction. Throughout the analysis, the peak
incremental step number was capped at 10,000, starting with an initial step size of 0.001.
The step size ranged from a minimum of 10−5 to a maximum of 10−3. Various allowable
error thresholds ϵtol, including 1, 10−2, 10−4, 10−6, and 10−8, were employed for the cal-
culations. The backward Euler integration method is theoretically capable of delivering
precise integration outcomes, with smaller allowable errors yielding more accurate results.
Consequently, a scheme adopting an allowable error of ϵtol = 10−8 was considered to
approach the exact solution most closely.

Figure 13 presents the anticipated load relation curves alongside the load–displacement
curves for various integration methods with differing error tolerances ϵtol. Observations
from Figure 13 reveal that within the framework of the backward Euler integration method,
setting ϵtol to one leads to a marked divergence of the calculated results from the precise
solution. This discrepancy arises due to the substantial tolerance level failing to adequately
amend the elastic forecast in proximity to the yield surface. However, when the allowable
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error ϵtol is reduced to 10−2 or less, the computed outcomes demonstrate high fidelity to
the exact solution.
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Figure 13. Computational results. (a) Load relation curve. (b) Load–displacement curve.

To assess the effectiveness of an integration procedure, two statistical indicators can
be employed: EF and CPUTIME. The computation of the maximum discrepancy EF in the
load for the designated integration process is conducted as detailed below:

EF =
∥F− Fref∥
∥Fref∥

, (52)

where F represents the integration load for each respective integration procedure, while
Fref serves as the reference load. In this specific case, the computational outcomes derived
from the backward Euler method, under an error tolerance set at ϵtol = 10−8, are utilized
as the baseline load. CPUTIME indicates the execution time of the integration procedure.
When the computational duration for a single macroelement is notably brief, augmenting
the number of iterations may contribute to a more precise evaluation of CPUTIME.

Developing a graph of CPUTIME and EF against ϵtol as demonstrated in Figure 14
can provide a visual representation of the integration procedure’s accuracy and efficiency.
One can observe that CPUTIME remains largely unvaried in response to changes in ϵtol.
Furthermore, the backward Euler integration method, often regarded as theoretically
unconditionally stable [48–50], renders robust and efficient performance, even when ϵtol
values are minimized. This algorithm’s output leans towards convergence without being
overly sensitive to predetermined ϵtol assumptions. However, employing the implicit
backward Euler integration within the realm of elastoplastic models necessitates that
displacement increments should be maintained in comparatively small sizes to assure
convergence. Additionally, executing the implicit algorithm involves greater technical
complexity, and introducing kinematic hardening criteria into the elastoplastic model
further escalates the numerical computation complexity.
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Figure 14. Comparison CPUTIME and EF for different ϵtol.
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7.2. Validation by Experimental Results

To affirm the efficacy of the proposed elastoplastic model for stud connections in
accurately predicting load–displacement curves, this study leverages data from push-out
tests documented in various research efforts for model validation. Interested readers
can refer to the specified publications [41,45,51,52], for detailed experimental data and
methodologies. The chosen material properties and geometric parameters mirror those
outlined in several referenced studies. An ABAQUS data file was meticulously prepared,
and the UEL subroutine, embodying the elastoplastic model, was invoked to simulate
the shear force–displacement behavior of the samples. Displayed in Figure 15, the results
illustrate that the shear force–displacement curves generated by the elastoplastic model
for stud connections closely align with both the experimental and finite element analysis
findings, validating the model’s capability to accurately predict the load–displacement
behavior of monotonically loaded stud connections. Nonetheless, it is important to note that
the model falls short of predicting the descending portion of the load–displacement curve.
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Figure 15. Verification of the proposed elastoplastic model. (a) First set of data. (b) Second set of data.

8. Conclusions

This research presents a significant advancement in the design and analysis of com-
posite structures by introducing a macroscopic elastoplastic constitutive model for stud
connections. The development of this model is rooted in plasticity theory and is informed
by empirical data derived from push-out tests as well as finite element simulations. Our
results demonstrate that by integrating the combined effects of shear and tensile forces,
the model offers a more accurate prediction of the load–displacement behavior of stud
connections, which is paramount for ensuring structural integrity and safety.

The comparative analysis with experimental push-out test data revealed that the elasto-
plastic model offers superior predictive capabilities over traditional models based on nonlinear
elastic theory. This highlights the importance of considering elastoplastic effects to more real-
istically capture the complex behavior of stud connections, especially under conditions that
induce plastic deformation. By doing so, the proposed model addresses the limitations of
previous models, enabling a more precise analysis of structural stiffness and load-bearing
capacity. This precision is crucial for the internal redistribution of forces and the accumulation
of plastic damage, which are critical factors in the longevity and safety of composite structures.

Moreover, the numerical example implemented in ABAQUS demonstrated the model’s
stability and robustness, suggesting that the model can be effectively utilized in practical
engineering applications. The implementation of the backward Euler method ensures
the accuracy of the solution and the consistency of the tangent stiffness necessary for the
convergence of the nonlinear finite element analysis.

In conclusion, the macroscopic elastoplastic constitutive model proposed in this study
is a substantial contribution to the field of composite structure analysis. It not only enhances
the accuracy of predictions concerning the performance of shear connections but also serves
as a reliable tool for engineers to design safer and more efficient structures. Future work
may extend the application of this model to more complex loading scenarios and explore
its integration into broader structural analysis frameworks, thereby reinforcing its value to
the engineering community.
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