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Abstract: The prediction of torque capacity in circular Concrete-Filled Double-Skin Tubular (CFDST)
members under pure torsion is considered vital for structural design and analysis. In this study,
torque capacity is predicted using machine learning (ML) algorithms, such as Categorical Boosting
(CatBoost), Extreme Gradient Boosting (XGBoost), Gradient Boosting Machine (GBM), Random Forest
(RF), and Decision Tree (DT), which are employed. The interpretation of the results is conducted
using Shapley Additive Explanations (SHAPs). The performance of these ML models is evaluated
against two traditional analytical formulas that have been proposed and are available in the literature.
Through comprehensive analysis, it is shown that superior predictive capabilities are possessed
by the CatBoost and XGBoost models, characterized by high R2 values and minimal mean errors.
Additionally, insights into the influence of input features are provided by SHAP interpretation, with
an emphasis on key parameters such as concrete compressive strength and steel tube dimensions. The
gap between empirical models and ML techniques is bridged by this study, offering engineers a more
accurate and efficient tool for CFDST structural design. Significant implications for optimizing CFDST
column designs and advancing structural engineering practices are presented by these findings.
Directions for future research include the further refinement of ML models and the integration of
probabilistic analyses for enhanced structural resilience. Overall, the transformative potential of ML
and SHAP interpretation in advancing the field of structural engineering is showcased by this study.

Keywords: CFDST columns; torque capacity; CatBoost; XGBoost; SHAP analysis

1. Introduction

Prominence in the construction industry has been gained by Concrete-Filled Double-
Skin Steel Tube (CFDST) columns due to their inherent advantages, including high load-
bearing capacity [1], high strength-to-weight ratio [2], and favorable dynamic characteris-
tics [3] compared to traditional composite columns. An innovative solution for modern
load-bearing structures is offered by these columns, contributing to the efficiency and
sustainability of engineering projects. However, a complex challenge remains the accurate
prediction of the torque capacity of CFDST columns under torsion loading conditions [4],
and provisions for this are still lacked by modern structural design standards.

In a bid to understand this complex behavior, a few experimental (e.g., [5–7]) and
numerical studies (e.g., [8,9]) have been conducted by researchers. Experiments on the
torque behavior of tapered CFDST columns with large hollow ratios ranging from 0.75
to 0.9 under two loading modes: pure torsion and combined compression-torsion, were
conducted by Deng et al. [5]. Through test investigation and numerical analysis, the torque
behavior of CFDST columns under combined compression and cyclic torsion was studied
by Zhang et al. [6], who proposed axial compression–torque correlation equations and for-
mulas for predicting the torque capacity of CFDST columns under combined compression
and torsion via regression analysis. The behavior of CFDST members under pure torsion
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was investigated by Huang et al. [7], who employed nonlinear finite element analysis
(NLFEA) to examine failure modes, torque–rotation curves, and the interaction between
steel tubes and concrete in CFDSTs. Reasonably well with experimental data were aligned
the results from NLFEA by their study, which identified six key parameters influencing
torque versus torsional rotation curves in CFDST members.

Numerical investigations to understand the torsional behavior of CFDST columns
have also been carried out. An NLFEA study on the torsional behavior of circular CFDST
columns was conducted by Lu et al. [4], who established a refined NLFEA model, vali-
dated using experimental results. Through parametric analyses, the influence of significant
parameters, such as concrete strength, steel tube properties, and aspect ratio, on the tor-
sional capacity of circular CFDST columns, was explored by their research, resulting in the
proposal of accurate design formulas for predicting torsional capacity, with demonstrated
accuracy in comparison to tests. In a related study, the numerical analysis of torsional
behavior was focused on by Lu et al. [8], but their attention was shifted to rectangular
and square CFDST members. They successfully developed NLFEA models, validating
them against experimental data. Parametric investigations to assess the effects of factors
such as hollow ratio, concrete strength, steel yield strength, and steel tube cross-sectional
properties on the torsional response of these members were conducted. The outcome
was the formulation of precise design formulas for predicting the torsional capacity of
rectangular and square CFDST members.

Turning their attention to an emerging area, the behavior and bearing capacity of ta-
pered CFDST members that fall outside the realm of traditional design codes were explored
by Wang et al. [9]. They used numerical and theoretical research methods, including NLFEA,
to understand how these tapered CFDST members respond to torsional and compression–
torsion loads. Their study introduced a modified design method, especially suitable for
predicting the performance of tapered CFDST members with out-of-code parameters.

While the aforementioned studies have significantly advanced our understanding of
CFDST columns’ behavior under torsion and provided foundational insights for design and
analysis, several limitations persist within the current body of research. Firstly, many of the
experimental [5–7]) and numerical studies [8,9] focused on specific column configurations
or loading conditions, limiting the generalizability of their findings. Furthermore, the com-
plex interactions between the concrete core, inner, and outer steel tubes under torsion
are not fully explored, especially for columns with non-standard geometries or material
properties. Additionally, the current methods for predicting torque capacity primarily
rely on the empirical formulas derived from limited datasets, which may not accurately
capture the behavior of CFDST columns under diverse conditions. Moreover, the lack
of comprehensive design provisions for torsion in CFDST columns in existing structural
design standards underscores the need for a more versatile and robust prediction tool.

Often relying on analytical methods (e.g., [4,7]), which may not adequately capture the
complex behavior of these columns under pure torsion, are conventional approaches for
estimating torsional capacity. To the best of the authors’ knowledge, the torsion provisions
for CFDST columns are not addressed by any current structural design standard. To address
these limitations, this paper introduces a novel data-driven analysis using machine learning
(ML) techniques for predicting the torque capacity of circular CFDST columns.

Significant attention in various engineering disciplines due to their capacity to com-
prehensively analyze large datasets [10], identifying complex patterns and relationships
that may not be evident through conventional methods [11], has been gained by ML
in recent years. Several recent studies have explored the application of ML techniques
in predicting the strength of concrete-filled steel tubular (CFST) columns under various
loading conditions. A framework utilizing the gradient tree boosting (GTB) algorithm to
forecast the strength of CFST columns subjected to concentric loading was introduced by
Vu et al. [10]. An artificial neural network (ANN) model tailored to estimate the ultimate
compressive strength of square CFST columns, demonstrating enhanced performance com-
pared to traditional design codes, was proposed by Le [12]. The integration of mechanism
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analysis with machine learning models, particularly Gaussian process regression (GPR),
to predict the axial compression strength of circular CFST columns, was investigated by
Hou and Zhou [13]. Their findings suggested superior accuracy and broader applicability
compared to existing design standards. Similarly, a machine learning model capable of
estimating the axial capacity of both circular and rectangular CFST columns under various
loading conditions, offering a high level of accuracy and serving as a viable alternative to
empirical and theoretical formulations, was developed by Faridmehr and Nehdi [11].

The exploration of ML techniques in structural engineering, particularly for predicting
the behavior of CFST columns, has showcased the potential for highly accurate predictions
that often exceed conventional design standards. Despite these advancements, the ML
literature reveals gaps such as a limited focus on the torsional behavior of CFDST columns
and challenges in model interpretability and data availability. Our study aims to bridge
these gaps by specifically targeting the prediction of torque capacity in CFDST columns
under torsion, leveraging a comprehensive database derived from NLFEA simulations for
model training and validation. In doing so, we not only enhance the predictive accuracy
and applicability of ML models but also contribute to the structural engineering domain by
providing interpretable models that elucidate the complex interplay of factors influencing
torsional capacity. This approach marks a significant step forward in the application of
data-driven methodologies to the nuanced field of structural engineering, addressing both
the technical and practical challenges highlighted in previous research.

This study aims to develop reliable and accurate predictive ML models for estimating the
torque capacity of circular CFDST columns under pure torsion. By leveraging ML algorithms,
the intricate behavior of these columns, considering multiple influencing factors, and provid-
ing comprehensive prediction tools for structural engineers, are sought to be captured. A new
database, integrating data from multiple NLFEA instances to ensure the adequacy and diver-
sity of the training set, is compiled. The integration of ML in the analysis of CFDST columns
represents a significant advancement in structural engineering. This data-driven approach
offers the potential to overcome the limitations of conventional methods and provide more
accurate and reliable estimates of torque capacity. The outcomes of this study are expected to
enhance the design and performance of CFDST columns in various engineering applications,
ultimately contributing to safer and more efficient structures.

2. Finite Element Modeling

In this section, the details of Finite Element Modeling for the analysis of circular
CFDST columns is presented, with a focus particularly on their response to pure torsional
loading. It begins with an overview of the experimental studies adopted for validation and
the NLFEA modeling strategies that are employed.

2.1. Experimental Studies

Consideration is given to six (6) CFDST members with circular hollow sections (CHSs)
on the inner and outer tubes. These specimens, taken from an experimental protocol
conducted by Huang et al. [7], are included for the purpose of validating the NLFEA model
that will be developed in the subsequent section. For detailed descriptions of the fabrication
and experimental setup of these columns, reference to their work [7] is made. Here, salient
details of their geometric and material properties, as shown in Table 1, are provided.

Table 1. Material and geometrical parameters of the CFDST columns of Huang et al. [7].

Do to Di ti fyo fyi fcu Tu,expt Tu,NLFEA Tu,expt /Tu,NLFEA
S/N (mm) (mm) (mm) (mm) (MPa) (MPa) (MPa) (kNm) (kNm) (-)

CO1I1 165 3 42 3 260 326.6 50 24.6 25.52 0.96
CO1I2 165 3 75 5 260 355.4 50 33.2 34.16 0.97
CO2I1 165 4 42 3 286.4 326.6 50 32.3 31.64 1.02
CO2I2 165 4 75 5 286.4 355.4 50 42.1 40.28 1.05
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Table 1. Cont. [7].

Do to Di ti fyo fyi fcu Tu,expt Tu,NLFEA Tu,expt /Tu,NLFEA
S/N (mm) (mm) (mm) (mm) (MPa) (MPa) (MPa) (kNm) (kNm) (-)

CO3I1 165 4.6 42 3 355.4 326.4 50 48.8 42.5 1.15
CO3I2 165 4.6 75 5 365.6 355.4 50 54.3 47.83 1.14
Mean 1.05
CoV 0.08

2.2. Nonlinear Finite Element Analysis
2.2.1. NLFEA Model Description

To assess the torque capacity of circular CFDST members under pure torsion, a “solid”
NLFEA model of CFDST columns was established using the ABAQUS program [14]. In this
NLFEA model, eight-node brick elements with reduced integration (C3D8R) were used for
discretizing the outer and inner steel tubes, and the concrete annulus. The concrete damage
plasticity (CDP) model, which can effectively account for the compression and tension
stiffening actions expected in members undergoing torque-induced shear stresses, was
utilized for simulating the damage plasticity behavior of the confined concrete. The CDP
model was defined with parameters such as the dilation angle = 31°, Eccentricity = 0.1,
fb0/ fc0 = 1.16, K = 0.67, and viscosity parameter = 0.003 [15]. This approach has been
employed to model the plastic behavior of the confined concrete in CFDST members subject
to torsional loads by several authors (e.g., [4,5,7,16]).

The study examined mesh sensitivity analysis with mesh sizes of 15 mm, 20 mm,
25 mm, and 30 mm to explore variations in the NLFEA’s performance across different mesh
sizes. Findings indicated that the mesh size influences the prediction of the torque capacity,
with the 20 mm and 15 mm mesh sizes yielding results that were closest to experimental
data, implying that the convergence of the algorithms stabilize for a mesh size of 20 mm
or less. Therefore, a mesh size of 20 mm was adopted in the NLFEA models. The grid
meshing of the CFDST components and boundary conditions adopted in the NLFEA model
is illustrated in Figure 1. For simulating the interactions at the interface between the steel
tubes and the confined concrete, a solid contact and penalty friction formulation were
employed for normal and tangential behavior, respectively. It is noted that the friction
coefficient for this NLFEA model was set at 0.6 [17]. The load was applied via an angular
displacement of 0.25 radians around the z axis, which induces rotational forces on the
model and the static general analysis approach was employed given the requirements of
slowly varying the loading conditions and good computational efficiency.

u1=0, u2=0, u3=0, 
uR1=0, uR2=0, 
uR1=0.26rad.

u1=0, u2=0, 
u3=0, uR1=0, 
uR2=0, uR1=0.

Figure 1. Finite element meshes on C3D8R brick elements and boundary conditions.
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The adoption of the quadratic plastic flow model proposed by Esmaeily and Xiao [18],
expected to capture the plastic hardening behavior of steel tubes under torsional load, is
reflected in the NLFEA steel tubes as expressed in Equation (1),

σ =


Esε if ε ≤ εy

fy if εy ≤ ε ≤ k1εy

k3 fy +
Es(1−k3)

εy(k2−k1)2 (ε − k2εy)2 if k1εy ≤ ε ≤ k2εy

fu if ε ≥ k2εy

(1)

where k1 = 5, k2 = 46, and k3 = 1.44—as experimentally shown by Shi et al. [19]. Here, Es
represents the Young’s modulus of the steel, ε represents the strain corresponding to the
applied stress σ, εy represents the strain at yield stress fy, and fu represents the ultimate
strength of steel.

Given the enhanced confinement offered by the steel tubes, which augments both
the strength and ductility of the concrete within CFDST columns and consequently their
torsional capacity, a typical stress–strain response by Mander et al. [20] is employed within
our NLFEA model, as illustrated in Figure 2. The Mander [20] model’s stress-strain curve
for concrete features three regions: OA, where stress and strain are linearly related and
the behavior is elastic; AB, marking the transition from elastic to plastic behavior with
diminishing stress growth and onset of permanent deformation; and BC, a strain softening
region where stress decreases with increasing strain, leading to eventual material failure at
the ultimate strain point C. This methodology has been utilized by numerous researchers
(e.g., [21–23]) to replicate the nonlinear behavior of confined concrete in circular CFDST
columns. The computation of the values of the compressive stress–strain curve in Figure 2
is based on Equations and references presented in Table 2.

S
tr

e
ss

, σ
c

Strain, εc0

A

B C
βcfcc'

fcc'

εcc'
εcu

Figure 2. Mander’s [20] stress–strain model for confined concrete adopted in the NLFEA models of
circular CFDST columns.
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Table 2. Summary of equations for confined-concrete stress–strain relationships in CFDST columns.

Description Reference

σc =
f ′ccλ

(
εc
ε′cc

)
λ−1.0+

(
εc
ε′cc

)λ
Mander et al. [20]

λ = Ec

Ec− f ′cc
ε′cc

Mander et al. [20]

Ec = 3320
√

γc f ′c + 6900 MPa ACI 318 [24]
γc = 1.85D−0.135

c Liang [25]
f ′cc = γc f ′c + k f ′rp Mander et al. [20]

ε′cc = ε′c

[
1 + 5k

f ′rp
γc f ′cc

]
Mander et al. [20]

ε′c =


0.002 for γc f ′c ≤ 28 MPa

0.002 + γc f ′c−28
54000 for 28 < γc f ′c ≤ 82 MPa

0.003 for γc f ′c > 82 MPa

Liang and Fragomani [26]

f ′rp,ss =

{
0.7(νe − νs)

2te
Do−2te

σ0.2 for D/te ≤ 47
(0.006241 − 0.0000357 D

te
)σ0.2 for 47 < D/te ≤ 150

Hu et al. [27] and Tang et al. [28]

νe = 0.2312 + 0.3582ν′e − 0.1524
(

f ′c
fsy

)
+ 4.843ν′e

(
f ′c
fsy

)
− 9.169

(
f ′c
fsy

)2 Tang et al. [28]

ν′e = 0.881 × 10−6(D/t)3 − 2.58 × 10−4(D/t)2 + 1.953 × 10−2(D/t) + 0.4011 Tang et al. [28]

σc =

{
βc f ′cc +

(
εcu−εc
εcu−ε′cc

)
( f ′cc − βc f ′cc) for ε′cc < εc ≤ εcu

βc f ′cc for εc > εcu

Liang and Fragomani [26] and Hu et al. [27]

βc =

{
1.0 for D/te ≤ 40
0.0000339(D/te)2 − 0.0102285(D/te) + 1.3491 for 40 < D/te ≤ 150

Hu et al. [27] and Tang et al. [28]

The behavior of the confined concrete in tension was determined using the ten-
sile strength ft, which was estimated as per the methodology described in the work by
Pagoulatou et al. [22].

ft = 0.6
√

f ′cγc. (2)

The cracking strength ft occurs at a corresponding cracking strain, denoted by ε′cc (see
Table 2).

2.2.2. NLFEA Model Validation

A comprehensive validation process was undertaken to ensure the reliability and
accuracy of the NLFEA model in simulating the torque capacity of CFDST members. This
involved a meticulous comparison of the torque (T) versus rotation (θ) predictions made by
the model against the experimentally derived data, with a primary focus on the findings
reported by Huang et al. [7]. The aim of this comparison was to assess the model’s capability
in accurately replicating the key aspects of torsional response, such as peak torque capacity
and the behavior of the T − θ curves as shown in Figure 3. The torque capacity (Tu,expt) is
defined as the torque applied when the shearing strain reaches a value of 0.01, as the T − θ
curves do not exhibit a descending branch, in accordance with [29].

Model validation is crucial in computational engineering, ensuring that our NLFEA
model’s predictions align with real-world observations. This process not only confirms
the model’s accuracy for predicting CFDST columns’ behavior under torsion but also
identifies areas for refinement, such as assumptions or modeling techniques that need
adjustments. The outcomes of model validation guide the iterative enhancement of our
models, pinpointing strengths and areas for improvement. This facilitates the more precise
modeling of CFDST columns, supports the development of innovative design practices,
and helps optimize their performance under torsional loads. In essence, thorough model
validation boosts the trustworthiness of computational models as predictive tools, laying
the groundwork for their use in developing safer and more efficient structural designs.
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Figure 3. Torsional behavior comparison between NLFEA predictions (dotted red lines) and ex-
perimental data (solid blue lines) for six CFDST columns. Subfigure (a) represents column CO11,
(b) column CO12, (c) column CO21, (d) column CO22, (e) column CO31, and (f) column CO32, as
investigated by Huang et al. [7].
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Encouraging results were yielded from this comparative analysis (Figure 3), indicating
a significant alignment between the predictions made by the NLFEA model and the ex-
perimental findings. It was noted that the initial stiffness and peak torque capacities were
accurately predicted by the model, with deviations from the experimental measurements
contained within a 5% margin for the majority of the cases analyzed. This level of accuracy
in predicting peak torque values highlighted the effectiveness of the model in capturing
the essential aspects of structural torsional response.

However, slight discrepancies in the post-peak response predictions were observed,
where a slightly more conservative estimate than the experimental data was demonstrated
by the NLFEA model. These discrepancies are attributed to the simplifications inherent
in the material modeling processes within the NLFEA framework. Despite these minor
differences, the overall predictive performance of the model, supported by a Pearson
correlation coefficient of 0.95 with the experimental data, underscored its robustness and
reliability in simulating the torsional behavior of structural elements.

This validation process not only attests to the model’s accuracy but also enhances
the confidence in its application for structural design and analysis. The model’s slight
overestimation in torque capacity predictions, reflected by a mean model error (defined as
Tu,expt/Tu,NLFEA [30,31]) value of 1.05 and a coefficient of variation of 0.08, positions the
model on the conservative side of predictions (see Table 1). Such conservatism is seen as
preferable in structural engineering practices, ensuring the safety and reliability of design
recommendations.

Upon the foundation of this validation, significant contributions to a database aimed
at enriching machine learning algorithms are poised to be made by the model. This future
application will leverage the validated model’s capabilities to predict structural behaviors
more efficiently, facilitating the design of safer and more resilient structural systems.

3. Database Presentation
3.1. Database Development

To address the lack of a global database and limited experimental data on the torque
capacity of CFDST members subjected to pure torsion, a pioneering approach is taken in
this study by creating a novel database. This comprehensive database, which includes
800 instances generated through NLFEA models and an additional six (6) instances derived
from experimental work conducted by Huang et al. [7], encompasses a substantial total of
806 instances. This provides a valuable resource for researchers and practitioners in the
field of structural engineering. To generate the 800 NLFEA models, a parametric analysis
was employed varying parameters such as to, ti, fyi, fyo, and fcu over the ranges shown in
Table 3.

A critical dimension of our database development was the intentional inclusion of
extreme conditions that are not typically addressed by current code specifications. This
inclusion is particularly significant as it aims to push the boundaries of the models’ predic-
tive capabilities, ensuring that the developed machine learning algorithms can accurately
predict the behavior of CFDST members under a wider range of conditions than those
commonly encountered. By incorporating instances that feature high-strength steel and
ultra-high-performance concrete, our dataset goes beyond the conventional ranges dictated
by existing industry standards. This strategic choice significantly contributes to the robust-
ness and generalizability of the predictive models developed in this study, making them
more adaptable to future advances in material science and changes in design standards.

The inclusion of such extreme conditions facilitates a deeper understanding of the
potential impacts on the torque performance of CFDST members, thereby enhancing the
predictive accuracy and applicability of our models to real-world scenarios that may arise
as materials and design practices evolve.
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Table 3. Summary of parameters for the generation of 800 NLFEA models via parametric analysis.

Do [mm] to [mm] Di [mm] ti (mm) fyo (MPa) fyi (MPa) fcu (MPa) n

165 3 42 3 [200, 1000] 326.6 50 33
165 3 42 3 260 [200, 1000] 50 33
165 3 42 3 260 326.6 [20, 200] 37
165 3 75 5 [200, 1000] 326.6 50 33
165 3 75 5 260 [200, 1000] 50 33
165 3 75 5 260 326.6 [20, 200] 37
165 4 42 3 [200, 1000] 326.6 50 33
165 4 42 3 260 [200, 1000] 50 33
165 4 42 3 260 326.6 [20, 200] 37
165 4 75 5 [200, 1000] 326.6 50 33
165 4 75 5 260 [200, 1000] 50 33
165 4 75 5 260 326.6 [20, 200] 37
165 4.6 42 3 [200, 1000] 326.6 50 33
165 4.6 42 3 260 [200, 1000] 50 33
165 4.6 42 3 260 326.6 [20, 200] 37
165 4.6 75 5 [200, 1000] 326.6 50 33
165 4.6 75 5 260 [200, 1000] 50 33
165 4.6 75 5 260 326.6 [20, 200] 37
400 [3, 12] 191 3.18 345 345 60 20
400 9.3 191 [3, 12] 345 345 60 20
275 [2, 12] 191 3.18 345 345 60 20
275 6.5 191 [2, 12] 345 345 60 20
200 3 50 3 300 460 [20, 180] 36
200 3 50 3 300 [200, 1000] 40 33
200 3 50 3 [200, 1000] 460 - 33

Total = 800
Note: n = number of CFDST members.

3.2. Summary Statistics

A comprehensive summary of the statistical properties of data gathered from both
experimental tests conducted by Huang et al. [7] and additional data generated from
NLFEA models is meticulously detailed in Table 4. This summary encapsulates input
features encompassing geometric parameters such as the outer and inner diameters (Do,
Di) alongside their respective thicknesses (to, ti), and material properties including the
yield strengths of the outer and inner layers ( fyo, fyi), and the ultimate strength ( fcu). These
parameters exhibit a broad spectrum of variability, highlighted by their extensive ranges
and coefficients of variation, indicative of the diverse configurations explored. Conversely,
the output feature, represented by the torque capacity (TNLFEA), serves as a measure of the
performance of circular CFDST columns under pure torsion. The torque capacity values
demonstrate significant diversity, underscored by a considerable standard deviation in
relation to the mean, pointing to the varied performance outcomes across different column
configurations. Grasping the statistical distribution of both input and output features is
pivotal for the development and validation of machine learning models aimed at precisely
predicting the torque capacity of circular CFDST columns.

Table 4 provides a structured representation of the statistical distribution of the col-
lected data, featuring the minimum (Min.), 25th percentile (Q25), median (50th percentile,
Q50), 75th percentile (Q75), and maximum (Max.) values, alongside the mean, standard
deviation (Std), and coefficient of variation (CoV) for each parameter. The Min. value
marks the smallest observation in the dataset, whereas the Q25, Q50 (median), and Q75
values represent the thresholds below which 25%, 50%, and 75% of the observations in
the dataset fall, respectively. These percentile values are critical for understanding the
data’s spread and central tendency, providing insights into the distribution’s shape and
skewness. The Max. value indicates the largest observation. Together, these statistics
offer a comprehensive snapshot of the data’s variability and distribution, aiding in the
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accurate characterization and modeling of the parameters influencing the torque capacity
of circular CFDST columns. The graphical representation in terms of the distribution
of values for TNLFEA values is further elucidated in Figure 4, where the histogram and
probability density function (PDF) plots serve to visually articulate the dispersion and
skewness of the TNLFEA values. The PDF plot, in particular, affords a continuous probability
curve that underscores the likelihood of different torque capacities occurring within the
dataset. The pronounced skew towards the lower end of the torque spectrum suggests a
preponderance of lower-capacity values, with fewer instances of high-capacity outcomes.

Table 4. Summary of data collected from 6 tests conducted by Huang et al. [7] plus 800 NLFEA
models in this work.

Parameter Unit Min. Q25 Q50 Q75 Max. Mean Std CoV

Do mm 114.00 165.00 165.00 165.00 400.00 179.88 43.98 0.24
to mm 2.00 3.00 4.00 4.60 17.50 3.97 1.35 0.34
Di mm 42.00 42.00 75.00 75.00 191.00 68.31 32.87 0.48
ti mm 2.00 3.00 3.18 5.00 8.00 4.00 1.14 0.29
fyo MPa 200.00 260.00 281.00 375.00 1000.00 376.56 194.91 0.52
fyi MPa 200.00 326.60 326.60 345.00 1000.00 393.38 171.06 0.43
fcu MPa 20.00 50.00 50.00 60.00 200.00 65.80 40.25 0.61

TNLFEA kNm 15.03 46.54 88.49 233.93 1050.00 157.24 155.99 0.99
Note: Min. = minimum; Q25 = 25th percentile; Q50 = 50th percentile; Q75 = 75th percentile. Max. = maximum;

Std = Standard deviation; CoV = coefficient of variation.

0 200 400 600 800 1000
TNLFEA Values

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

De
ns

ity

Histogram and PDF of TNLFEA Values with Statistical Measures
Histogram
PDF
Min
Q25
Median (Q50)
Q75
Max

Figure 4. Probability density function (PDF) and histogram of TNLFEA values. The histogram
represents the distribution of TNLFEA across computed models, while the PDF line (in red) indicates
the probability density of these values. Key statistical metrics are marked: the minimum value (Min)
in blue, the first quartile (Q25) in green, the median (Q50) in black, the third quartile (Q75) in purple,
and the maximum value (Max) in orange.

3.3. Regression and Correlation Analysis of Dataset

Utilizing the Spearman–Pearson correlation coefficient (ρ), the relationships between
input variables and their impact on the torque capacity, Tu, of CFDST columns was ex-
plored as shown in Figure 5. The analysis revealed that the cube compressive strength
of the concrete, fcu, with ρ = 0.62, has the most significant positive effect on Tu. This
finding underscores the pivotal role of concrete quality in the design of CFDST columns
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for enhanced torque capacity. Other parameters, including the thickness of the outer steel
tube, to, and dimensions of the inner steel tube (Di and ti), also influence Tu, albeit to a
lesser extent.

Notably, the correlation between Di and ti (ρ = 0.64) highlights the importance of
considering the slenderness of the inner steel tube in predicting torque capacity. However,
this linear correlation analysis does not fully encapsulate the complex, nonlinear interde-
pendencies among variables, prompting a further investigation through advanced machine
learning algorithms and SHAP analysis.

Figure 5. Spearman-Pearson correlation coefficient heat map between any two parameters of
the database.

Parametric scatterplots illustrated in Figure 6 further detail the impact of input pa-
rameters on Tu, with the concrete strength fcu showing a pronounced correlation. These
insights, particularly the dominant influence of fcu, can inform future research and design
practices, suggesting a focus on optimizing the concrete quality for an improved perfor-
mance of CFDST columns under torsion loading. This approach could lead to more resilient
structural designs capable of handling increased torsional demands.

The substantial impact of fcu on Tu suggests that enhancing the concrete quality could
be a key factor in optimizing the torsional performance of CFDST columns. Future research
could explore innovative concrete mixes or reinforcement strategies to leverage this insight,
potentially leading to design advancements that further exploit the strength and durability
of concrete in composite structural elements.
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Figure 6. Histogram representation for geometric parameters: (a) Do; (b) to; (c) Di (d) ti and material
parameters: (e) fyo; (f) fyi; and (g) fcu.

4. Machine Learning Algorithms

Torque capacity estimators for circular concrete-filled double-skin tubular (CFDST)
columns are trained using five tree-based machine learning models, namely Decision
Tree (DT), Random Forest (RF), Gradient Boosting Machine (GBM), Categorical Boosting
(CatBoost), and Extreme Gradient Boosting (XGBoost). A concise overview of each ML
model is provided in this section, and the general architecture of these tree-based algorithms
is illustrated in Figure 7.
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(c) Boosting Algorithms (GBM, CatBoost & XGBoost)(b) Random Forest

(a) Decision Tree

Figure 7. General architecture of (a) Decision Tree: structure with decision nodes leading to leaf
nodes, where the final decision is made. (b) Random Forest: an ensemble of decision trees Ti(X; ai)

each trained on a bootstrapped sample of the training dataset X, with the collective output F(X)

being the average of individual trees’ predictions. and (c) Boosting Algorithms (GBM, CatBoost &
XGBoost): iterative process where each tree is trained on a bootstrap sample from the training dataset
and contributes a weighted prediction Yi to the final model prediction Y which is the average of all
individual predictions.

4.1. Decision Trees

Known for their interpretability and ease of comprehension by humans, DTs are
utilized as a classification technique [32]. Their popularity stems from a simple and
efficient generalization technique [33]. Constructed based on attribute support degrees,
DTs represent logical combinations of sequential tests leading to efficient classification [34].
Their application in predicting the bearing capacity of concrete-filled steel columns is
documented [35,36].

4.2. Random Forest

RF, an ensemble method, enhances the predictive performance through the combi-
nation of multiple decision trees, using averaging or voting. Studies have shown that RF
outperforms decision trees with accuracy [37], proving particularly effective where high
accuracy is crucial. RF’s application extends to concrete-filled steel columns, among other
areas [38–40].

4.3. Gradient Boosting Machine

GBM, another ensemble method, sequentially builds decision trees to correct prior
errors, thereby improving the predictive accuracy. Known for its iterative learning process
to enhance the model performance, GBM has been applied to understand the behavior of
concrete-filled steel columns [39,41].
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4.4. Categorical Boosting

CatBoost optimizes the handling of categorical variables within boosting algorithms,
aiming for improved model performance. Its application in scenarios where categorical
variables significantly influence the outcome leads to more accurate predictions [42]. Re-
cent research has applied CatBoost to predict the bearing capacity of concrete-filled steel
columns [43].

4.5. Extreme Gradient Boosting

XGBoost, known for its scalability and efficiency, is a popular choice for its compu-
tational efficiency and performance [44]. Its wide adoption in various machine learning
competitions and applications stems from its high predictive accuracy. XGBoost’s use in
predicting the bearing capacity of concrete-filled steel columns is noted in recent stud-
ies [45,46].

5. ML Model Deployment and Validation
5.1. Data Preparation and Cleansing

The raw dataset underwent a comprehensive pre-processing regimen to render it
apt for both the training and evaluation of ML models. Initially, the dataset was divided
through a two-step stratified random sampling method. Firstly, 80% of the data were
earmarked for a combined pool of training and validation purposes, with the remaining 20%
allocated for testing. Subsequently, the training-validation pool was further split, allocating
75% for training (effectively 60% of the total dataset) and 25% for validation (constituting
20% of the total dataset). This structured division ensures a balanced distribution of data
across training, testing, and validation sets, facilitating the development of robust and
generalizable ML models [47].

Feature scaling ensued, employing the StandardScaler from the Scikit-Learn library to
normalize the scales of the features, ensuring that no variable disproportionately influences
the model’s learning process. The dataset was thoroughly scrutinized for missing values;
the absence of such discrepancies negated the need for imputation techniques or the
elimination of data points, allowing the dataset to maintain its original volume of 806 entries.
A critical step involved segregating the target variable from the predictor features, a practice
that is crucial for preserving the dataset’s integrity and optimizing the generalization
capability of the ensuing models.

5.2. Details of ML Deployment
5.2.1. Hyperparameters of the ML Models

Grid search and 10-fold cross-validation were employed by the study to fine-tune the
hyperparameters for 5 ML algorithms [38–40,43]. Hyperparameters, which are crucial for
optimal model performance, are predefined by users and require meticulous optimiza-
tion [45,46]. A systematic exploration of model performance across various hyperparam-
eter combinations is conducted by grid search, while 10-fold cross-validation mitigates
overfitting and guards against data-specific biases. Optimal hyperparameters and their
ranges were determined based on insights from prior studies on concrete-filled steel
columns [38–40,43,45,46] and relevant expertise, as summarized in Table 5. Default values
were adopted for hyperparameters that were not explicitly listed in the table. Further
details on hyperparameters and algorithms can be found in the provided references.

Table 5. Optimal hyperparameter setting for five ML models.

ML Model Hyperparameters Domain Optimal Value

DT min_samples_split [1, 8] 5
min_samples_leaf [1, 8] 1
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Table 5. Cont.

ML Model Hyperparameters Domain Optimal Value

RF n_estimators [100, 500] 150
min_samples_split [1, 8] 2
min_samples_leaf [1, 4] 1

max_features [sqrt, log2] log2
max_depth [10, 25] 15

GBM n_estimators [100, 500] 500
learning_rate [0.01, 0.4] 0.05

min_samples_split [1, 4] 2
min_samples_leaf [1, 4] 1

CatBoost l2_leaf_reg [0.1, 1] 1
learning_rate [0.01, 0.1] 0.1

verbose binary 0
iterations [100, 500] 300

depth [1, 10] 4

XGBoost n_estimators [50, 300] 150
learning_rate [0.01, 0.2] 0.1

min_child_weight [0.1, 0.5] 0.1
max_depth [1, 5] 3

random_state [20, 30] 20
reg_alpha [0.1, 1] 0.1

reg_lambda [0.1, 1] 0.5

5.2.2. Evaluation Metrics

Four performance metrics were utilized to evaluate the quality and accuracy of the
ML models, notably:

• Coefficient of determination (R2): R2 measures the proportion of the variance in
the dependent variable explained by independent variables [48]. A higher R2 value
indicates a better fit of the model to the data. An R2 value of 1 implies a perfect fit,
while 0 suggests no explanatory power. Mathematically, R2 is defined as:

R2 =
∑N

j=1(y0,j − ȳ)(yp,j − ȳ)√
∑N

j=1(y0,j − ȳ)2 ∑N
j=1(yp,j − ȳ)2

(3)

• Mean square error (MSE): MSE quantifies the average deviation between predicted
and actual values [48]. It is computed as the average squared differences between
predictions and actual values:

MSE =
1
N

N

∑
i=1

(y0 − yp)
2 (4)

• Root mean square error (RMSE): RMSE quantifies the average deviation between
predicted and actual values [48]. It is computed as the square root of the average
squared differences between predictions and actual values:

RMSE =

√√√√ 1
N

N

∑
i=1

(y0 − yp)2 (5)
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• Mean absolute error (MAE): MAE measures the average absolute difference between
predicted and actual values. It provides a measure of the average magnitude of the
errors made by the model [48]:

MAE =
1
N

N

∑
i=1

|y0 − yp| (6)

5.3. Performance Comparison among ML Algorithms

The relationship between the predicted torque capacity by ML (Tu,ML) and the actual
torque capacity (Tu,NLFEA) for the five ML models across both training and testing datasets
is illustrated by the scatterplot depicted in Figure 8. The close alignment of the points on
the plot with the ideal prediction line (y = x) indicates the high accuracy in predicting
the torsional capacity of CFDST members. Prediction beyond 500 kNm for the testing and
validation sets seems less strong due to the fact that most of the data are poorly represented
in this range (Figure 4). Future studies on this topic should simulate NLFEA CFDST
members with torque capacities beyond 500 kNm.
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Figure 8. Comparison of actual vs. estimated results for (a) Decision Tree, (b) Random Forest,
(c) Gradient Boosting Machine, (d) CatBoost, (e) XGBoost ML models for the training, testing, and
validation sets.

To delve deeper into the performance of these models that only focus on training and
validation sets, four metrics—R2, RMSE, MAE, and MAPE—were employed. These metrics
are outlined in Table 6 and further visualized in Figure 9. Each model’s performance is
evaluated using four key metrics: R2 (coefficient of determination), MSE (mean squared
error), RMSE (root mean squared error), and MAE (mean absolute error).
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Table 6. Performance metrics of the ML models.

Model
Training Set Testing Set

R2 MSE RMSE MAE R2 MSE RMSE MAE

CatBoost 0.998 7.03 4.91 6.83 0.977 23.14 10.99 12.69
XGBoost 0.995 10.80 7.89 11.33 0.976 23.73 13.141 17.29

GBM 0.998 7.70 6.43 7.72 0.972 25.43 12.00 14.87
RF 0.996 9.54 3.87 3.91 0.972 25.61 10.53 10.06
DT 0.994 11.68 5.51 4.37 0.967 27.82 16.24 12.91

Upon analysis, it was revealed that the highest R2 values and the lowest error metrics
across both the training and testing sets were exhibited by CatBoost and GBM. Specifically,
an R2 of 0.998 on the training set and 0.977 on the testing set was achieved by CatBoost,
with the corresponding MSE values of 7.03 and 23.14, RMSE values of 4.91 and 10.99,
and MAE values of 6.83 and 12.69, respectively. Similarly, the strong performance with an
R2 of 0.998 on the training set and 0.972 on the testing set, accompanied by MSE values
of 7.70 and 25.43, RMSE values of 6.43 and 12.00, and MAE values of 7.72 and 14.87,
respectively, was demonstrated by GBM.

Conversely, competitive results were also yielded by XGBoost, RF, and DT, but they
exhibited slightly lower R2 values and higher error metrics compared to CatBoost and
GBM. Notably, the lowest RMSE and MAE values on the training set were demonstrated
by RF, indicating its effectiveness in capturing the underlying patterns in the data.
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Figure 9. Performance comparison among the different 5 ML models using (a) R2; (b) RMSE; (c) MAE;
and (d) MAPE.
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These findings suggest that particularly well suited for predicting the torque capacity
of CFDST members under pure torsion are CatBoost and GBM, due to their superior
performance in both model fitting and generalization. The importance of selecting an
appropriate ML model based on a thorough evaluation of its performance metrics is also
highlighted by the results, considering factors such as overfitting tendencies, computational
efficiency, and interpretability.

6. Comparison Study

The effectiveness of the studied algorithmic approach was determined by comparing
the CatBoost and XGBoost models with the results calculated by two formulas proposed
by previous researchers. The specific calculation formulas are described and given in
Table 7. Due to the scarcity of research results on straight circular CFDST members under
torsion, the database of NLFEA models presented in this work was used as a baseline for
comparison, and this approach is justifiable given the large scope of the database.

Table 7. Summary of the currently available analytical formulas for predicting the torque–capacity of
CFDST columns in pure torsion.

Reference Torque–Capacity

Huang et al. [7] Tuc2 = γtWsctτscy + Wsiτyi
Tu = Tso + Tc + Tsi
τscy = (0.422 + 0.313α2.33

n )ξ0.134 fscy
fscy = C1χ2 fyo + C2(1.14 + 1.02ξ) fck
τyi =

1√
3

fyi

γt = (−0.22χ + 0.273) ln(ξ)− 0.133χ + 1.29
C1 = α

1+α

C2 = 1+αn
1+α

ξ =
αn fyo

fck

α = Aso
Ac

Wsct =
π(D4−d4)

16D
Wsi =

π(d4−(d−2tsi)
4)

16d

Lu et al. [4] Tu = Tso + Tc + Tsi
Tso = 2Aso,0toτso

Aso,0 = π(D−to)2

4
τso =

√
1−α2√

3
fyo

α = −0.0928χ − 0.0272/ξ3 + 0.3356
χ = d

D−2to

ξ3 =
fc Ac

fyo Aso+ fyi Asi

Tsi = 2Asi,0tiτsi

Asi,0 = π(d−ti)
2

4

τsi =

√
1−β2
√

3
fyi

β = −0.4982χ + 0.0524ξ3 + 0.4012
Tc = Wpcτc

Wpc = π((D−2to)3−d3)
12

τc = ft

√
1 + fc

ft
· σc

fc

(
1 − 0.8233

(
σc
fc

)4.5
)

fc = 0.67 fcu
ft = 0.395 f 0.55

cu

σc/ fc =
α fyo Aso+β fyi Asi

fc Ac

Ac =
π(D−2to)2

4 − πd2

4
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6.1. Current Analytical Approaches

To the best of the authors’ knowledge, two analytical approaches are provided in the
literature by Huang et al. [7] and Lu et al. [4]. These approaches represent the only design
formulas identified in the available literature.

The approach of Huang et al. [7] considers the combined impact of the outer steel tube
and sandwiched concrete and supplements it with the torsional contribution of the inner
steel tube. Conversely, the design formula by Lu et al. [4] calculates the combined torsional
capacity by summing the distinct contributions made by the outer steel tube, inner steel
tube, and sandwiched concrete individually. A concise summary of the analytical formulas
proposed by Huang et al. [7] and Lu et al. [4] for estimating the torque capacity of circular
CFDST columns under torsion is provided in Table 7.

While offering a comprehensive and robust means of determining the torque capacity
of CFDST columns, including accounting for crucial factors such as concrete and steel
properties, tube dimensions, and shear stresses, the design formulas by Huang et al. [7] and
Lu et al. [4] note that certain parameters like γt, α, and β within the formula are calibrated
through regression using a limited dataset of experimental results. Consequently, a degree
of variability is anticipated when these parameters are applied across a broader design
space. In the subsequent section, the two best ML models, namely CatBoost and XGBoost
models, are employed to evaluate and quantify this variability. This assessment will serve
as the foundation for future investigations into full probabilistic analyses or safety factor
calibrations following the partial factor format, particularly for circular and straight CFDST
members subjected to pure torsion.

6.2. Comparison Analysis

A graphical comparison of the torque capacity of CFDST beams, obtained from the
compiled NLFEA database and predicted by the two proposed ML models, is presented in
Figure 10a,b. Additionally, the comparison between the database and the two analytical
models found in the literature is illustrated in Figure 10c,d. The figures clearly indicate
that superior predictions of the torsional capacity of CFDST columns are provided by
the proposed ML models compared to the two analytical approaches. This superiority is
evidenced by the ML models’ calculated and measured torque capacities clustering more
closely around the ideal fit line, denoted by Tu,pred/Tu,NLFEA = 1. Furthermore, it is ob-
served that, in comparison to the ML-based models, the torque capacity of CFDST columns
tends to be underestimated by the formulas presented in the literature by Huang et al. [7]
and Lu et al. [4], with Huang et al.’s model outperforming Lu et al.’s in this regard.

It is evident from the figures that our proposed ML models provide the superior pre-
dictions of the torsional capacity of CFDST columns when compared to the two analytical
approaches. This is indicated by the ML models’ calculated and measured torque capacities
clustering more closely around the ideal fit line, denoted by Tu,pred/Tu,NLFEA = 1. Further-
more, it can be observed that the formulas presented in the literature by Huang et al. [7] and
Lu et al. [4] tend to underestimate the torque capacity of CFDST columns in comparison
to our ML-based models. Notably, Huang et al.’s model [7] outperforms Lu et al.’s [4] in
this regard.

For a quantitative assessment of this comparison in terms of performance metrics,
the values of R2, RMS, MSE, and MAE have been computed and presented in Table 8.
These metrics confirm a robust correlation between the torque capacity predicted using the
proposed ML models and the actual results, further reinforcing the superior estimation ca-
pabilities of the ML-based predictive expressions for the torque capacity of CFDST columns.
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Figure 10. Comparison between the empirical-based equations of (a) Huang et al. [7] and
(b) Lu et al. [4] and the two best performing ML models, that is (c) XGBoost and (d) CatBoost,
using the entire dataset.

Table 8. Comparison between analytical formulas and best two ML models.

Source R2 MSE RMSE MAE

Huang et al. [7] 0.67 24671 157.07 93.81
Lu et al. [4] 0.75 24897 157.79 95.86

XGBoost 0.97 297.00 17.23 3.98
CatBoost 0.98 929.62 30.49 13.71

6.3. Extrapolation Capabilities

Six (6) examples were solved with the finite element model for cases where the values
are beyond the values presented in Table 4 in order to check the extrapolation capabilities
of the CatBoost algorithm. The results of the comparison between the NLFEA and CatBoost
model are shown in Table 9.
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Table 9. Material and geometrical parameters of the CFDST case examples to check the extrapolation
capabilities of CatBoost ML model.

Do to Di ti fyo fyi fcu Tu,NLFEA Tu,Catboost
Tu,NLFEA/
Tu,Catboost

S/N (mm) (mm) (mm) (mm) (MPa) (MPa) (MPa) (kNm) (kNm) (-)

1 500 20 250 10 1200 1200 250 5992.08 5678 1.055
2 550 25 300 10 1200 1200 250 5753.78 5567 1.034
3 600 30 250 15 1200 1200 250 12,130.9 11,898 1.020
4 650 20 300 10 1200 1200 250 10,625.2 9856.8 1.078
5 700 25 350 20 1200 1200 250 14,683.8 13,567 1.082
6 750 30 450 30 1200 1200 250 15,884.8 14,980 1.060

Mean 1.055
CoV 0.021

6.4. Extrapolation Capabilities

The ability of machine learning models to accurately predict outcomes in scenarios
beyond the confines of their training data is crucial for their application in engineering
simulations. This study investigates the extrapolation capabilities of the CatBoost algorithm
in predicting the ultimate torque (Tu) of Concrete-Filled Double Skin Steel Tubes (CFDSTs)
by comparing its predictions with those from Nonlinear Finite Element Analysis (NLFEA)
across six case examples that extend beyond the parameter ranges presented in Table 4.

As detailed in Table 9, the comparison encompasses a variety of geometrical and mate-
rial parameters, including outer diameter (Do), thicknesses (to, ti), and yield strengths
( fyo, fyi), alongside the ultimate compressive strength of concrete ( fcu). The ultimate
torque values predicted by NLFEA (Tu,NLFEA) and those estimated by the CatBoost model
(Tu,Catboost) were compared, with their ratio (Tu,NLFEA/Tu,Catboost) providing insight into
the model’s performance.

The mean ratio of the ultimate torques (Tu,NLFEA/Tu,Catboost) across all cases is reported
as 1.055, with a coefficient of variation (CoV) of 0.021. These results indicate that the
CatBoost model tends to slightly underestimate the ultimate torque when extrapolating
beyond the trained dataset, yet with a relatively small variation in the accuracy of its
predictions.

This analysis reveals that the CatBoost model possesses a commendable ability to
extrapolate within certain bounds but also highlights the challenges that machine learning
models face when predicting scenarios far removed from their training data. Future work
could explore the incorporation of a broader range of training data or the implementation
of adaptive learning techniques to further enhance the model’s extrapolation capabilities.

7. SHAP Interpretation

Recent advancements, such as SHAP, have made a significant impact on enhancing the
transparency and interpretability of ML predictions [49]. SHAP provides insights on two
levels: it illuminates the influence of each input variable globally, contributing to the overall
interpretability, and it enables local interpretability through Shapley values, which assess
the importance of features for individual predictions. The explanation model, denoted by
g(z′), is described by a linear function of binary features in additive feature attribution
methods [49].

g(z′) = ϕ0 +
M

∑
i=1

ϕiz′i (7)

where M denotes the number of input features and ϕi represents the Shapley value of
feature i, the computation is outlined as follows. Let S denote the set of all features, and S−i
denote the set of features excluding feature i. P(S) refers to the power set of S, containing
all possible subsets of S, while |A| represents the cardinality, or the number of elements,
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in set A. The Shapley value (ϕi) for a particular feature i is calculated using the given
formula [49]:

ϕi = ∑
A∈P(S−i)

[
|A|! · (|F| − |A| − 1)!

|F|!

]
[ f (A ∪ {i})− f (A)] (8)

In this process, the sum is taken over all possible subsets A that exclude feature i,
with F denoting the set of all features. The terms f (A ∪ i) and f (A) represent the model’s
output with and without the inclusion of feature i in subset A, respectively. This formula
quantifies the marginal contribution of feature i across all possible combinations of features,
offering a comprehensive view of the possible feature subsets.

Focusing on the prediction of torque capacity in CFDST members under pure torsion,
the CatBoost model has been identified as the most effective among the five ML models
evaluated. Therefore, for SHAP analysis, the CatBoost model is utilized, highlighting its
capability to not only provide accurate predictions but also to offer meaningful insights
into the factors influencing those predictions.

7.1. Global SHAP Interpretation

The factors influencing the torque capacity of CFDST columns are understood to be
crucial for their optimal design. SHAP analysis has been recognized as a potent tool for
unveiling the significance of various features within the CatBoost model, providing insights
at both the global and local levels. Globally, the overall impact that each feature exerts on
the predictions of torque capacity is elucidated by SHAP. Identified through this analysis
(see Figure 11), the concrete compressive strength ( fcu), the yield strength of the outer steel
tube ( fyo), the thickness of the outer steel tube (to), and the thickness of the inner steel tube
(ti) have been found to be the top four influential parameters. In the SHAP summary plot
(Figure 12), lower feature values are represented by blue dots, while higher feature values
are signified by red dots. It is noteworthy that a positive influence on the SHAP values is
exhibited by nearly all parameters, indicating that the enhancement of the torque capacity
of CFDST columns is contributed to by increasing these parameters. This observation is
in alignment with the findings from previous studies [4,7], reinforcing the importance of
these factors in the structural performance of CFDST columns.
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Figure 11. Feature importance of the four different models based on mean absolute SHAP value.
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Figure 12. SHAP summary plot of the CatBoost model.

7.2. Local SHAP Interpretation

Averages are only provided by Global SHAP which may not reveal specific critical
features, while a closer examination of individual data points is offered by local SHAP.
When the CatBoost model for CFDST torque capacity under pure torsion is analyzed, crucial
insights are revealed by local SHAP, as depicted in Figure 13, regarding the interaction
among input features. A clear interrelationship between the input features and their
contributions to the overall prediction of the CatBoost model is evident across all plots in
Figure 13.

For the outer steel tube diameter (Do) against concrete compressive strength ( fcu),
it is indicated in Figure 13a that a positive effect on torque capacity prediction using
the CatBoost model is associated with a larger Do combined with a high fcu for CFDST
members. Conversely, for CFDST columns with a smaller Do, negative SHAP values for
various levels of fcu are exhibited, although these values are only slightly below zero,
indicating a minor influence on the reduction in torque capacity.

Regarding the thickness (to) against the yield strength ( fyo), it is revealed by Figure 13b
that a positive impact on torque capacity prediction for the outer steel tube of CFDST
members is associated with a larger to combined with a high fyo. However, for CFDST
columns with a smaller to, high negative SHAP values for high values of fyo are exhibited,
indicating a significant influence on the reduction in torque capacity.

For the inner steel tube diameter (Di) against concrete compressive strength ( fcu),
it is shown by Figure 13c that a positive effect on torque capacity prediction for CFDST
members is associated with a larger Di combined with a high fcu. Conversely, for CFDST
columns with a smaller and medium Di, negative SHAP values for various levels of fcu
are exhibited, although these values are slightly below zero, indicating a relatively minor
influence on the reduction in torque capacity.

Regarding the inner steel tube thickness (ti) against the yield strength ( fyo), it is
indicated by Figure 13d that the relationship between ti and fyo is unclear in the CatBoost
model, as expected due to the intuitive independence of these two variables.

For the yield strength ( fyo) against concrete compressive strength ( fcu), it is demon-
strated by Figure 13e that a positive impact on torque capacity prediction by the CatBoost
model is associated with large values of both fyo and fcu. Although a linear relationship
is observable, for very small values of fyo, the SHAP value turns negative only for small
values of fcu, which are positive for the medium and high values of fcu. This suggests that
a consistently positive impact on torque capacity prediction using the current CatBoost
model is provided by fcu, regardless of the values of fyo.

For the inner steel yield strength ( fyi) against the inner steel tube diameter (Di),
an exponential relationship between fyi and Di is illustrated by Figure 13f, indicating
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that larger values of these parameters lead to an exponential increase in torque capacity
prediction via the CatBoost model. However, for smaller values of fyi and high values
of Di, negative SHAP values are observed, suggesting a slight negative impact on torque
capacity by fyi when the hollow section ratio of the CFDST column increases.
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Figure 13. SHAP dependency scatter interaction plots for (a) Do agsisnt fcu, (b) to agsisnt fyo, (c) Di

agsisnt fcu, (d) ti agsisnt fyo, (e) fyo agsisnt fcu, and (f) fyi agsisnt Di in the CatBoost model using the
testing dataset.

7.3. Implications for Engineering Practice

The performance evaluation of the CatBoost and XGBoost models, along with compar-
isons to empirical models and SHAP analysis, provides valuable insights for engineering
practices in the design of CFDST columns subjected to pure torsion. Superior predictive
capabilities are demonstrated by the CatBoost model, as evidenced by high R2 values and
minimal mean errors, establishing it as a reliable tool for engineers in search of precise
torque capacity predictions.

Identified through global SHAP analysis, crucial parameters such as concrete compres-
sive strength, outer steel tube yield strength, outer steel tube thickness, and inner steel tube
thickness offer specific targets for optimization [50]. The intricate relationships unveiled by
the local SHAP analysis highlight the interconnectedness of these parameters, providing
engineers with a comprehensive understanding for customized design choices. Practical
implications include the prioritization of key parameters to enhance torque resistance
and the integration of advanced machine learning techniques into structural engineering
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practices [51]. This research narrows the gap between conventional empirical models and
tree-based ML tools, enabling engineers to develop more effective and informed designs of
CFDST columns for superior structural performance [50] by using the presented hyperpa-
rameters (e.g., for Catboost) to build a graphical user interface for the ease of use by lame
engineers who may not understand ML codes (see Figure 14).

Figure 14. GUI representation of Python code for CatBoost algorithm for ease of use by lame engineers.

8. Limitations

The efficacy of any machine learning (ML) model significantly relies on the size, quality,
and distribution of parameters within the chosen dataset. In this research, we harnessed
a dataset consisting of over 806 NLFEA instances to construct models for predicting the
torque capacity of CFDST columns. This dataset holds potential for expansion, especially
considering the growing interest in expediting the testing of specialized thin-walled CFDST
members intended for use in tall buildings and viaducts. Consequently, even though we
employed the complete dataset of NLFEA instances for our data-driven ML framework in
this study, it is expected that enhancing the dataset’s size will lead to improvements in the
framework’s performance.

It is important for readers to recognize that the developed expressions are valid only
within the range of variables presented in the dataset, as depicted in Figure 6 and Table 4.
As previously mentioned, Figure 6 provides insights into the frequency of each significant
variable present in the dataset. It is evident that certain values or ranges of features
have limited occurrences in the dataset, resulting in a lower frequency for these variable
values. While our proposed framework remains applicable, ensuring the reliability and
applicability of expressions across a broader spectrum of variables necessitates additional
testing and NLFEA data. Furthermore, acquiring more test data related to CFDST columns
with diverse configurations and a higher occurrence of various variable ranges can facilitate
the development of ML algorithms that can effectively derive new equations for different
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CFDST column configurations. This includes configurations with tapered cross-sections,
which have gained increasing relevance in industries such as offshore and electricity.

9. Concluding Summary

Valuable insights into predicting the torque capacity of circular CFDST members
under pure torsion using ML techniques, supplemented by SHAP (Shapley Additive
Explanations) interpretation, are offered by the study. Through extensive analysis and
comparison, several significant observations have been made:

• The efficacy of CatBoost and XGBoost models in accurately predicting torque capacity
is highlighted by the performance evaluation of various ML algorithms. High R2

values and minimal mean errors are exhibited by these models, establishing them as
robust tools for engineers in structural design applications.

• The comparison study with existing empirical models underscores the superiority
of ML-based approaches. More precise predictions of torque capacity are provided
by the CatBoost model, in particular, outperforming traditional analytical formulas
proposed by Huang et al. and Lu et al. This suggests the potential for ML techniques
to enhance the accuracy and efficiency of structural design practices.

• Deeper insights into the influence of input features on torque capacity predictions
are offered by the SHAP interpretation. Significant contributors to torque capacity,
such as concrete compressive strength and steel tube dimensions, are identified as key
parameters by global SHAP analysis. Complex interactions among these parameters
are elucidated by local SHAP analysis, providing engineers with actionable insights
for optimizing CFDST column designs.

Overall, the gap between conventional empirical models and advanced ML tools is
bridged by this study, paving the way for more effective and informed structural design
practices. By leveraging the predictive capabilities of ML and the interpretability of SHAP,
data-driven decisions to enhance the performance and reliability of CFDST structures in
real-world applications can be made by engineers. The further refinement of ML models
and exploration of additional input features could lead to even more accurate predictions
in future work. Additionally, the resilience and robustness of CFDST structures against
torsional loading could be enhanced by integrating probabilistic analyses and safety factor
calibrations based on ML-derived predictions.
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Nomenclature

Ac Cross-sectional area of the confined concrete
Ace Nominal core concrete cross-sectional area
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Asco Cross-sectional area of the outer steel tube and the confined concrete
Asc Cross-sectional area of CFDST member
Asi Cross-sectional area of inner steel tube
Asc Cross-sectional area of outer steel tube
Di Inner steel tube outer diameter
Do Outer steel tube outer diameter
fck Characteristic concrete compressive strength
fcu 28-day characteristic concrete cube compressive strength
f ′c Cylinder concrete compressive strength
fsyi Strength of inner steel tube at yield under normal stress
fsyo Strength of outer steel tube at yield under normal stress
T Torque
Tuc1 Torque–capacity predicted via Huang et al.’s formula
Tuc2 Torque–capacity predicted via Lu et al.’s formula
Tu,NFEA Torque–capacity predicted via NLFEA model
Wsct Polar section modulus of outer steel tube and concrete
Wsi Polar section modulus of inner steel tube
Wso Polar section modulus of outer steel tube
to Thickness of outer steel tube
ti Thickness of inner steel tube
α Steel ratio
αn Nominal steel ratio
χ CFDST hollow ratio
ε Strain
θ Rotation angle due to torque
τscy Strength of the composite section of outer steel tube and concrete under torsion
τy Yield strength of steel in shear
τyi Yield strength of inner steel tube in shear
τyo Yield strength of outer steel tube in shear
ξ Confinement factor
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