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Abstract: Semi-open and chaotic environments of building sites are considered primary challenges
for the localization of mobile construction robots. To mitigate environmental limitations, an improved
trilateral localization technique based on artificial landmarks fusing the extended Kalman filters
(EKFs) is proposed in this paper. The reflective intensity of the onboard laser is employed to identify
artificial landmarks arranged in the ongoing construction environment. A trilateral positioning
algorithm is then adopted and evaluated based on artificial landmarks. Multi-sensor fusion, combined
with the EKF, is included to improve the positioning accuracy and reliability of the robot in complex
conditions. We constructed validation scenarios in the Gazebo simulation environment to verify the
required localization functionality. Concurrently, we established simulated testing environments
in real-world settings, where the practicality of the proposed technique was validated through the
fitting of ideal and actual localization trajectories. The effectiveness of the proposed technique was
corroborated through comparative experimental results.

Keywords: trilateral localization; mobile construction robot; artificial landmark; EKF; building
environment

1. Introduction

Construction robots, an emerging technology with immense developmental poten-
tial, are anticipated to revolutionize information-based projects by providing safer, faster,
greener, and smarter solutions [1]. This transformative impact is expected to catalyze a
leapfrog development across the entire construction industry [2,3]. In this process, the inte-
gration of autonomous mobile manipulators in the architectural field is generating growing
interest [4–6], offering new possibilities for on-site construction [7,8]. As shown in Figure 1,
the In situ Fabricator developed by researchers from ETH Zurich has been used in sev-
eral construction scenarios [9–11]. Mobile construction robots like the In situ Fabricator
overcome the limitations of the robot working space. By combining mobile platforms,
the working space of the robotic arm can be significantly expanded, enabling the mobile
construction robot to be used in a wider scope of applications than the robotic arm alone.

Undoubtedly, to ensure safe human operation or self-navigation, nearly all mobile
construction robots, whether teleoperated or autonomous, rely on estimated poses pro-
vided by the localization module [12]. However, construction sites are spatially complex,
and construction tasks lead to a lot of chaos on the site. They have semi-open and chaotic
properties, which means the robot has to locate itself in the building process with the struc-
ture they are building and maintain a globally consistent reference frame. Additionally,
as the construction task progresses, the environment faced by the robot undergoes gradual
changes [13], the dynamic changes in the environment during the progress of the construc-
tion task pose a challenge for establishing a consistent coordinate system necessary for
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accurate localization. For these reasons, the positioning of autonomous mobile construction
robots for chaotic environments is still a significant issue.

Heterogeneous wall brickwork

Curved steel mesh welding Spatial Mesh-Mould printing

Figure 1. Mobile construction robots for architectural applications.

Existing work has demonstrated the feasibility of using mobile construction robots
for on-site building construction [5,14,15]. The In situ Fabricator, assembled by a tracked
mobile platform and an ABB robot arm, has showcased this potential [9,16]. Notably, it has
provided various positioning strategies for different construction scenarios [9,10,15–17],
and these custom-developed localization system options enhanced the unobstructed mobil-
ity of mobile construction robots.

Other strategies are also employed in construction sites. For instance, SLAM-based
(Simultaneous Localization and Mapping) [18] methods are used by some researchers
for the localization of mobile construction robots [19–21]. QuicaBot, which is used to
inspect the quality of buildings, employed SLAM algorithms to achieve simultaneous
positioning of the robot and generated environmental maps [22]. In specific construction
tasks, SLAM-based methods have also been demonstrated. Researchers employed multiple
mobile construction robots to print simultaneously [23]. They utilized an adaptive Monte
Carlo localization algorithm for roughscale positioning [24], and as the mobile construction
robot approached the target printing site, the positioning system switched to vision control
to achieve higher accuracy [25]. For a chaotic and dynamic environment, this type of
positioning based on SLAM methods requires additional computational costs for map
construction and dynamic maintenance [26].

To enable integration with digital construction, BIM (Building Information Modeling)
is also frequently devoted as the approach for implementing the positioning of mobile
construction robots [27,28]. The positioning method of this kind typically relies on BIM-
generated maps and utilizes matching approaches to achieve positioning [29]. For example,
Huan et al. achieved semantic localization by BIM-generated point cloud maps and iterative
closest point (ICP) matching [12]. However, BIM-generated point cloud maps are static in
nature and cannot be dynamically adjusted to accommodate changes in the environment
or the temporary placement of obstacles.

In summary, SLAM-based localization methods face challenges in meeting the dy-
namic and chaotic properties of construction sites, and matching positioning using BIM-
generated maps struggles to adapt the change of scene. We were inspired by the In situ
Fabricator for customized positioning with the help of external sensors [17]. Construc-
tion sites are continuously changing and chaotic environments; we believe that reducing
reliance on the environment will guarantee accurate positioning.

In this paper, a mobile construction robot prototype for the installation of construction
panels, equipped with Mecanum wheels and ABB IRB2600 industrial robot, is introduced.
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As shown in Figure 2, our design utilizes Mecanum wheels to facilitate omnidirectional
movements, and the robot arm is used to complete the final construction tasks. In previous
work, we have addressed the issue of base planning for mobile construction robots in a large-
scale construction environment [30]. This paper focuses on a newly developed localization
for on-site building construction, which employs onboard laser sensors, combined with
trilateral positioning and EKF, to facilitate the on-site positioning of mobile construction
robots. Our primary goal is independent and reliable localization in semi-open and chaotic
environmental conditions. In summary, the main contributions of this paper are as follows:

• An artificial landmark detection approach based on laser reflection intensity is pro-
posed, and a trilateral localization algorithm is developed using the detection and
identification results.

• The EKF-based multi-sensor fusion technique is adopted to achieve the integration of
trilateral localization results and inertial sensor positioning results.

• The accuracy and practicality of the algorithm are verified in simulation and real
environments, respectively. The experimental results demonstrate the usability of
the algorithm.

The remainder of this paper is organized as follows. We first introduce the mobile con-
struction robot, its functional structure, and its localization system in Section 2. Theoretical
definitions, derivations, and the fusion algorithm used for location accuracy enhancement
are discussed in Section 3. A validation experiment is then conducted, and the results are
analyzed in Section 4. Section 5 concludes the paper.

1530mm 2580mm

Figure 2. The proposed prototype mobile construction robot system. The platform is equipped with
an IRB2600 industrial robot (ABB Robotics), which can achieve on-site localization in unstructured
environments.

2. System Overview

In practical construction, architectural tasks often result in the presence of numerous
miscellaneous temporary placements within the construction site. Therefore, minimizing
the dependence of mobile construction robots on environmental structures can ensure the
stability of the positioning in such a chaotic and changeable environment. Conventional mo-
bile robot positioning algorithms can be classified as relative and absolute positioning [31].
Absolute positioning, using GPS, landmarks and other technologies for localization, is
more capable of processing complex conditions and unpredictable environments. Thus,
our mobile construction robot is developed to be a fully self-contained unit with accurate
absolute positioning capability. This approach eliminates the tedious calibration pro-
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cess during the initial setup and ensures the uniformity of the coordinate system in the
chaotic environment.

As shown in Figure 3, artificial landmark features are extracted under the robot coor-
dinate system. The coordinates of landmarks are then converted to the global coordinate
system, and a trilateral positioning algorithm is used to calculate the robot’s pose in a global
coordinate system. The robot positioning accuracy is improved with the fusion of odometer
data using an extended Kalman filter, the mobile unit is simplified to the global coordinate
system, and the positioning system is divided into three components: artificial landmark
recognition, position using the optimal trilateral algorithm, and accuracy improvement
based on EKF.
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Figure 3. A flowchart for the proposed positioning system.

3. Methodology

Our mobile construction robot prototype uses 2D laser sensors and artificial landmarks
for feature extraction and matching verification. A trilateral positioning algorithm was used
to solve for the global pose. The pose derived from the odometer motion model was taken
as the prediction value, and the absolute pose from trilateral positioning was regarded as
the observation value; they were fused to improve the positioning accuracy combined with
an EKF in complex construction environments to determine the final pose output.

3.1. Identification and Extraction of Artificial Landmarks

The prerequisite for positioning is the identification of artificial landmarks. They are
made up of reflective columns with highly reflective properties, and identified by the reflec-
tion intensity of the 2D laser. The 2D laser captures the point cloud as single-layer discrete
data. Before feature recognition, a set of discrete points must be divided into different
objects for storage, while the density of the data collected by the laser sensor is affected
by the measurement distance. Thus, an adaptive clustering method is adopted in this
paper to improve the accuracy of feature extraction. The method does not require a priori
knowledge and allows for the rapid processing of unlabeled data [32]. The corresponding
adaptive threshold δ can be defined as:

δ=∥Qi − Pi∥+ 3σr

= ρi · |sin(∆φ)/ sin(β − ∆φ)|+ 3σr
(1)

Therein, Pi−1, Pi, and Pi+1 are adjacent laser points; ∥Qi − Pi∥ is the distance between
Qi and Pi, while Qi is the intersection point of the line OLPi−1 and the circle Pi (supplemen-
tary details are shown in Figure 4; β is the angle between OLPi; and PiQi, and σr is the laser
measurement error.
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Figure 4. The geometric interpretation of the adaptive threshold in the laser coordinate system.

Clustering is used to aggregate discrete laser points into different storage sets, which
are divided into two categories: reflective and non-reflective column sets. The reflected
intensity of the laser from the surface of the reflective column is greater than that of
ordinary objects. Reflective column data can be identified by a higher intensity. The surface
reflection intensity threshold λδ and reflector diameter interval [Dmin, Dmax] are set as
limiting conditions used to identify the reflector dataset. These criteria can be expressed as:

λset ≥ λδ

Dmin ≤ d ≤ Dmax
(2)

where λset is the set of reflections in the dataset whose intensity is greater than the threshold,
and d is the diameter of the observed reflector, which is given as 110 mm. Reflective column
data {{(ρi, φi), λi}|i = m, · · · , n} are acquired in the environment through the clustering
and recognition of artificial landmarks, where ρi, φi, and λi represent the distance, angle,
and energy values from the laser to point i on the reflective column in the laser coordinate
system, respectively. The purpose of artificial landmark feature extraction is to identify the
center position of the reflective column in the robot coordinate system. The radius of the
reflector is defined as the distance from the center of the reflector to the point where the
laser is incident on the surface.

In Equation (3), L denotes the distance between the laser and the surface of the
reflecting column, R is the radius of the reflecting column, ρc is the distance from the laser
to the reflective column, φc is the angle between the center of the reflective column in the
laser coordinate system, and (ρc, φc) is the reflective column center, given by:

φc =
1

n − m

n

∑
i=m

φi

ρc =
1

n − m

n

∑
i=m

(L · |cos(φc − φi)|+ R ·
∣∣∣∣cos(arcsin

L · sin(φc − φi)

R
)

∣∣∣∣). (3)

The above expression provides the polar coordinates of the reflector center in the robot
coordinate systems. The coordinates of all local reflectors in the environment are matched
with preset reflectors in the global environment to establish a one-to-one correspondence.
Trilateral positioning is employed to calculate the position of the mobile construction robot
following successful landmark matching.

3.2. Trilateral Positioning for Mobile Construction Robot

Trilateral positioning can only be used when three or more artificial landmarks are
detected; this condition is key to the localization of the mobile construction robot and can
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be described. Assume h reflectors Ci(i = 1 · · · n) are arranged in the global environment
(h ≥ 3) as shown in Figure 5a. The position of the reflector Ci in the global coordinate
system is represented as (ρg

c , φ
g
c ) and any three reflectors can be selected to form a trian-

gle ∆C1C2C3 with C2 denoting the center. The segments
∣∣∣Cg

1 Cg
2

∣∣∣, ∣∣∣Cg
2 Cg

3

∣∣∣, and the angle

∠Cg
1 Cg

2 Cg
3 shown in Figure 5b can be calculated as:∣∣∣Cg

1 Cg
2

∣∣∣ = √
(xg

1 − xg
2)

2
+ (yg

1 − yg
2)

2

∣∣∣Cg
2

Cg
3

∣∣∣ = √
(xg

3 − xg
2)

2
+ (yg

3 − yg
2)

2

∣∣∣Cg
1 Cg

3

∣∣∣ = √
(xg

1 − xg
3)

2
+ (yg

1 − yg
3)

2

∠Cg
1 Cg

2 Cg
3 = arccos(

∣∣∣Cg
1 Cg

2

∣∣∣2 + ∣∣∣Cg
2 Cg

3

∣∣∣2 −
∣∣∣Cg

1 Cg
3

∣∣∣2
2
∣∣∣Cg

1 Cg
2

∣∣∣∣∣∣Cg
2 Cg

3

∣∣∣ )
(4)
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Figure 5. The geometric configuration of the reflector in the (a) global and (b) robot coordinate systems.

It is assumed that the robot can observe ki(i = 1 · · ·m) at any given time ((k ≥ 3)).
The position of the reflector Ci in the (local) robot coordinates is given by (ρl

c, φl
c). Any three

observed reflective columns can be then used to form a triangle △ C1C2C3, with C2 denoting
the center. The segments

∣∣∣Cl
1Cl

2

∣∣∣, ∣∣∣Cl
2Cl

3

∣∣∣, and the angle ∠Cl
1Cl

2Cl
3 can be calculated as:

∣∣∣Cl
1Cl

2

∣∣∣ = √
(xl

1 − xl
2)

2
+ (yl

1 − yl
2)

2

∣∣∣Cl
2Cl

3

∣∣∣ = √
(xl

3 − xl
2)

2
+ (yl

3 − yl
2)

2

∣∣∣Cl
1
Cl

3

∣∣∣ = √
(xl

1 − xl
3)

2
+ (yl

1 − yl
3)

2

∠Cl
1Cl

2Cl
3 = arccos(

∣∣∣Cl
1Cl

2

∣∣∣2 + ∣∣∣Cl
2Cl

3

∣∣∣2 −
∣∣∣Cl

1Cl
3

∣∣∣2
2
∣∣Cl

1Cl
2

∣∣∣∣Cl
2Cl

3

∣∣ )
(5)

This matching is considered successful if triangle parameter information in the robot
coordinates can be identified in the global environment. However, we find that the re-
lationship between the two does not follow a strict one-to-one correspondence in actual
operations. As such, a difference is assumed between the matching parameters corre-
sponding to the local triangle information and those corresponding to all global triangle
information. If the minimum values of these differences are satisfied:
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∣∣∣∣∣∣Cg
1 Cg

2

∣∣∣− ∣∣∣Cl
1Cl

2

∣∣∣∣∣∣
min

≤ ξ∣∣∣∣∣∣Cg
2 Cg

3

∣∣∣− ∣∣∣Cl
2Cl

3

∣∣∣∣∣∣
min

≤ ξ∣∣∣∣∣∣∠Cg
1 Cg

2 Cg
3

∣∣∣− ∣∣∣∠Cl
1Cl

2Cl
3

∣∣∣∣∣∣
min

≤ ψ

(6)

Linear (ξ) and angular (ψ) error thresholds are then related by the measured distances
from landmarks and the moving speed of the robot. In this paper, these thresholds are
chosen empirically as ξ = 300 mm and ψ = 10◦. If the above relationships are not satisfied,
the recognition of reflective columns in the robot coordinates is assumed to be incorrect.
After the above matching, a valid reflective column is obtained for calculating the positional
attitude of the mobile construction robot; these calculations are used to identify effective
global coordinates for the reflector.

It is assumed that the robot can observe three reflective columns with coordinates of
C1(xg

1 , yg
1), C2(xg

2 , yg
2), and C3(xg

3 , yg
3) at any given time as shown in Figure 6a. The distance

from the laser sensor to the center of the reflector Ci can be used to define the radius of
a circle. These circles will intersect at a point, which defines the global pose of the robot.
However, due to measurement errors in the laser sensor, this intersection will span a finite
region as shown in Figure 6b. The geometric relationship shown in Figure 6a produces the
following set of equations:

(xg
1 − xg)

2
+ (yg

1 − yg)
2
= ρC1

2

(xg
2 − xg)

2
+ (yg

2 − yg)
2
= ρC2

2

(xg
3 − xg)

2
+ (yg

2 − yg)
2
= ρC3

2

(7)
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xR GX
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Figure 6. Ideally , these circles should intersect at a single point, that is, the location of the mobile
construction robot (a). however, the intersection of three circles in a finite region due to matching
errors (b).

The theoretical position of the robot, represented as (xg, yg), can be determined by
solving these equations, while the circles will intersect over a region (rather than a single
point) in actual scenes, due to deviations between the theoretical position of the preset
reflector and the actual position of the laser sensor. As such, a least-squares approach is
included to minimize measurement errors between the theoretical and actual robot position
coordinates [33]. Assuming the measured global coordinates of the reflector center can
be expressed as (xg

i , yg
i )(i = 1, 2, · · · , n), corresponding to a distance ρCi(i = 1, 2, · · · , n)

measured by the local laser, the position (xg, yg) of the robot is given by:
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(xg, yg)T = (AT A)
−1

ATb

A =

 2(xg
1 − xg

n) 2(yg
1 − yg

n)
...

...
2(xg

n−1 − xg
n) 2(yg

n−1 − yg
n)



b =


((xg

1)
2 − (xg

n)
2
+ (yg

1)
2 − (yg

n)
2
+ (ρl

Cn
)

2 − (ρl
C1
)

2
))

...

((xg
n−1)

2 − (xg
n)

2
+ (yg

n−1)
2 − (yg

n)
2
+ (ρl

Cn
)

2 − (ρl
Cn−1

)
2
)


(8)

The heading angle for the robot can be expressed in the global environment using the
robot position (xg, yg) and the reflecting column coordinate Ci(xg

i , yg
i ) as follows:

θg =
1
n

n

∑
i=1

(arctan 2(yg
i − yg, xg

i − xg)− φl
Ci
) (9)

The mobile construction robot’s pose in the global environment, acquired using the
Algorithm 1 shown below, is then given by [xg, yg, θg].

Algorithm 1: Trilateral localization using reflectors.

Input: Observed reflector position Ci(xg
i , yg

i ). Distance from the laser to the center
of the reflector ρCi, (i = 1, 2, · · · , n)

Output: Global coordinate robot pose [xg, yg, θg]
1 if Nodes Ci(xg

i , yg
i ) can construct triangles then

2 Establish the equations for known and unknown nodes (Equation (7)).
3 Linearize the system of equations using a decreasing least-squares method

(Equation (8)).
4 Calculate the heading angle θg (Equation (9)).
5 else
6 Terminate
7 end
8 Return [xg, yg, θg]

Systematically, artificial landmarks in the environment are extracted by combining
adaptive clustering and laser reflection intensity values. After identifying the position
of the artificial landmarks under the global coordinate system, the trilateral positioning
algorithm is employed to obtain the absolute positioning of the mobile construction robot.
Indeed, distance-based trilateral localization algorithms are widely used due to their good
robustness and easier implementation [34,35].

3.3. Positioning Accuracy Improvements Based on EKF

Relying solely on absolute positioning with artificial landmarks is not sufficient in
unstructured environments, particularly in the case of single-sensor positioning. Therefore,
multi-sensor data fusion is used to improve the positioning accuracy for complex opera-
tions [36,37]. The extended Kalman filter, one of the most common data fusion algorithms,
is employed to compensate for the limitations of individual sensors and improve the overall
performance [38].

Inertial sensor data (usually consisting of the inertial measurement unit (IMU) and
the odometer) and position information, obtained by the trilateral algorithm, are fused to
improve the positioning accuracy. In this process, the output frequency of these joint poses
is greater than that of the trilateral positioning poses. Thus, the pose output by the inertial
sensors is cropped and sampled based on the frequency output by the trilateral positioning
algorithm as shown in Figure 7. Poses derived from the motion model based on inertial
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sensor data are used as predicted values, while poses calculated using artificial landmark
positioning are used as observed values.

Pose of the intertial 
sensor

Pose of the  trilateral 
positioning algorithm

EKF EKF EKF EKF

1P 2P 3P nP

…

…

Time K

 System 
model

Measurement 
model 

Fusion 
position

Figure 7. A diagram of the proposed fusion framework. Predicted values are derived from the motion
model, while observed values are acquired using trilateral positioning, descent sampling, frequency
alignment, and optimal EKF positional attitude.

The fusion of multi-sensor information using the EKF algorithm requires an under-
standing of the system model and noise statistics in advance. Posture prediction for the
motion model is required to estimate the pose prediction of the robot at the current moment
depending on the estimation X̂k−1 of the robot’s pose at the previous moment and the
robot’s motion caused by the control input Uk−1. This is captured from a kinematics model
represented as:

X̂k|k−1 = F(X̂k−1, Uk−1) =

x̂k−1
ŷk−1
θ̂k−1

+

νx∆t cos θk−1 − νy∆t sin θk−1
νx∆t sin θk−1 + νy∆t cos θk−1

ωk−1∆t

 (10)

Herein, the term ∇Fk−1 denotes the Jacobian matrix of the function F at the k − 1
instance. The derivative of the function F with respect to Xk−1 at (Xk−1, Uk−1) is given by:

∇Fk−1 =
∂F

∂Xk−1

∣∣∣∣
X̂k−1

=

1 0 −νx∆t sin θk−1 − νy∆t cos θk−1
0 1 νx∆t cos θk−1 − νy∆t sin θk−1
0 0 1

 (11)

Noise error in the motion can be expressed as Qk =

σ2
x 0 0

0 σ2
y 0

0 0 σ2
θ

. A covariance

matrix Pk|k−1, used to represent the uncertainty error of predicted pose values, can be
described as:

Pk|k−1 = ∇Fk−1Pk−1∇FT
k−1 + Qk−1 (12)

where Pk −1 is the error covariance matrix for the robot pose estimation at the k − 1 instance.
The observation model based on artificial landmark positioning requires calculating

the relationship between pose changes at adjacent times. As shown in Figure 8, (xk, yk, θk)
represents the robot pose measured by laser and calculated using a trilateral positioning
algorithm, while (xk−1, yk−1, θk−1) represents the pose predicted by laser measurements
based on a motion model with included errors. The offset angle of the predicted pose
relative to the real pose is denoted θR. After a rotation transformation R, the predicted pose
in the global coordinate system can be expressed as:[

x,
k

y,
k

]
=

[
cos θR − sin θR
sin θR cos θR

][
xk
yk

]
=R

[
xk
yk

]
(13)
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and the translation can be represented by:

Tx =△ x = xk−1 −
√

x2
k + y2

k cos(−θR − α)

Ty =△ y = yk−1 −
√

x2
k + y2

k sin(−θR − α)
(14)

these observations can be summarized as:

Zk = Hk(X(k))=

1 0 0
0 1 0
0 0 1

x
y
θ

 =


Tx +

√
x2

k + y2
k cos(θR + α)

Ty +
√

x2
k + y2

k sin(θR + α)

θR + θo

 (15)

the covariance matrix of the observation noise is given by:

Rk =

σ2
x 0 0

0 σ2
y 0

0 0 σ2
θ

 (16)

where σ2
x , σ2

y , and σ2
θ represent measurement noise in the x, y, and θ directions, respectively,

with magnitudes determined by convergence errors in the trilateral positioning algorithm.
The EKF positioning algorithm can then be developed by combining inertial sensor motion
predictions with measurement updates from trilateral positioning as follows.

The proposed approach utilizes the EKF to fuse odometer and laser sensor data
to improve the positioning accuracy and reliability of the mobile construction robot in
the built environment [39,40]. With the state transfer equation determined, the EKF has
emerged as the criterion for the state estimation of nonlinear systems. As in Algorithm 2,
the prediction process is represented by steps 1–3, while the update process is illustrated
by steps 4–6. Multi-sensor data fusion using the EKF enhances mobile construction robot
positioning accuracy.
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Figure 8. The posture measurement update process based on trilateral positioning.
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Algorithm 2: Positioning accuracy improvements based on EKF.

Input: Estimated robot pose at an initial time: X̂(0), Noise variance in the moving
model:Q0, Noise variance in the measured model: R0

Output: Optimal pose estimation: X̂k =
[
x̂, ŷ, θ̂

]
1 Calculate the forward state variable at time k: X̂k|k−1 = F(X̂k−1, Uk−1)

2 Calculate the prediction error covariance matrix:
Pk|k−1 = ∇Fk−1Pk−1∇FT

k−1 + Qk−1

3 Obtain the measured current pose value from trilateral positioning: Zk
4 Calculate the Kalman gain matrix: Kk = Pk|k−1HT

k (HkPk|k−1HT
k + Rk)

−1

5 Update the state variable at time k: X̂k = X̂k|k−1 + Kk(Zk − Hk(X̂k|k−1))

6 Calculate the estimated error covariance: Pk = (I − Kk Hk)Pk|k−1

7 Return X̂k

4. Verification Experiments

The proposed algorithm is evaluated in a series of experiments. Assessment metrics
for global positioning errors are first introduced and the algorithm is then tested using
a simulated model in Gazebo 9. Simulation tests include primarily the extraction of
artificial landmarks detected with laser reflection intensity, and the comparison of true
and measured positional values which come from three different approaches. A prototype,
the autonomous mobile construction robot for digital construction, is assembled to verify
the robustness and stability of the proposed method in practical construction scenarios.

4.1. Initialization and Experimental Settings

Utilizing mobile construction robots in building sites is quite a novel venture. To illus-
trate this usability status in detail, a digital construction scenario is drawn up. As shown
in Figure 9, the mobile construction robot combined with manual labor is responsible for
the installation of the curtain wall [30], and the AGV handles the transport of construction
materials. Here, we focus on the fused positioning of the mobile construction robot based
on artificial landmarks in this site, improving the positioning accuracy of the robot to realize
precise working.

In the initialization, it is essential to verify the accuracy of the artificial landmark
extraction. We build the scenario in Gazebo 9 as shown in Figure 10. We give the sensors
and the actual physical environment properties in this simulation scenario and set the scene
centroid as the global coordinate system for the positioning system.

The initialization is performed by rotating the mobile platform 360◦ at the origin of the
global coordinate system to construct an artificial landmark map. The platform is designed
with four Mecanum wheels, so the turning radius during rotation is zero. It ensures that
the global and local coordinate systems coincide at the start-up of the mobile construction
robot, facilitating positioning during movement. The accuracy of the artificial landmark
extraction could be evaluated by comparing the coordinates of the artificial landmarks
obtained from the laser reflection intensity with the true values from the Gazebo 9. In our
tests, the laser sensor is the SICK LMS111, which offers a scanning range of 270◦, an angular
resolution of 0.25◦, and the artificial landmarks are reflective columns with a radius of 10 cm.
The adaptive clustering threshold is set to 1.5ρi according to Formula (1). An idealized
scenario is constructed to evaluate the recognition accuracy of artificial landmarks because
the true values from Gazebo 9 provide a benchmark for accuracy estimation.
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Figure 9. A demonstration of the application of mobile construction robots in digital construction
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Figure 10. The idealized scenario was simulated in Gazebo to estimate the extraction accuracy of the
artificial landmarks.

As shown in Table 1, the measured values are obtained from the artificial landmark
detection algorithm based on laser reflection intensity. Euclidean distances are employed
to evaluate the error of each artificial landmark circle fitting.

To further illustrate the accuracy of landmarks extraction, the fluctuations of the error
are depicted in Figure 11. The Euclidean distance portrays the offset between the true and
measured circle center coordinates. In the beginning, combined with Figure 10, we can
notice that reflectors 1# to 4# are already within the scanning range of the laser, so the offset
of their fitted circle coordinates is relatively minimal, while the coordinates of the reflector
from 5# to 7# need to be obtained by rotating the robot, so the offset has fluctuated.

Figure 11. Artificial landmark map and error fluctuations based on Euclidean distances.
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Table 1. Comparison of artificial landmark circle center coordinates extraction based on laser reflection
intensity with the true value coordinates in Gazebo (m).

No. Axis 1# 2# 3# 4# 5# 6# 7#

True value X-axis −0.89 3.58 3.87 −0.41 −4.43 −5.52 −5.24
Y-axis −6.28 −3.77 3.68 5.61 3.99 −0.46 −4.59

Measured values X-axis −0.87 3.86 3.85 −0.38 −4.37 −5.48 −5.21
Y-axis −6.28 −3.77 3.68 5.61 3.98 −0.46 −4.55

Euclidean distance \ 0.02 0.02 0.02 0.03 0.06 0.04 0.05

4.2. Validation with Gazebo

In our digital construction paradigm project [30], the external walls of the curbside
toilets need to be tiled at night due to transportation issues. This is essential for ensuring
immunity from lighting interference and quick deployment with guaranteed positioning
accuracy for the mobile construction robot positioning system. As shown in Figure 12,
this scenario includes toilets that need to be constructed, a mobile construction robot,
and artificial landmarks for position tracking.

Figure 12. Simulated scenario for testing positioning accuracy, using the mobile construction robot to
tile the facade of the toilet.

To ensure the consistency of the test data, we first collect data in the constructed
simulation scenario and generate the dataset which is made up of sensor data collected
while the robot is running in the simulation environment. This dataset is employed
to benchmark three different localization methods, which are the trilateral localization
approach, fused EKF with trilateral localization (approach of this paper), and the EKF
Localization [41].

The root-mean-square-error (RMSE) is a common evaluation criterion for the localiza-
tion of mobile robots [42,43]. It is used as the primary evaluation metric for comparisons;
the localization results of the trilateral localization, the fusion algorithm of this paper,
and the EKF Localization are evaluated separately in comparison with the true value of the
positional trajectory.

Figure 13 portrays the positional translation error among three different algorithms
based on the RSME. The 2930 poses are provided by the dataset which is generated through
our simulation scenario. As described previously, the global and robot coordinate systems
are coincident at the beginning moment; hence, their translation error is also zero when
the pose number is zero. With the robot moving, the global coordinate system is fixed at
the initial position, and the robot coordinate system changes to follow the trajectory of
the movement.
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Figure 13. Translational posture errors for the three approaches.

The trilateral localization algorithm without EKF accuracy enhancement suffers from
large and undulating translation errors. The EKF positioning, which relies entirely on
the IMU and odometer, subsequently performs poorly due to cumulative errors. As can
be seen from Figure 13, our approach translation error is no more than 10 cm, and this
accuracy will be sufficient to guarantee the utilization of the mobile construction robot on
the construction site.

The posture of the mobile robot is jointly described by the position and the yaw angle.
As shown in Figure 14, the yaw angle is highly sensitive to vibration caused by the jitter
during robot movement. Overall, the rotational positional errors are higher for the trilateral
positioning, while the performance of both the EKF Localization and the fusion approach
in this paper are similar.�����������	
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Figure 14. Rotational posture error for the three approaches.

Similarly, such positioning errors can be shown to differ in employing pose trajectories
as shown in Figure 15. Here, we demonstrate the pose trajectory obtained by setting our
approach and EKF Localization, while the true ground positional trajectory is obtained
through the Gazebo setting. At the initial moment, the three trajectories are nearly coinci-
dent. This indicates that errors between the positioning results are extremely small over
short periods. However, over time, the localization results of EKF Localization gradually
deviate from the ground truth, while the fusion approach in this paper achieves higher
overlap with the ground truth. Thus, the trajectory of our approach is closer to the true
pose, demonstrating the robust nature of the fusion algorithm.
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Figure 15. Posture trajectory tracking in the Gazebo simulation environment.

4.3. Testing in Physical Environments

The performance of our proposed algorithm is evaluated using our prototype mobile
construction robot, subjected to a series of tests conducted in a physical environment.
As shown in Figure 16, the underlying motion control of the mobile construction robot
employs a Beckhoff system, in which IMU and odometer data ar efused after interpolation
and time synchronization, for transmission to the algorithm processing layer.

X
L

Y
L

YB

Fixed translational 
transformation

Reflector #1

Reflector #2

Reflector 
#3

XB

Mobile construction robot prototype Mobile platform system

IRB2600 Robot

Figure 16. Mobile construction robot prototype for testing and the relationships between coordi-
nate systems.

The detection and recognition of artificial landmarks are the cornerstones of position-
ing. Therefore, artificial landmarks recognition and detection based on laser reflection
intensity are first validated in on-site environments. As Figure 17 shows, four artificial
landmarks are arranged on site, and the laser intensity values are mutated four times.
The position of the artificial landmarks is identified from these mutation values, thus
enabling the positioning of the mobile construction robot.

However, collecting ground truth poses in the real test environment is challenging
compared to the simulation environment, primarily due to the difficulties in deploying
motion capture systems like OptiTrack in the actual scene. To solve this issue, we establish
a predetermined trajectory to evaluate the prototype’s positional accuracy as shown in
Figure 18: traveling from the starting point to the work station position, completing the
plate assembly, and then traveling to the next work station. If the initial point is at the
global coordinate origin, the distance from the origin to the first workstation is recorded
as the coordinates of the first workstation. Subsequently, the distances between adjacent
workstations are measured to derive the theoretical trajectory that the mobile platform
should follow. Consequently, by continuously monitoring the real-time position of the
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mobile platform and comparing it with the ideal path, we can estimate the positioning
error of the mobile construction robot during actual task execution.

(a)Simulation of plate assembly (b)Peak laser reflection intensity test

Figure 17. Simulation of plate assembly test scenarios and recognition of artificial landmarks based
on laser reflection intensity.
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Figure 18. Schematic illustrating the station path for simulating the assembly process.

The desired coordinates for the six site locations as indicated in Figure 18 are presented
in Table 2. The ideal coordinates are determined with the starting point as the origin,
the positive direction of the mobile platform representing the x-axis, and the right side of
the positive direction signifying the y-axis. The distances from the initial point to both the
first and third station points are measured using a laser range finder. Subsequent station
points, such as from the third station point to the fifth station point, are evenly spaced.
This arrangement allows us to calculate the coordinates of all station points based on the
measurements of the second and third station points.
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Table 2. The ideal site location coordinates and the average coordinates output by the positioning
algorithm.

Site Coordinate Axis Site1 Site2 Site3 Site4 Site5 Site6

Ideal value (m) X-axis 0 3 0 3 0 3
Y-axis 0 0 1.2 1.2 2.4 2.4

Output value (m) X-axis 0.018 3.071 −0.075 3.064 0.077 2.911
Y-axis 0.014 0.031 1.221 1.315 2.461 2.382

The output values in Table 2 are calculated from the average of the successive output
values of the proposed algorithm at the station location. During the test, the robot follows a
predetermined path, cruising along it and providing localization results when it reaches the
designated station points. Furthermore, for enhanced visualization of the positioning error,
the output values are compared to the ideal values. As depicted in Figure 19, discrepancies
between the actual output position values and the ideal values at various station points
are quantified.
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Figure 19. Deviation of the actual position output value from the ideal value.

The horizontal axis represents the counted positions, while the vertical axis represents
the deviation value along the coordinate axis direction. The deviation indicates the extent
to which the actual position trajectory differs from the ideal one. A smaller deviation value
corresponds to a closer match between the actual and ideal position trajectories, resulting
in reduced positioning error. In the x-axis direction, the maximum deviation from the ideal
position is no greater than 0.25 m, while the maximum deviation in the y-axis direction is
not more than 0.45 m. Additionally, we calculate average deviations of 0.085 m and 0.138 m
in the X and Y axes, respectively. This average deviation is approximately equivalent to the
10 cm positioning error in the simulation environment. Overall, the deviation in the y-axis
is more pronounced than that in the x-axis for positioning. However, the average deviation
in the y-axis is smaller than in the x-axis. The larger deviation values are concentrated at
the fourth station, which is closer to the construction wall and lacks artificial landmarks
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in the vicinity. This deficiency in artificial landmarks observed by the robot at the fourth
station may lead to a greater positioning error in that specific location.

Based on the aforementioned theoretical analysis, this part tests the positioning capa-
bility of the mobile construction robot in a simulation environment and an on-site scenario,
respectively. From the simulation results, the translational error of our approach is no more
than 10 cm, while the usability of the algorithms is verified in practical scenarios. Overall,
the algorithm in this paper is sufficient for application in practical scenarios.

5. Conclusions

This study introduces a novel fusion technique, which integrates the trilateral position-
ing algorithm and EKF, aimed at mitigating positioning challenges encountered by mobile
construction robots operating within semi-open and chaotic environments. The proposed
approach entails the identification of artificial landmarks through laser reflection intensity
analysis, coupled with a least-squares computation to minimize matching discrepancies.
Leveraging an inertial sensor motion model, the predicted position value for the mobile
construction robot is established. Subsequently, the position determined through artificial
landmark localization serves as the observed value, with enhancements in accuracy facil-
itated by the EKF. Through a series of simulated experiments employing Gazebo 9 and
physical environment assessments, it is demonstrated that positioning errors remained
within acceptable thresholds. Notably, the fusion of trilateral positioning and EKF exhibits
remarkable practicality in construction settings. Survey results corroborate the efficacy of
the proposed fusion algorithm in localizing mobile construction robots.

In practical applications and testing scenarios, our system encounters limitations
when relying solely on the positioning of the mobile platform to address location-related
challenges at the task level. Specifically, the absence of a closed-loop system for the
robotic end-effector’s positioning jeopardizes the precise placement of assembled work
pieces. Consequently, our future endeavors will prioritize the development of a two-tier
positioning system, encompassing both the mobile platform and end-effectors.

Author Contributions: Conceptualization, S.G. and L.Z.; methodology, L.Z.; validation, L.Z. and M.Z.,
writing—original draft preparation, L.Z.; writing—review and editing, L.Z.; visualization, H.D. and
J.B.; supervision, S.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant No.U1913603.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding authors.

Conflicts of Interest: Author Jie Bai was employed by the company China Construction Eighth
Engineering Division Decoration Engineering Corp., Ltd. The remaining authors declare that the
research was conducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

References
1. Debrah, C.; Chan, A.P.; Darko, A. Artificial intelligence in green building. Autom. Constr. 2022, 137, 104192. [CrossRef]
2. de Soto, B.G.; Agustí-Juan, I.; Hunhevicz, J.; Joss, S.; Graser, K.; Habert, G.; Adey, B.T. Productivity of digital fabrication in

construction: Cost and time analysis of a robotically built wall. Autom. Constr. 2018, 92, 297–311. [CrossRef]
3. Petersen, K.H.; Napp, N.; Stuart-Smith, R.; Rus, D.; Kovac, M. A review of collective robotic construction. Sci. Robot. 2019,

4, eaau8479. [CrossRef] [PubMed]
4. Štibinger, P.; Broughton, G.; Majer, F.; Rozsypálek, Z.; Wang, A.; Jindal, K.; Zhou, A.; Thakur, D.; Loianno, G.; Krajník, T.; et al.

Mobile manipulator for autonomous localization, grasping and precise placement of construction material in a semi-structured
environment. IEEE Robot. Autom. Lett. 2021, 6, 2595–2602. [CrossRef]

5. Dörfler, K.; Dielemans, G.; Lachmayer, L.; Recker, T.; Raatz, A.; Lowke, D.; Gerke, M. Additive Manufacturing using mobile
robots: Opportunities and challenges for building construction. Cem. Concr. Res. 2022, 158, 106772. [CrossRef]

http://doi.org/10.1016/j.autcon.2022.104192
http://dx.doi.org/10.1016/j.autcon.2018.04.004
http://dx.doi.org/10.1126/scirobotics.aau8479
http://www.ncbi.nlm.nih.gov/pubmed/33137745
http://dx.doi.org/10.1109/LRA.2021.3061377
http://dx.doi.org/10.1016/j.cemconres.2022.106772


Buildings 2024, 14, 1026 19 of 20

6. Gawel, A.; Blum, H.; Pankert, J.; Krämer, K.; Bartolomei, L.; Ercan, S.; Farshidian, F.; Chli, M.; Gramazio, F.; Siegwart, R.; et al.
A fully-integrated sensing and control system for high-accuracy mobile robotic building construction. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 2300–2307.
[CrossRef]

7. Melenbrink, N.; Werfel, J.; Menges, A. On-site autonomous construction robots: Towards unsupervised building. Autom. Constr.
2020, 119, 103312. [CrossRef]

8. Gharbia, M.; Chang-Richards, A.; Lu, Y.; Zhong, R.Y.; Li, H. Robotic technologies for on-site building construction: A systematic
review. J. Build. Eng. 2020, 32, 101584. [CrossRef]

9. Sandy, T.; Giftthaler, M.; Dörfler, K.; Kohler, M.; Buchli, J. Autonomous repositioning and localization of an in situ fabricator. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016;
pp. 2852–2858. [CrossRef]

10. Lussi, M.; Sandy, T.; Dörfler, K.; Hack, N.; Gramazio, F.; Kohler, M.; Buchli, J. Accurate and adaptive in situ fabrication of an
undulated wall using an on-board visual sensing system. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 3532–3539. [CrossRef]

11. Hack, N.; Lauer, W.V. Mesh-mould: Robotically fabricated spatial meshes as reinforced concrete formwork. Archit. Des. 2014,
84, 44–53. [CrossRef]

12. Yin, H.; Lin, Z.; Yeoh, J.K. Semantic localization on BIM-generated maps using a 3D LiDAR sensor. Autom. Constr. 2023,
146, 104641. [CrossRef]

13. Xu, Z.; Guo, S.; Song, T.; Zeng, L. Robust localization of the mobile robot driven by LiDAR measurement and matching for
ongoing scene. Appl. Sci. 2020, 10, 6152. [CrossRef]

14. Ardiny, H.; Witwicki, S.; Mondada, F. Construction automation with autonomous mobile robots: A review. In Proceedings of the
3rd RSI International Conference on Robotics and Mechatronics (ICROM), Tehran, Iran, 7–9 October 2015; pp. 418–424. [CrossRef]

15. Dörfler, K.; Hack, N.; Sandy, T.; Giftthaler, M.; Lussi, M.; Walzer, A.N.; Buchli, J.; Gramazio, F.; Kohler, M. Mobile robotic
fabrication beyond factory conditions: Case study Mesh Mould wall of the DFAB HOUSE. Constr. Robot. 2019, 3, 53–67. [CrossRef]

16. Giftthaler, M.; Sandy, T.; Dörfler, K.; Brooks, I.; Buckingham, M.; Rey, G.; Kohler, M.; Gramazio, F.; Buchli, J. Mobile robotic
fabrication at 1: 1 scale: The In situ Fabricator: System, experiences and current developments. Constr. Robot. 2017, 1, 3–14.
[CrossRef]

17. Ercan, S.; Meier, S.; Gramazio, F.; Kohler, M. Automated localization of a mobile construction robot with an external measurement
device. In Proceedings of the 36th International Symposium on Automation and Robotics in Construction (ISARC 2019), Banff,
AB, Canada, 21–24 May 2019; pp. 929–936. [CrossRef]

18. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, present, and future of
simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Robot. 2016, 32, 1309–1332. [CrossRef]

19. Kim, P.; Chen, J.; Cho, Y.K. SLAM-driven robotic mapping and registration of 3D point clouds. Autom. Constr. 2018, 89, 38–48.
[CrossRef]

20. Basiri, M.; Gonçalves, J.; Rosa, J.; Vale, A.; Lima, P. An autonomous mobile manipulator to build outdoor structures consisting of
heterogeneous brick patterns. SN Appl. Sci. 2021, 3, 558. [CrossRef]

21. Lakhal, O.; Chettibi, T.; Belarouci, A.; Dherbomez, G.; Merzouki, R. Robotized additive manufacturing of funicular architectural
geometries based on building materials. IEEE/ASME Trans. Mechatron. 2020, 25, 2387–2397. [CrossRef]

22. Yan, R.J.; Kayacan, E.; Chen, I.M.; Tiong, L.K.; Wu, J. QuicaBot: Quality inspection and assessment robot. IEEE Trans. Autom. Sci.
Eng. 2018, 16, 506–517. [CrossRef]

23. Zhang, X.; Li, M.; Lim, J.H.; Weng, Y.; Tay, Y.W.D.; Pham, H.; Pham, Q.C. Large-scale 3D printing by a team of mobile robots.
Autom. Constr. 2018, 95, 98–106. [CrossRef]

24. Zhang, L.; Zapata, R.; Lepinay, P. Self-adaptive Monte Carlo localization for mobile robots using range finders. Robotica 2012,
30, 229–244. [CrossRef]

25. Tiryaki, M.E.; Zhang, X.; Pham, Q.C. Printing-while-moving: A new paradigm for large-scale robotic 3D Printing. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019;
pp. 2286–2291. [CrossRef]

26. Lázaro, M.T.; Capobianco, R.; Grisetti, G. Efficient long-term mapping in dynamic environments. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 153–160. [CrossRef]

27. Moura, M.S.; Rizzo, C.; Serrano, D. Bim-based localization and mapping for mobile robots in construction. In Proceedings of
the IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Santa Maria da Feira, Portugal,
28–29 April 2021; pp. 12–18. [CrossRef]

28. Kim, K.; Peavy, M. BIM-based semantic building world modeling for robot task planning and execution in built environments.
Autom. Constr. 2022, 138, 104247. [CrossRef]

29. Zhao, X.; Cheah, C.C. BIM-based indoor mobile robot initialization for construction automation using object detection. Autom.
Constr. 2023, 146, 104647. [CrossRef]

30. Xie, D.J.; Zeng, L.D.; Xu, Z.; Guo, S.; Cui, G.H.; Song, T. Base position planning of mobile manipulators for assembly tasks in
construction environments. Adv. Manuf. 2023, 11, 93–110. [CrossRef]

http://dx.doi.org/10.1109/IROS40897.2019.8967733
http://dx.doi.org/10.1016/j.autcon.2020.103312
http://dx.doi.org/10.1016/j.jobe.2020.101584
http://dx.doi.org/10.1109/ICRA.2016.7487449
http://dx.doi.org/10.1109/ICRA.2018.8460480
http://dx.doi.org/10.1002/ad.1753
http://dx.doi.org/10.1016/j.autcon.2022.104641
http://dx.doi.org/10.3390/app10186152
http://dx.doi.org/10.1109/ICRoM.2015.7367821
http://dx.doi.org/10.1007/s41693-019-00020-w
http://dx.doi.org/10.1007/s41693-017-0003-5
http://dx.doi.org/10.3929/ethz-b-000328442
http://dx.doi.org/10.1109/TRO.2016.2624754
http://dx.doi.org/10.1016/j.autcon.2018.01.009
http://dx.doi.org/10.1007/s42452-021-04506-7
http://dx.doi.org/10.1109/TMECH.2020.2974057
http://dx.doi.org/10.1109/TASE.2018.2829927
http://dx.doi.org/10.1016/j.autcon.2018.08.004
http://dx.doi.org/10.1017/S0263574711000567
http://dx.doi.org/10.1109/IROS40897.2019.8967524
http://dx.doi.org/10.1109/IROS.2018.8594310
http://dx.doi.org/10.1109/ICARSC52212.2021.9429779
http://dx.doi.org/10.1016/j.autcon.2022.104247
http://dx.doi.org/10.1016/j.autcon.2022.104647
http://dx.doi.org/10.1007/s40436-022-00411-3


Buildings 2024, 14, 1026 20 of 20

31. Campbell, S.; O’Mahony, N.; Carvalho, A.; Krpalkova, L.; Riordan, D.; Walsh, J. Where am I? Localization techniques for
mobile robots a review. In Proceedings of the 6th International Conference on Mechatronics and Robotics Engineering (ICMRE),
Barcelona, Spain, 12–15 February 2020; pp. 43–47. [CrossRef]

32. Feng, X.; Guo, S.; Li, X.; He, Y. Robust mobile robot localization by tracking natural landmarks. In Proceedings of the
Artificial Intelligence and Computational Intelligence: International Conference, AICI 2009, Shanghai, China, 7–8 November 2009;
Proceedings 1; Springer: Berlin/Heidelberg, Germany, 2009; pp. 278–287. [CrossRef]

33. Zhou, Y. An efficient least-squares trilateration algorithm for mobile robot localization. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 3474–3479. [CrossRef]

34. Xu, H.; Ding, Y.; Wang, R.; Shen, W.; Li, P. A novel radio frequency identification three-dimensional indoor positioning system
based on trilateral positioning algorithm. J. Algorithms Comput. Technol. 2016, 10, 158–168. [CrossRef]

35. Zheng, S.; Li, Z.; Liu, Y.; Zhang, H.; Zou, X. An optimization-based UWB-IMU fusion framework for UGV. IEEE Sens. J. 2022,
22, 4369–4377. [CrossRef]

36. Censi, A.; Franchi, A.; Marchionni, L.; Oriolo, G. Simultaneous calibration of odometry and sensor parameters for mobile robots.
IEEE Trans. Robot. 2013, 29, 475–492. [CrossRef]

37. Li, C.; Wang, S.; Zhuang, Y.; Yan, F. Deep sensor fusion between 2D laser scanner and IMU for mobile robot localization. IEEE
Sens. J. 2019, 21, 8501–8509. [CrossRef]

38. Erdem, A.T.; Ercan, A.Ö. Fusing inertial sensor data in an extended Kalman filter for 3D camera tracking. IEEE Trans. Image
Process. 2014, 24, 538–548. [CrossRef] [PubMed]

39. Cui, Y.; Liu, S.; Yao, J.; Gu, C. Integrated positioning system of unmanned automatic vehicle in coal mines. IEEE Trans. Instrum.
Meas. 2021, 70, 8503013. [CrossRef]

40. Wang, J.; Alipouri, Y.; Huang, B. Dual neural extended Kalman filtering approach for multirate sensor data fusion. IEEE Trans.
Instrum. Meas. 2020, 70, 6502109. [CrossRef]
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