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Abstract: Utilizing a variety of solid wastes to prepare alkali-activated cementitious materials is
one of the principal trends in the development of cementitious materials. Commonly used alkali
activation precursors such as granulated blast furnace slag (GBFS) and fly ash (FA) will be less
available due to resource pressures. Supply limitation is an important reason to research alternative
precursors. To realize the high value-added utilization of copper–molybdenum tailings (CMTs), this
study adopted the modified sodium silicate solution as an alkaline activator to activate GBFS-FA-
CMTs cementitious system to prepare alkali-activated cementitious materials. The influence of CMTs
content on the compressive strength of GBFS-FA-CMTs cementitious system was analyzed, and the
mechanism of GBFS-FA-CMTs cementitious system was also analyzed through hydration product
types, physical phase composition, and microscopic morphology. The results indicated that a paste
with the incorporation of CMTs, S50F30C20 (50% GBFS, 30% FA, 20% CMTs), achieved the highest
compressive strength of 79.14 MPa, which was due to the filling effect of the CMTs and the degree of
participation in the reaction. Pastes with different contents of CMTs, while maintaining a constant
CBFS content, exhibited similar strength development. Excessive amounts of CMTs could result in
reduced compressive strength. Microstructural analysis revealed that the hydration products were
structurally altered by the addition of CMTs. In addition to ettringite, quartz, C(-N)-S-H gel, and
calcite, gaylussite was also formed; moreover, the mass of chemically bound water increased, and the
microstructure of reaction products became denser. An excess of CMTs may restrict the growth of the
hydration gel, leading to more microstructural defects. The study suggests that CMTs could enhance
the compressive strength of hardened paste within an alkali-activated slag-fly ash system, possibly
due to a filling effect and participation in the chemical reaction. This research confirms the feasibility
of using CMTs in alkali-activated cementitious materials.

Keywords: alkali activation; copper–molybdenum tailings; compressive strength; microstructure

1. Introduction

Cement plays an indispensable role in the construction industry and is one of the
main materials for buildings [1]. Data indicate that the global annual production of cement
was as high as 4 billion tons [2]; in particular, the annual production of cement in China
accounted for 51.17% of the global annual production [3]. It was projected that by 2050,
the annual production of cement will increase to about 6 billion tons [4]. However, the
production of cement emits carbon dioxide and other gases that contribute to environmental
pollution [5]. Specifically, carbon dioxide emission during cement production primarily
originated from the production of clinker [6]. Statistics show that the production of one ton
of cement clinker results in the emission of 0.9 to 1 ton of carbon dioxide [5], with the
global cement industry contributing to 8% of total carbon emissions [7], causing severe
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environmental pollution. Moreover, large amounts of energy, raw materials, and resources
are consumed in the production of cement [8]. Energy consumption for cement production
has been reported to be about 110–120 kilowatt-hours per ton, accounting for a considerable
proportion of the total industrial energy consumption [9]. Therefore, the high pollution and
high energy consumption of cement production make it an urgent task to find alternative
green building materials.

On the other hand, as the industrialization process of countries accelerates, a large
amount of industrial solid waste accumulates without effective utilization [10]. Mine
tailings, as a kind of industrial solid waste produced after mineral beneficiation and the
recovery of ores, are also increasing in both storage and emission volumes [11]. The storage
of mine tailings occupies a significant amount of land resources, and tailings dams may
pose risks of secondary disasters such as landslides and debris flows, threatening the safety
of surrounding areas [12,13]. Tailings may contain heavy metals, harmful chemicals, and
other pollutants, which can be released into the environment, causing pollution to soil,
water, and air [14]. However, not all components of mine tailings are harmful; valuable
metal elements in the tailings could be recycled and reused [15]. Most mine tailings
contain minerals such as aluminum, calcium, and silicates, which could be used to develop
related building material products [16,17]. Thus, the resource utilization of tailings and
the development of related building materials are key to addressing resource waste and
environmental pollution.

Alkali-activated materials (AAMs) have alleviated the environmental pollution issues
associated with cement [18,19]. AAMs consist of an alkali activator and a precursor [20],
with similar compressive strength and durability properties to Portland cement [21]. Com-
monly used alkali activation precursors such as GBFS and FA will be less available due
to resource pressures. Supply limitation is an important reason to research alternative
precursors [22]. AAMs could consume vast quantities of industrial solid waste such as FA,
iron ore tailings, and GBFS [23–25] and save up to 14% of the cost of replacing precursors
and activators with industrial residues [26], making them one of the most promising green
cementitious materials [27,28]. In previous studies on industrial solid waste as AAMs pre-
cursors, the most common were GBFS, FA, metakaolin, and tailings [21,29]. Some studies
indicated that GBFS prepared cementitious materials with compressive strengths compa-
rable to Portland cement [30]. AAMs prepared from finely ground electric arc furnace
stainless steel slag (EAFSS) and ground GBFS had reduced the heat of hydration released
by the paste, positively influencing the paste properties, extending the setting time, and
achieving a compressive strength value exceeding 85 MPa at a 1:1 mass ratio of EAFSS to
ground GBFS after 28 days [31]. Additionally, the mechanical properties and durability of
AAMs might be affected by different environmental and curing conditions [32].

Utilizing synergistic effects between GBFS and other types of industrial solid wastes
could lead to the production of high-performance, environmentally friendly construction
materials [22]. A synergistic effect was exhibited within an alkaline environment between
GBFS and red mud; when GBFS was partially replaced by red mud, its mechanical proper-
ties were comparable to or better than those samples without added red mud [33]. AAMs
prepared using GBFS, FA, and limestone demonstrate that the raw material components
of FA and limestone had a minuscule impact on compressive strength, with the reaction
process predominantly controlled by blast furnace slag [34]. The investigation found that
the microstructure of AAMs developed from mechanically treated tailings became denser
and more uniform, resulting in an increased compressive strength [35]. Research indi-
cated that submicron mine tailings particles play the role of fillers as precursors and that
the reaction process can be accelerated to improve the microstructure of alkali-activated
pastes [36]. Furthermore, Tian et al. [37] pointed out that prepared AAMs with 90% mass
of copper tailings and 10% mass of FA as precursors increased the compressive strength
of AAMs. Research by [38] also reached similar conclusions. Geopolymer composites
prepared from copper tailings demonstrated excellent mechanical properties [39]. Wang
et al. [40] adopted the copper tailings–GBFS system, and the compressive strength was
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increased by 5.5–19.8% at 28 d. Molybdenum tailings and GBFS were used to prepare a
one-part geopolymer, and the compressive strength of the geopolymer reached 44 MPa at
28 d with 80% slag content [41]. Copper tailings can be used as raw materials and addi-
tives to produce cement [42]. Alkali-activated molybdenum tailings were used to produce
ecological Ultra High-Performance Composites [43], which provided a new application in
recycling industrial solid wastes.

Although the effects of various mine tailings on the properties and hydration mech-
anisms of alkali-activated cementitious materials have been investigated, relatively few
studies have been conducted on the use of CMTs to replace GBFS and FA in the prepa-
ration of cementitious materials. To realize the high value-added utilization of CMTs,
alkali-activated cementitious materials were prepared with GBFS, FA, CMTs, and modified
sodium silicate solution as the main raw materials in this study. CMTs were used as a
calcium source to provide the activated calcium required for the alkali-activated system.
The influence of CMTs content on the compressive strength of the alkali-activated GBFS-
FA-CMTs system (AASFCS) was analyzed. The physical composition and microstructure
of the hydration products were characterized using X-ray diffraction (XRD), Fourier trans-
form infrared spectroscopy (FTIR), scanning electron microscopy-energy spectroscopy
(SEM-EDS), and thermos-gravimetric and derivative thermos-gravimetric (TG-DTG). This
study can reduce the environmental pollution caused by industrial solid waste and cement
production and provide a basis for the optimization of the mechanical properties of CMTs
alkali-activated cementitious materials.

2. Materials and Methods
2.1. Materials

The experimental raw materials of this study were finely ground GBFS, FA, and
CMTs. The CMTs are solid waste generated from the flotation extraction of copper and
molybdenum concentrates from copper–molybdenum ore. The LOI of CMTs, GBFS, and
FA were 7.45%, 0.84%, and 2.37%, respectively. The 28 d activity index of CMTs, GBFS, and
FA were 68.26%, 98.50%, and 84.20%, respectively. The chemical composition and XRD
patterns of GBFS, FA, and CMTs are shown in Table 1 and Figure 1, respectively.

Table 1. Main chemical compositions of GBFS, FA, and CMTs.

Oxides (wt.%) GBFS FA CMTs

SiO2 31.98 60.24 28.42
CaO 36.91 2.49 41.52

Al2O3 17.22 29.38 4.41
K2O 1.60 1.24 1.37

Fe2O3 0.62 3.78 11.01
MgO 9.27 0.50 1.39
SO3 1.81 0.26 0.91

MnO 0.12 0.05 0.95

The median particle size (D50) of the CMTs was 282.7 µm, indicating a relatively coarse
granularity. Hence, the copper–molybdenum tailings used in this study were mechanically
milled for 10 min. The particle size distribution of the milled CMTs, measured using a
Bettersizer 2600 particle size analyzer, is depicted in Figure 2, with a post-milling median
particle size (D50) of 6.28 µm. The activator used was a modified sodium silicate solution,
prepared by adding an appropriate amount of sodium hydroxide particles (analytical level)
to the sodium silicate solution with the modulus (Ms, SiO2/Na2O molar ratio) of 3.3. The
modified sodium silicate solution was returned to room temperature and adjusted to the
desired water–solid ratio by adding distilled water, and the solution was stored for 24 h.
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Figure 1. XRD patterns of GBFS, FA, and CMTs.
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Figure 2. Particle size distribution of ground CMTs, GBFS, and FA: (a) incremental particle size
distribution; (b) cumulative particle size distribution.

2.2. Sample Preparation

To analyze the impact of CMTs on the compressive strength of AASFCS, the hardened
paste was prepared. Based on the principle of providing sufficient alkalinity without
efflorescence [10] and based on preliminary studies, the modulus of the activator was
determined to be 1.2. The mass ratio of the modified sodium silicate solution to the total
mass of the solution in the mixture, which represents the activator mass concentration
(Mc), was fixed at 45%. Three levels of slag content were used—50%, 40%, and 30% by
mass [44–46]—along with CMTs additions ranging from 0% to 50%, and the liquid-to-solid
ratio was maintained at 0.4. Detailed information regarding the mix proportions can be
found in Table 2.

The hardened paste was prepared in a paste mixer; GBFS, FA, and CMTs were mixed
in the mixer, and then pre-prepared modified sodium silicate solution was added. All
components were combined at low speed for 30 s, paused for 30 s, and then mixed at high
speed for 120 s. The fresh paste would be poured into 40 × 40 × 40 mm plastic molds and
vibrated for 60 s before being covered with transparent film on the surface of the mold
for 24 h. Subsequently, all samples were demolded and cured to test age at 20 ± 2 ◦C and
95% relative humidity. Figure 3 illustrates the preparation and microstructural examination
process of the prisms.
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Table 2. Mixture proportions of samples.

Activator
Solid Raw Materials

GBFS
(wt%)

FA
(wt%)

CMTs
(wt%)

GBFS
(kg/m3)

FA
(kg/m3)

CMTs
(kg/m3)

S50F50C0

Ms 1 = 1.2
Mc 2 = 45%

50 50
0

150 150
0S40F60C0 40 60 120 180

S30F70C0 30 70 90 210
S50F40C10 50 40

10
150 120

30S40F50C10 40 50 120 150
S30F60C10 30 60 90 180
S50F30C20 50 30

20
150 90

60S40F40C20 40 40 120 120
S30F50C20 30 50 90 150
S50F20C30 50 20

30
150 60

90S40F30C30 40 30 120 90
S30F40C30 30 40 90 120
S50F10C40 50 10

40
150 30

120S40F20C40 40 20 120 60
S30F30C40 30 30 90 90
S50F0C50 50 0

50
150 0

150S40F10C50 40 10 120 30
S30F20C50 30 20 90 60

1 Modulus, 2 Mass concentration.
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2.3. Testing Methods

According to Chinese Standard GB/T 17671-2021 [47], the specimen size was deter-
mined as 40 mm × 40 mm × 40 mm; a picture of the plastic molds is shown in Figure 3. A
constant-load compression testing machine was used for the 28 d age compressive strength
test; the loading speed was 2.4 kN/s. Each mix proportion consisted of two specimens,
and the average of the test results would be used as the final compressive strength for that
group. If one of the test results was greater or less than 15% of the mean, the group failed,
and the experiment was repeated.

After the compressive strength test was completed, fragments from the middle part
of the specimen were soaked in anhydrous ethanol for 24 h to abort hydration; then the
specimen fragments were dried in 40 ◦C oven for 24 h. The dried specimen fragments were
ground and passed through a −75 µm sieve, and 10 mg was taken for XRD analysis, with a
test range of 10◦ to 75◦ and a scanning speed of 5◦/min, 10 mg of the same sample is used
for TG-DTG analysis, with a test temperature range of 30 ◦C to 1000 ◦C and a heating rate
of 20 ◦C/min. Next, 1 mg of the dried sample was thoroughly ground with 100 mg of pure
KBr in an agate mortar, pressed into a disc, and then analyzed using Fourier-transform
infrared spectroscopy, with a wavenumber range of 4000–400 cm−1.

A scanning electron microscope, model ZEISS Sigma 500, could be used to analyze
morphological variations in the microstructure of hydration products in the sample. After
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the compressive strength test, thin flake-like sample fragments are selected, soaked in
anhydrous ethanol, and dried in 40 ◦C oven for 24 h, then fixed on an aluminum plate with
conductive tape for gold sputtering to observe and analyze the microscopic morphology
of the hardened paste and to perform EDS analysis. Figure 4 shows the preparation and
microanalysis process of AASFCS.
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3. Results and Discussion
3.1. Compressive Strength

After 28 days of curing, the compressive strength of the AASFCS paste mixtures was
presented in Figure 5. The data indicated that the samples exhibited a similar trend in the
development of compressive strength when the GBFS content was at 50%, 40%, and 30%.
With a constant GBFS content, an increase in CMTs content from 0% to 20% resulted in
an increase in compressive strength at 28 days. For example, in samples with 50% GBFS
content, an increase in CMTs from 0% to 20% enhanced the 28 d compressive strength
from 74.8 MPa to 79.14 MPa. Similar results were observed for samples with 40% and 30%
GBFS content, with the 20% CMTs content samples exhibiting the highest compressive
strength. Excess CMTs could lead to reduced compressive strength. This outcome might be
attributed to the filling effect of CMTs, from which the addition of CMTs increased the fine
particle content in the mixture (as shown in Figure 2), leading to a denser sample structure.
Additionally, the fine particles of CMTs provided extra activation sites which promote the
formation of reaction products, thereby enhancing strength. Furthermore, the reaction
between CMTs and the modified sodium silicate solution might increase the variety of
reaction products and alter the structure of the reaction products, resulting in changes in
compressive strength.
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Figure 5. Compressive strength of AASFCS cured for 28 d.

It could be seen that when the content of CMTs was held constant, the compressive
strength of the specimens increased with the increase in the amount of CBFS. For instance,
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with 0% CMTs content, when the CBFS content was reduced from 50% to 30%, the 28 d
compressive strength decreased from 74.8 MPa to 34.15 MPa. When the CMTs content
was at 20%, the samples for each CBFS content level reached their maximum compressive
strength. Existing research has demonstrated the significant impact of CBFS content on the
compressive strength of the alkali-activated system, affecting both the setting time and the
reaction process [48]. Under the condition of constant CBFS content, varying the amounts
of FA and CMTs influences the compressive strength of the samples by only 8–20%, while
samples with different CMTs contents exhibited similar strength development. Considering
the increase in CMTs content alongside a decrease in FA content, it seems FA retained a low
reactivity after 28 days of curing at room temperature.

3.2. XRD Analysis

The XRD patterns of the 28-day cured AASFCS paste mixtures (with 50% GBFS content)
are shown in Figure 6. The changes in the crystalline peaks of the reaction products in the
samples were related to the content of FA and CMTs in the AASFCS. The main mineral
phases in sample S50F50C0 were ettringite, quartz, C(-N)-S-H gel, and calcite [49], while
the samples with added CMTs exhibit the presence of the complex salt phase CaNa2(CO3)2.
Gaylussite (CaNa2(CO3)2·5H2O) could be observed in the XRD pattern at approximately
2θ = 36.2◦ [50]. The presence of gaylussite implies the dissolution of Ca2+ from CMTs under
alkaline conditions, suggesting that hydration of CMTs may occur in the presence of alkali.
The CaCO3 in CMTs may interact with Na+, with Na+ partially substituting the calcium
ions in the crystal structure of calcium carbonate, forming a new complex salt crystal of
CaNa2(CO3)2. This substitution results in Ca2+ and Na+ occupying the octahedral voids
between [CO3]2−, leading to a denser structure.
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Figure 6. XRD patterns of AASFCS cured for 28 d. (1—Ettringite, 2—Quartz, 3—C(-N)-S-H gel,
4—Calcite, 5—Gaylussite, 6—Mullite).

3.3. FTIR Analysis

After curing for 28 days, the AASFCS (50% GBFS) were characterized by FTIR spec-
troscopy (Figure 7). The spectra of different samples showed similar curves, with major
vibrational bands at 3448 cm−1, 1645 cm−1, 1428 cm−1, 990 cm−1, 970 cm−1, 875 cm−1,
and 450 cm−1. Post-alkali activation, the absorption peaks at 3448 cm−1 and 1645 cm−1

corresponded to the bending and stretching vibrations of H-O-H and O-H [31], respectively,
confirming the presence of crystalline water in the hydration products of AASFCS. The
bands at 1428 cm−1 and 875 cm−1 were attributed to the asymmetric stretching and bending
vibrations of O-C-O in carbonates [31], indicating a significant increase in the intensity of
the CO3

2− group absorption band with an increase in the copper–molybdenum tailings
content. The bands at 990 cm−1 and 970 cm−1 correlated to the asymmetric stretching
vibrations of Si-O-Si or Si-O-Al [51], suggesting that the major hydration product was the
C(-N)-S-H gel. The shift in these band positions confirmed changes in the structure of the
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hydration products, consistent with XRD results. The absorption peak at 450 cm−1 was
due to the bending vibrations of Si-O and Al-O [51]. Given the limited information on
the composition of hydration products provided by FTIR, further analysis was conducted
using EDS to more precisely differentiate the composition of the hydration products.
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Figure 7. FTIR spectra of AASFCS cured for 28 d.

3.4. TG Analysis

Figure 8 presented the TG and DTG curves of the AASFCS paste mixtures with a
GBFS content of 50% after 28 days of curing. As can be observed from Figure 8, there
were three main weight loss peaks in the cured paste mixture samples, with the first and
third peaks being more pronounced. Specifically, significant weight loss occurred between
100–200 ◦C and 700–800 ◦C, which was similar to the analysis results of the study by [4].
The weight loss peaks in the mixtures containing CMTs were more pronounced compared
to the S50F50C0 sample.
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Figure 8. TG-DTG analysis of AASFCS cured for 28 d: (a) TG analysis; (b) DTG analysis.

The weight loss peak between 100 and 200 ◦C, occurring around 130 ◦C, was attributed
to the evaporation of free water and dehydration of the C-S-H gel [52]. The second weight
loss region, between 450 and 550 ◦C with a peak around 540 ◦C, was due to the dehydration
of the C(-A)-S-H gel [53], which was present in smaller quantities in the samples, consistent
with the analysis results from XRD and FTIR. As the temperature continued to rise, the
third weight loss region appeared between 700 and 800 ◦C, with the peak concentrated
around 750 ◦C, primarily due to the decomposition of carbonates [54].
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To investigate the impact of incorporating CMTs on the reaction products, the content
of physically bound water (PBW) and chemically bound water (CBW) in the samples was
calculated based on the TG-DTG results, as shown in Figure 9. The PBW content of the
samples was calculated based on the mass loss before 105 ◦C, while the CBW content was
determined by the dehydration mass loss between 105 ◦C and 200 ◦C [34]. The addition
of CMTs generally resulted in a decrease in the content of physically bound water, but
an increasing trend in the mass of chemically bound water in the samples was observed.
The possible explanation for this phenomenon could be found in the XRD results, which
indicate that the addition of CMTs leads to the generation of additional hydration products;
hence the increase in chemically bound water. On one hand, this might be due to the fine
particles in CMTs providing additional nucleation sites that enhance the hydration product
formation and reduce porosity, leading to a slight increase in the amount of chemically
bound water. On the other hand, it might be due to the Ca2+ ions released from CMTs
under the action of alkaline solutions.
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Figure 9. Mass fraction of PBW and CBW in AASFCS cured for 28 d.

3.5. SEM/EDS Analysis

To further clarify the influence of the copper–molybdenum tailings dosage on the
composition and microstructure of the hydration products in the AASFCS paste mixtures,
SEM and EDS spot scans were performed on the samples after 28 days of curing. The
micro-morphology of the samples S50F50C0, S50F30C20, S50F0C50, and S50F30C20 is
shown in Figure 10a–d. It was noteworthy that the presence of CMTs significantly affected
the morphological characteristics of the hydration products.

As shown in Figure 10a, a certain amount of flake-like and chain-like hydration prod-
ucts could be directly observed. The hydration products were mainly C-S-H, C(-A)-S-H,
and C(-N)-S-H. The calcium and aluminum components from GBFS and FA participate
in the reaction to form C(-A)-S-H. The spherical particles of fly ash were surrounded by
hydration products, which provided compressive strength to the samples. However, some
unreacted intact spherical FA particles were still visible, with numerous pores formed
between the hydration products and the unreacted particles, and microcracks were also
present between the hydration products. Figure 10b,d depict the microstructure of the
mixture samples with 20% CMTs added, with the main type of hydration product being
C(-A)-S-H, among others. The FA particles enwrapped by hydration products could be
directly observed. Notably, there was also a large amount of three-dimensional block-like
products in the mixture samples, which were gaylussite (CaNa2(CO3)2·5H2O) formed
in solutions with lower Na+ concentration, consistent with the XRD results. Compared
to the S50F50C0 sample in Figure 10a, the unreacted raw material particles were hardly
visible in Figure 10d. FA and GBFS participated sufficiently in the hydration reaction to
form silicate gels. FA spheres wrapped in gaylussite with silicate gels to form a contin-
uous whole. Due to the addition of CMTs, microdefects such as micropores and cracks
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were significantly reduced, resulting in a denser microstructure. This dense and compact
structure was conducive to achieving higher compressive strength. Figure 10c showed
the sample with 50% CMTs added, with the main hydration products being C-S-H and
gaylussite (CaNa2(CO3)2·5H2O). The excess CMTs particles seemed to limit the growth of
the hydration gel, leading to poorer continuity and more microdefects in the sample, hence
exhibiting lower compressive strength.
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Figure 10. SEM images of AASFCS cured for 28 d: (a) Sample S50F50C0; (b) Sample S50F30C20;
(c) Sample S50F0C50; (d) Sample S50F30C20.

Figure 11 presents the EDS results of the elements Ca, Si, Mg, Al, Fe, and O in the
sample S50F30C20 from Figure 10d. The composition of the elements Ca, Si, Mg, Al, Fe,
and O in the microstructure of the sample S50F50C0 from Figure 10a is shown in Figure 12.
The Ca/Si atomic ratio of the hydration products of sample S50F30C20 were calculated to
be in the range of 1.8 to 2.3, which was slightly higher than the data reported in existing
studies [50,55]. The Ca/Si atomic ratio of the hydration products in sample S50F50C0
was 0.8, which was consistent with the data from current research. Figure 13 illustrated
the Ca/Si and Ca/Al atomic ratios of sample S50F30C20, sample S50F50C0, and the raw
materials. The changes in the content of Ca in the hydration products of the samples
induced by the addition of CMT were analyzed in comparison.
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Figure 13. The Ca/Si and Ca/Al atomic ratios of sample S50F30C20, sample S50F50C0, and the
raw materials.

The incorporation of CMTs significantly increased the Ca/Si atomic ratio in the hy-
dration products of the samples. This phenomenon was primarily due to the chemical
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composition differences of the CMTs. Although the relationship between the Ca/Si ratio
and compressive strength was not yet clear, a higher Ca/Si atomic ratio contributes to
suppressing the drying shrinkage of the samples and further improves the continuity of the
microstructure [56], which aligned with the results of the SEM microstructure analysis. EDS
results indicated that the atomic percentage of Na in the structure of hydration products
varies between 0.91% and 15.67%. The Ca/Na atomic ratio in sample S50F30C20 was
0.92–16.23, an increase compared to the 0.71 ratio in S50F50C0, suggesting that the addition
of CMTs promotes the development of C(-A)-S-H, consistent with the XRD test results. The
EDS results also showed that the Al/Ca atomic ratio in sample S50F30C20 ranges from 0.12
to 0.54.

After 28 days of curing, the microstructure and surface scanning results of the AASFCS
paste mixture sample S50F30C20, which exhibited the best compressive strength, are shown
in Figure 14. The varying brightness of regions represents different content levels of
elemental distribution, with brighter areas indicating higher elemental content.
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By calculation, the Ca/Si atomic ratio in Figure 14a turned out to be 2.83, which was
much higher than that of sample S50F50C0, which showed that the addition of CMTs had
increased the calcium component, consistent with the EDS point scan analysis results. The
percentage of calcium atoms in the sample was the highest compared to the percentages
of sodium, aluminum, and silicon atoms, and the uniform distribution of calcium in the
sample suggested that calcium was present in all the minerals. The uniform distribution of
silicon, aluminum, and oxygen represented the distribution of hydration products such
as C(-A)-S-H gels in the sample. The uneven distribution of sodium suggested the non-
uniformity of the activating effect of the modified sodium silicate, indicating that further
research was needed to improve the uniform action of the alkali activator.

4. Conclusions

CMTs demonstrate promising application potential in the field of alkali-activated
cementitious materials, and this paper aims to provide a rationalized technical approach
and data support for the preparation of cementitious materials from CMTs. The study
investigates the influence of CMTs on the compressive strength of AASFCS. Based on the
experimental results, the following conclusions could be drawn:

1. The AASFCS paste with the incorporation of CMTs, S50F30C20 (50% GBFS, 30% FA,
20% CMTs), achieved the highest 28 d compressive strength, achieving up to 79.14 MPa.
When the CBFS content was kept constant, varying the amounts of FA and CMTs
affected the compressive strength of the samples in the range of 8% to 20%, with sam-
ples containing different amounts of CMTs showing similar strength development.
When the CMTs content was constant, the compressive strength of the specimens
increased with the increase in the amount of CBFS.

2. FTIR spectroscopy and XRD analysis indicated that the reaction products of AASFCS
mainly included ettringite, quartz, C(-N)-S-H gel, and calcite, with the presence of
CMTs leading to the formation of the complex salt phase gaylussite. TG-DTG results
once again confirmed the types of reaction products in AASFCS, with an increasing
trend in the mass of chemically bound water in hydration products after the addition
of CMTs.

3. SEM and EDS results showed that the presence of CMTs increases the calcium element
in the hydration products, significantly affecting the morphological characteristics
of the hydration products. Under the optimal proportion conditions of AASFCS,
the reaction products formed a continuous and unified whole, resulting in a denser
microstructure. Excessive CMTs particles might restrict the growth of the hydration
gel, leading to poor continuity and more micro-defects in the samples, which exhibit
lower compressive strength.

4. CMTs in AASFCS might improve the compressive strength due to both filling effects
and participation in chemical reactions. On the one hand, the fine particles in CMTs
provided additional nucleation sites that promoted the formation of hydration prod-
ucts, thereby leading to a slight increase in compressive strength. On the other hand,
the increase in compressive strength might be attributed to the release of Ca2+ from
CMTs under the action of alkaline solutions, which participated in the reactions.

It is necessary to acknowledge the limitations of this work. As this research focuses on
the influence of CMTs on the compressive strength of AASFCS, the role played by sodium
silicate and type of cementitious material in strength development was not specifically
analyzed, and other properties of CMTs alkali-activated cementitious materials were not
captured, which may affect the applicability of CMTs alkali-activated cementitious materi-
als. In the next study, the influence of CMTs on the setting time, fluidity, and shrinkage
properties of alkali-activated cementitious materials will be explored, and the influence of
sodium silicate on the reaction mechanism of CMTs will be investigated. Given the high
calcium content of CMTs, further research on the reaction mechanism and basic properties
of other high-calcium alkali-activated cementitious materials with CMTs will be considered
to provide theoretical basis and technical support for large-scale practical application.
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