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Abstract: The soil piping and drift sand phenomenon is one of the catastrophic failure forms in
foundation pit excavations in coastal buildings. Presently, there is a deficiency in the theoretical
research regarding the seepage fields around foundation pits, primarily due to the complexity of
theoretical solutions given the difficulty in accurately describing the distribution of the groundwater’s
hydraulic head in a seepage field. This study proposes an explicit analytical solution for the steady-
state seepage field surrounding a foundation pit under anisotropic conditions. A numerical model,
constructed with FLAC3D 7.0 software, was utilized to validate the solution presented in this study.
The effects of the foundation pit’s width, the distance between the retaining wall and the impervious
layer, and anisotropic seepage conditions on the total head are studied through parameter research.
The study shows that the flow behavior of a foundation pit is sensitive to parameters such as the
anisotropy of the soil layer and the width of the foundation pit. Further, the study also analyzes the
influence of the above parameters on the exit gradient and proposes a simplified algorithm for the
exit hydraulic gradient at the base of a foundation pit, which can control the error within 5%. This
method makes a certain contribution to improving seepage calculations for foundation pits and is
applicable to the seepage problem of anisotropic soil layers.

Keywords: analytical solution; coastal foundation pit; anisotropy; hydraulic head; exit gradient

1. Introduction

In recent years, there has been an increase in the number of projects involving deep
foundation pits that are close to water environments. For foundation pits situated near
coasts or in water-rich environments, the groundwater replenishment area is remarkably
close to the pit, ensuring an ample water supply. When a hydraulic gradient is present
between the exterior and the interior of a foundation pit, the phenomenon of seepage will
occur in the soil layers. The foundation pit will experience heightened challenges origi-
nating from pore water pressure, the movement of water, and the permeation force [1–3].
Therefore, numerous academic researchers have endeavored to develop a reliable theory
to compute the parameters associated with seepage in foundation pits. And the main
approaches applied in the groundwater seepage field are analytical and numerical meth-
ods [4–9].

Compared with numerical methods, analytical solutions for the pit seepage field
are more convenient and clearer. Once the mathematical expression of the pit seepage
field has been determined, the hydraulic head within the pit under different boundary
conditions can be calculated very quickly, and, at the same time, the effect of related
parameters, such as the pit width and the permeability coefficient of the pit seepage field,
can also be explored easily. The researchers Li and Jiao [10] obtained a one-dimensional
analytical formula for the negative excess pore water pressure and the effective stress
inside and outside foundation pits caused by excavation unloading. Compared with a one-
dimensional model, the calculation of two-dimensional seepage flow was closer to the real
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field condition. Liu and Li [11] and Wang and Zou [12] used the two-dimensional graphic
method to formulate a calculation method for the water–earth pressure inside and outside
foundation pits. Banerjee and Muleshkov [13], Bereslavskiik [14], Ming et al. [15], and Li
et al. [16] used different analytical approaches, specifically adopting conformal mapping to
examine various boundary-condition seepage issues related to foundation pits. Through
the application of the Fourier series expansion in conjunction with the establishment of
certain border conditions, Barros [2] derived an analytical solution to address the seepage
of foundation pits with vertical retaining walls. On this basis, implementing anisotropic
permeability, Hu [17] introduced the anisotropic permeability coefficient for the hydraulic
head and advanced a solution for the seepage field considering the anisotropy of soil
layer permeability. In recent years, Huang [18] derived a semi-analytical solution for a
foundation pit in a permeable anisotropic soil layer by dividing the seepage field into
two regular regions using the Fourier transform method. Lyu [19] analyzed the blocking
mechanism of a waterproof curtain on steady-state seepage in a pressurized aquifer and
used an analytical method to solve the distribution of the groundwater head during pit
excavation in a pressurized aquifer under the condition of setting up a waterproof curtain.
According to Darcy’s law and the seepage continuity principle, Zhang [20] and Wu [21]
provided the hydraulic head solution for a circular foundation pit by dividing the seepage
field of the pit into two or three regions. Yu [22] divided the soil around the foundation pit
into multiple regions according to the layered conditions and proposed a series solution for
the water head distribution by the separation of variables method.

However, in the research referenced above, early studies considered the seepage field
around a foundation pit in its entirety, which is necessary to establish the relationship
between a complex irregular boundary and a regular boundary, and in this case an explicit
analytical solution cannot be obtained. Furthermore, the boundary conditions of foundation
pits are too simplified for the consideration of specific parameters. In recent years, studies
on the analytical solution of the foundation pit seepage field often divide the seepage
field into several regions, which are connected by seepage continuity conditions or head
continuity conditions. This approach overcomes the shortcomings of earlier analytical
solutions. But few of the above studies considered the anisotropic permeability of the soil
layer. This is not consistent with the reality.

Therefore, in this study, by dividing the seepage field of a foundation pit into three
regular regions and using the idea of pattern matching to solve the steady-state seepage
equation, an explicit analytical solution for the hydraulic head considering the soil layer’s
anisotropic permeability is proposed. The two-dimensional steady-state seepage equation
for each region is solved by applying the separated variables method according to different
boundary conditions. The explicit analytical solution of the seepage field around a foun-
dation pit is expressed in the form of a series, and the coefficients to be determined are
solved according to the seepage continuity conditions between the regions. The analytical
solution of the hydraulic head is verified by numerical simulation results. In addition, the
influences of the foundation pit width, the anisotropy of soil permeability, and the burial
depth of the retaining wall on the total head are also discussed.

2. Problem Definition
2.1. Analytical Model

For the seepage field analytical model, we made the following assumptions: the steady-
state seepage field conforms to Darcy’s law, the soil layer exhibits permeable anisotropy,
and beyond the influence distance of the foundation pit seepage, it can be approximated
as impervious.

As depicted in Figure 1, the calculations for the geometry of the flow system under
consideration are simplified by the establishment of a two-dimensional seepage model, with
the foundation pit’s centerline serving as the axis. In the parameters of the foundation pit,
h1 and h2 represent the exterior and interior water levels, respectively, while a signifies the
distance separating the impervious layer from the retaining wall. To facilitate mathematical
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analysis, the seepage field is divided into three regions, while the hydraulic soil parameters
across regions 1⃝, 2⃝, and 3⃝ remain identical. Regions 1⃝ and 2⃝ exhibit widths of b and
c, respectively, symbolizing the foundation pit’s outer and inner dimensions. The layer’s
hydraulic conductivities in both the horizontal and the vertical directions are defined as
kh and kv, respectively, and its hydraulic heads are labelled Hi (where i equals 1, 2, or 3).
Finally, to make problem solving easier, the x-axis extends positively to the right and the
y-axis extends vertically upward, as depicted in Figure 1.
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Figure 1. Analytic model of the foundation pit seepage field. Figure 1. Analytic model of the foundation pit seepage field.

The distribution of the hydraulic head in the steady-state seepage field in the soil layer
with anisotropic permeability meets the following Laplace equation [23]:

kh
∂2Hi
∂x2 + kv

∂2Hi
∂z2 = 0, i = 1, 2, 3 (1)

where H1, H2, and H3 represent the total hydraulic head distribution functions of the three
aquifer subareas, calculated with the soil base as a reference level.

By integrating the foundational presumption of two-dimensional foundation pit seep-
age with inter-regional continuity conditions, the boundary condition for region 1⃝ can be
sequentially determined as follows:

H1
∣∣z=h1 = h1 (2)

∂H1

∂x

∣∣∣∣x=−b = 0,
∂H1

∂x

∣∣∣∣x=0 = 0 (3)

The boundary conditions of region 2⃝ are as follows:

H2
∣∣z=h2 = h2 (4)

∂H2

∂x

∣∣∣∣x=0 = 0,
∂H2

∂x

∣∣∣∣x=c = 0 (5)

The boundary conditions of region 3⃝ are as follows:

∂H3

∂z

∣∣∣∣z=0 = 0 (6)

∂H3

∂x

∣∣∣∣x=−b = 0,
∂H3

∂x

∣∣∣∣x=c = 0 (7)
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2.2. Analytical Solutions

Equation (1) is transformed into the form of a Laplace equation by variable substitution
as follows:

∂2Hi
∂u2 +

∂2Hi
∂v2 = 0, i = 1, 2, 3 (8)

where H1, H2, and H3 are the total hydraulic head of the three aquifer subareas, and u
and v are the variables corresponding to the substitution of x and z and can be expressed
as follows:  u = x

v = z√
kv
kh

= z√
α

(9)

According to the transformed boundary conditions of the region, the total water heads
in regions 1⃝, 2⃝, and 3⃝ can be written as the superposition of series solutions by means of
the method of separation of variables as follows:

H1(u, v) = h1 + A10

(
v − h1√

α

)
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α
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nπ

b
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(
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α

)
+
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(
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α

)
cos kmu, km =

mπ

c
(11)

H3(u, v) = C10 +
∞

∑
i=1

Ci cosh kiv cos ki(u + b), ki =
iπ

b + c
(12)

where A10, B10, C10, An, Bm, and Ci are undetermined coefficients that can be determined
using the continuous boundary conditions at the regional interface:

H1

∣∣∣∣z=a = H3

∣∣∣∣z=a,
∂H1

∂z

∣∣∣∣z=a =
∂H3

∂z

∣∣∣∣
z=a

(13)

H2|z=a =H3

∣∣∣∣z=a,
∂H2

∂z

∣∣∣∣z=a =
∂H3

∂z

∣∣∣∣
z=a

(14)

According to the continuous seepage conditions between regions, the relationship
between the parameters can be obtained by substituting the head solution as follows:

C10 +
∞
∑

i=1
Ci cosh ki

a√
α

cos ki(u + b)

=


h1 + A10

a−h1√
α

+
∞
∑

n=1
Ansinhkn

a−h1√
α

cos knu, (−b ≤ u < 0)

h2 + B10
a−h2√

α
+

∞
∑

m=1
Bmsinhkm

a−h2√
α

cos kmu , (0 ≤ u ≤ c)

(15)

∞
∑

i=1
Cikisinhki

a√
α

cos ki(u + b)

=


A10 +

∞
∑

n=1
Ankn cosh kn

a−h1√
α

cos knu , (−b ≤ u ≤ c)

B10 +
∞
∑

m=1
Bmkm cosh km

a−h2√
α

cos kmu , (0 ≤ u ≤ c)

(16)

The constant terms A10, B10, and C10 are determined with the definition of the Fourier
series as follows:

A10 =
1
b

∞

∑
i=1

Cisinhki
a√
α

sin kib (17)

B10 = − A10b
c

(18)
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C10 =

(
h1 + A10

a−h1√
α

)
b +

(
h2 + B10

a−h2√
α

)
c

b + c
(19)

By multiplying both sides of Equations (16) and (15) by cos knu, cos kmu, and
cos ki(u + b) and integrating within the intervals (−b, 0), (0, c), and (−b, c), the series
terms An, Bm, and Ci can be determined as follows:

Ankn cosh kn(a−h1)√
α

b
2 −

∞
∑

i=1
Cikisinh kia√

α
sin kib

ki
k2

i −k2
n
= 0 , (ki ̸= kn)

Ankn cosh kn(a−h1)√
α

−
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∑
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Cikisinh kia√

α
(−1)n = 0 , (ki = kn)

(20)
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(21)
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Based on the six equations above, the six unknowns A10, B10, C10, An, Bm, and Ci are
solved by building a matrix, which is constructed in Appendix A. By solving the matrix
in Appendix A, the total hydraulic head distribution both interior and exterior to the
foundation pit can be determined. It is worth noting that when utilizing MATLAB R2019a
for double-precision matrix solution, an increase in the coefficient matrix EE order leads
to an increment in the condition number as well. This complication can be effectively
addressed using MATLAB’s multi-precision computation toolbox.

3. Verification of Proposed Solutions

To verify the accuracy of the analytical solution for the total water head, validation
procedures were conducted using the finite difference software FLAC3D. The parameters of
the foundation pit were assumed to be as follows: b = 20 m, c = 3 m, a = 3 m, h1= 15 m, and
h2 = 9 m. The model was created in FLAC3D software as shown in Figure 2. “CONFIG fluid”
was set in the command window to enter the seepage mode. The anisotropic seepage model
was set up, and the command “PROPERTY” was used to assign the values of the horizontal
and vertical permeability coefficients, where kv = 5 × 10−6 m/s and kh = 1 × 10−5 m/s.
The retaining wall, the impervious layer, and the boundaries on the left and right sides of
the model were impervious boundaries. The pore pressure was fixed to 0 at the base of
the foundation pit as well as at the ground surface by using the command “FIX pp” to set
the permeability boundary. The calculated pore pressure was converted to the pressure
head, which was added to the position head to obtain the total head, ignoring the flow
velocity. Figure 3 illustrates a comparison of the outcomes between the numerical solution
and this study’s analytical solution. It is evident from Figure 3 that the total heads of
the seepage field, as determined by this study’s analytical solution, are precisely aligned
with the numerical solution produced by FLAC3D, thereby supporting the validity of the
analytical solution presented in this paper.
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4. Hydraulic Head Analysis

According to Equations (10)–(12), many factors affect the total head distribution. The
parameters of the foundation pit were assumed to be as follows: b = 20 m, c = 3 m, a = 3 m,
h1 = 15 m, and h2 = 9 m, and the anisotropic coefficient, α, was assumed to be 0.5, unless
otherwise stated. Even though the newly derived solutions can yield various results, the
comparison provided here pertains solely to the three parameters that have the closest
relationship to the actual conditions.

4.1. Effect of the Anisotropic Coefficient

This section considers the effect of the anisotropic permeability on the distribution of
the hydraulic head. Equation (9) indicates that the anisotropic coefficient, α, is the ratio of
the permeability for the horizontal and vertical directions. In this study, the anisotropic
coefficient was assumed to vary from 0.25 to 2. Figure 4 illustrates that the distribution
of the hydraulic head is significantly influenced by the anisotropic coefficient of seepage.
This phenomenon is more significant outside the foundation pit than inside the foundation
pit. Moreover, the hydraulic head inside and outside the retaining wall decreases with
the increase in the anisotropic coefficient ratio, α; however, the opposite trend occurs
approximately 3 m beyond the retaining wall. The results also illustrate that when the
anisotropy coefficient increases, the decline rate of the hydraulic head distribution curve
outside the retaining wall becomes faster. This presents a benefit, as, in the majority of
natural deposits, the horizontal permeability coefficient typically exceeds that in the vertical
direction (Rafiezadeh and Ataie-Ashtiani [24]); this shows that the seepage range of the
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foundation pit is smaller and safer, and this conclusion was further verified in the analysis
of the exit gradient.
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4.2. Effect of the Foundation Pit Width

The distributions of the hydraulic head versus x and z for different foundation pit
widths (c = 3, 5 and 7 m) are demonstrated in Figure 5, in which the curves move to the left
upper side as the width, c, of the foundation pit increases. Therefore, with an increase in
the parameter c, the hydraulic head outside the retaining wall decreases, while the same
trend appears inside the retaining wall. From the phenomenon, it can found that when the
width of the foundation pit increases to 7 m, the high hydraulic head is mainly distributed
in the upper part of the retaining wall, indicating that the influence on the seepage of the
foundation pit is safer.

Buildings 2024, 14, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 4. Two−dimensional distribution of the hydraulic head versus x and z with different aniso-
tropic coefficients. 

4.2. Effect of the Foundation Pit Width 
The distributions of the hydraulic head versus x and z for different foundation pit 

widths (c = 3, 5 and 7 m) are demonstrated in Figure 5, in which the curves move to the 
left upper side as the width, c, of the foundation pit increases. Therefore, with an increase 
in the parameter c, the hydraulic head outside the retaining wall decreases, while the same 
trend appears inside the retaining wall. From the phenomenon, it can found that when 
the width of the foundation pit increases to 7 m, the high hydraulic head is mainly dis-
tributed in the upper part of the retaining wall, indicating that the influence on the seepage 
of the foundation pit is safer. 

 
Figure 5. Two−dimensional distribution of the hydraulic head versus x and z with different founda-
tion pit widths. 

  

Figure 5. Two−dimensional distribution of the hydraulic head versus x and z with different founda-
tion pit widths.



Buildings 2024, 14, 1055 8 of 13

4.3. Effect of the Distance between the Retaining Wall and the Impervious Layer

In this section, the variable a represents the distance between the retaining wall and the
impervious layer, which varies from 3 to 7 m. Additionally, all other necessary parameters
are in accordance with those displayed in Figure 6. The distribution of the hydraulic
head versus x and z with the variable a is shown in Figure 6. The groundwater seepage
is significantly responsive to the burial depth of the retaining wall. The hydraulic head
decreases with the increase in a, while the opposite trend appears inside the retaining wall.
From Figure 6, it is also very clear that the with the decrease in the seepage path, the head
difference of the excavation face increases and the risk of foundation pit seepage increases,
which was verified by the exit gradient analysis.
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5. Exit Gradient Analysis

The floor stability of the foundation pit with respect to potential heaving and piping
failure caused by the force of hydraulic gradients applied to the soil particles at the seepage
boundary is depicted in Figure 1. The occurrence of heaving, synonymous with overall
upheaval, is linked to the average gradient, while localized failure due to piping is tied to the
maximum gradient. Therefore, it is necessary to accurately calculate the magnitude of the
exit gradient at the base of the foundation pit, ie, which is given by the following equation:

ie =
1
kz

∂H
∂n

(23)

where n represents the direction normal to the seepage boundary and kz = 1 means the
permeability coefficient. At the base of the excavation, H = H2(0, 0). Additionally, ie can
be compared with the results calculated for the exit gradient for one-dimensional seepage,
ie0, which is given by the following equation:

ie0 =
h1 − h2

h1 + h2 − 2a
(24)

5.1. Effect of the Anisotropic Coefficient

The effects of the anisotropic coefficient, α, on ie for one-dimensional and two-
dimensional seepage are shown in Figure 7. As shown in Figure 7, when the perme-
ability of the soil is isotropic (α = 1), ie is about 0.46. With the increase in 1/α, ie increases
continuously, and when the value of ie with one-dimensional seepage is constant (1/3), the
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effect of the permeability anisotropy on ie cannot be considered. For the case 1/α > 1/2,
the ie calculated with the one-dimensional seepage model is lower than that obtained
with the two-dimensional seepage model for the same permeability coefficient. Moreover,
the difference between the one-dimensional flow and the two-dimensional flow is more
remarkable with the increase in 1/α.
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5.2. Effect of the Foundation Pit Width

The effects of the foundation pit width, c, on ie for one-dimensional and two-dimensional
seepage are shown in Figure 8. As shown in Figure 8, in the case of two-dimensional
seepage, when c approaches 0, ie approaches 1. With the increase in the half width of the
foundation pit, c, ie decreases continuously. When c approaches infinity, ie approaches
0.26. For one-dimensional seepage, ie is one-third of the fixed value and the influence of
the foundation pit width cannot be considered. When c < 5.5 m, the calculation result for
one-dimensional seepage is smaller than that for two-dimensional seepage, which is unsafe.
With the decrease in c, the difference between the calculation results for one-dimensional
seepage and two-dimensional seepage increases.

Buildings 2024, 14, x FOR PEER REVIEW 10 of 15 
 

 

of the soil is isotropic (α ൌ  1 ), 𝑖௘  is about 0.46. With the increase in 1/α , 𝑖௘  increases 
continuously, and when the value of 𝑖௘ with one-dimensional seepage is constant (1/3), 
the effect of the permeability anisotropy on 𝑖௘ cannot be considered. For the case 1/α ൐1/2, the 𝑖௘ calculated with the one-dimensional seepage model is lower than that obtained 
with the two-dimensional seepage model for the same permeability coefficient. Moreover, 
the difference between the one-dimensional flow and the two-dimensional flow is more 
remarkable with the increase in 1/α. 

 
Figure 7. The effect of the anisotropic coefficient on the exit gradient at the base of the foundation 
pit. 

5.2. Effect of the Foundation Pit Width 
The effects of the foundation pit width, 𝑐 , on 𝑖௘  for one-dimensional and two-di-

mensional seepage are shown in Figure 8. As shown in Figure 8, in the case of two-dimen-
sional seepage, when 𝑐  approaches 0, 𝑖௘  approaches 1. With the increase in the half 
width of the foundation pit, c, 𝑖௘  decreases continuously. When c approaches infinity, 𝑖௘ approaches 0.26. For one-dimensional seepage, 𝑖௘ is one-third of the fixed value and 
the influence of the foundation pit width cannot be considered. When 𝑐 ൏  5.5 m, the cal-
culation result for one-dimensional seepage is smaller than that for two-dimensional seep-
age, which is unsafe. With the decrease in 𝑐, the difference between the calculation results 
for one-dimensional seepage and two-dimensional seepage increases. 

 
Figure 8. The effect of foundation pit width on the exit gradient at the base of the foundation pit. Figure 8. The effect of foundation pit width on the exit gradient at the base of the foundation pit.

5.3. Effects of the Distance between the Retaining Wall and the Impervious Layer

The effects of the distance between the retaining wall and the impervious layer, a, on
ie for one-dimensional and two-dimensional seepage are shown in Figure 9. As shown
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in Figure 9, with the increase in the parameter a, the exit gradient, ie, gradually increases.
In the two-dimensional seepage model, the exit gradient, ie, approaches zero, and when
a increases to 9, i.e., when the bottom of the retaining wall approaches the excavation
face, the value of ie is close to infinity. The difference between one-dimensional seepage
and two-dimensional seepage is more remarkable with the increase in a for the same
engineering parameters.
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6. Discussion

Based on the analytical solution of this paper, Section 4 discussed the effects of the
anisotropic coefficient, the foundation pit width, and the distance between the retaining
wall and the impervious layer on the hydraulic head of the seepage field of the foundation
pit. Meanwhile, to apply the analytical solution of this paper in practical engineering,
Section 5 discussed the effect of these three parameters on the exit hydraulic gradient,
which is associated with failure by heaving and piping.

As the width of the foundation pit increases, the head inside the retaining wall and
outside the retaining wall decreases, while the exit gradient follows the same trend. This
suggests that increasing the burial depth of the retaining wall can reduce the effect of
seepage on pit stability. As the embedment depth of the retaining wall increases, the
exit gradient decreases, which is favorable to the stability of the foundation pit against
seepage. Yu [25] similarly investigated the effect of foundation pit width and distance
between the retaining wall and the impervious layer on the foundation pit seepage field,
and the results obtained were consistent with the conclusions of this paper. In addition,
the permeability anisotropy of the soil layer is the focus of this paper. The effect of α, the
ratio of the horizontal permeability coefficient to the vertical permeability coefficient, on
the distribution of the hydraulic head inside and outside the pit and on the hydraulic exit
gradient at the bottom of the pit is discussed in Sections 4 and 5. With the increase in the
ratio of the permeability coefficient between the horizontal and vertical directions of the
soil body, the overall trend of the hydraulic headline outside the foundation pit is deflected
to the inner side and the overall trend of the hydraulic headline inside the foundation pit is
gently shifted downward. Huang [26] investigated the effect of the permeability anisotropy
of the soil layer on the water pressure of the circular cofferdam and their conclusion is
consistent with the conclusions obtained in this paper.

Furthermore, some other factors of the pit were not considered in the analytical
solution of the seepage field in this paper, such as the thickness of the retaining wall and
the precipitation measures. The thickness of the retaining wall can reduce the hydraulic
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gradient, which is helpful to prevent seepage damage to the pit. However, this paper made
simplifications and did not consider the thickness of the retaining wall. Precipitation is a
common measure in foundation pit excavation, but the water level distribution around the
pit after precipitation is curved and will not be a constant [27], which will introduce a lot of
difficulties in the analytical solution. Therefore, the seepage field of the pit, considering the
thickness of the retaining wall and the precipitation measures, can be further investigated
in future studies based on the analytical solution presented in this paper.

7. Conclusions

The primary achievement of this paper is to formulate an analytical solution for the
seepage field surrounding a foundation pit in homogeneous and anisotropic situations.
The analytical solution, substantiated through verification, aligns closely with the output
from the finite difference software FLAC3D. The impact of the foundation pit’s width, the
distance separating the retaining wall and the impervious layer, and the anisotropic seepage
conditions on the total head have been explored by parameter analysis and discussed in
detail. The primary conclusions of the study are as follows:

1. The hydraulic heads on both sides of the retaining wall for two-dimensional seepage
show a curve distribution. With the increase in the anisotropic coefficient and the
decrease in the foundation pit width, the hydraulic heads on both sides of the retaining
wall increase continuously. With the increase in the distance between the retaining
wall and the impervious layer, a, the hydraulic heads outside the retaining wall
decrease and those inside the retaining wall increase.

2. For two-dimensional seepage, the variation trend of the exit gradient, ie, is greatly
affected by the size of the excavation (α, c, and a), and with the gradual increase in
the number of series terms, the influence rule and the value become more accurate.
By comparing the calculation results of the first 5, 15, and 20 terms of the sum of the
series, it can be concluded that the requirements for engineering precision can be met
when the calculation accuracy is 20 terms.

3. The series solution presented in this paper is simple in form and high in precision, and
the obtained results can be used to better observe the influence of two-dimensional
geometric parameters. This method makes a certain contribution to improving seep-
age calculations for coastal foundation pits and can be applied to the seepage problem
of layered soil.
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Appendix A

Based on the previous equations, the series can be expressed by a matrix as follows:E11 0 E13
0 E22 E23

E31 E32 E33

 A
B
C

 =

 0
0
D

 (A1)
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where E11, E22, and E33 are all diagonal matrices:

E11 =


1 0 . . . 0
0 α1 . . . 0

. . . . . . . . . . . .
0 0 . . . αN

 (A2)

E22 =


γ1 0 . . . 0
0 γ2 . . . 0

. . . . . . . . . . . .
0 0 . . . γN

, γm = km cosh
km(a − h2)√

α

c
2

(A3)

E33 =


ω1 0 . . . 0
0 ω2 . . . 0

. . . . . . . . . . . .
0 0 . . . ωN

, ωm = − cosh
kia√

α

b + c
2

(A4)

where E23 and E32 are square matrices of order N:

E23 =


η11 η12 . . . η1N
η21 η22 . . . η2N
. . . . . . . . . . . .
ηN1 ηN2 . . . ηNN

,

 ηmi = kisinh kia√
α

sin kib
ki

k2
i −k2

m
, (ki ̸= km)

ηmi = kisinh kia√
α

cos kmb c
2 , (ki = km)

(A5)

E32 =


φ11 φ12 . . . φ1N
φ21 φ22 . . . φ2N
. . . . . . . . . . . .
φN1 φN2 . . . φNN

,

 φmi = −sinh km(a−h2)√
α

sin kib
ki

k2
i −k2

m
, (ki ̸= km)

φmi = sinh km(a−h2)√
α

cos kib c
2 , (ki = km)

(A6)

where E13 is a matrix of order (N + 1) × N and each element can be expressed as follows:

E13 =


β01 β02 . . . β0N
β11 β12 . . . β1N
. . . . . . . . . . . .
βN1 βN2 . . . βNN

, β0i = −1
b

sinh
kia√

α
sin kib (A7)

 βni = −kisinh kia√
α

sin kib
ki

k2
i −k2

n
, (ki ̸= kn)

βni = −kisinh kia√
α
(−1)n b

2 , (ki = kn)
(A8)

where E31 is a matrix of order N × (N + 1) and each element can be expressed as follows:

E31 =


φ10 φ11 . . . φ1N
φ20 φ21 . . . φ2N
. . . . . . . . . . . .
φN0 φN1 . . . φNN

, φi0 =

(
a − h1√

α
− b

c
a − h2√

α

)
1
ki

sin kib (A9)

 ϕin = sinh kn(a−h1)√
α

sin kib
ki

k2
i −k2

n
, (ki ̸= kn)

βni = sinh kn(a−h1)√
α

(−1)
bi

b+c b
2 , (ki = kn)

(A10)

In addition, the matrices A, B, C, and D can be represented as follows:

A =
[
A10, A1, . . . . . . AN

]T (A11)

B =
[
B1, . . . . . . BN

]T (A12)

C =
[
C1, . . . . . . CN

]T (A13)
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D =
[
d1, . . . . . . dN

]T , d1 = (h2 − h1)
1
ki

sin kib (A14)
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