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Abstract: With the advent of Industry 4.0, the prevalence of tower cranes equipped with hook
visualization is increasing. However, the introduction of new interface management tasks has led to
novel patterns of human errors for operators. The Simplified Plant Analysis Risk–Human Reliability
Assessment (SPAR-H) method has emerged as a relevant approach for the prediction of human
reliability in smart construction tower crane operations. However, the current SPAR-H method is only
partially applicable and does not fully meet the requirements of this study. Initially, a text mining
approach (TF-IDF-TruncatedSVD-ComplementNB) was employed to identify operator error-specific
terms in tower crane operations. These terms were then correlated with the eight Performance
Shaping Factors (PSFs) of the SPAR-H method, and corresponding failure modes and potential causes
were determined from the literature. This ensured a more objective selection of influencing factors
and PSFs during the stratification process, which was validated through questionnaire surveys.
Furthermore, standards for SPAR-H PSF levels were established based on the characteristics of tower
crane operators. Given the inherent complexity of relationships among SPAR-H PSFs, the DEMATEL-
ANP method was applied. This involved analyzing logical interactions and causal relationships
between first-level and second-level indicators of PSFs, obtaining weights, and integrating these
with the SPAR-H method to determine human reliability. Finally, an analysis and validation were
conducted using a case study of an accident involving a smart construction tower crane, confirming
the subsequent reliability of operator actions. The result of the accident case study yielded a reliability
measure of 4.2 × 10−5. These findings indicate that the evaluation process of this method aligns with
scenarios encountered in smart construction tower crane operations.

Keywords: SPAR-H method; text mining; DEMATEL-ANP; PSFs; intelligent construction tower
crane operators

1. Introduction

The comprehensive integration of modern information technology in smart construc-
tion sites has facilitated extensive connectivity between individuals, objects, and their
interactions, embedding safety principles throughout the production process. This ap-
proach concurrently enhances productivity and advances safety management objectives, as
highlighted in a previous study [1]. Presently, many tower cranes are equipped with hook
visualization devices, effectively reducing the probability of incidents such as mis-hooking
and collisions [2]. Compared to traditional construction sites, the widespread adoption
of tower crane hook visualization in smart construction sites imposes higher situational
awareness demands on operators [3]. Statistics reveal that from 2016 to 2020, China wit-
nessed a total of 605 tower crane accidents, averaging approximately 121 incidents per
year [4]. Research identifies distraction as a prevalent cause, constituting 19% of tower crane
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accidents [5]. Hook visualization may contribute to increased driver distraction [6]. Despite
the reduction in unsafe object states with the advancement of tower crane informatization
and automation, unsafe human behavior is a primary factor in accidents [7]. Construction
personnel’s unsafe actions not only directly cause accidents but may also indirectly trigger
incidents by altering object states [8]. The introduction of additional interface management
tasks imposes cognitive and operational burdens on operators, elevating the likelihood of
human errors such as mode confusion and loss of situational awareness [9]. As a result,
the reliability and safety of human–machine interaction systems with hook visualization-
equipped tower cranes increasingly depend on human factors [10]. Timely analysis of the
causes behind accidents involving smart tower cranes is crucial for strengthening safety
management in the construction industry and emphasizing the importance of human
factors in ensuring reliability [11].

The academic community has conducted research on predicting human reliability in
the context of traditional construction site tower cranes. Specifically, previous studies have
primarily focused on exploring the factors influencing safety incidents. However, there has
been limited attention given to investigating the interactions between the safety impact fac-
tors of tower cranes equipped with visually enhanced hooks and the prediction of human
reliability. Some studies have adopted Rasmussen’s risk management theory, identifying
56 factors related to tower crane safety. Utilizing AcciMap technology, a universal model
was constructed for tower crane safety, illustrating causal paths between system levels
and influencing factors [12]. Additionally, scholars employed a framework approach to
systematically analyze the causes and influencing factors of crane safety incidents in the
Australian construction industry. A total of 77 contributing factors were identified, operat-
ing across multiple levels of work systems associated with crane usage [13]. Another study
developed a fuzzy-set integrated risk analysis framework (ERAFF) to provide an overview
of key causal factors, critical risks, and control measures within the overall framework,
aiming to enhance the safety of tower crane operations [14]. Furthermore, some researchers
treated the causes of tower crane accidents as a system, employing network analysis meth-
ods to divide the system into six subsystems and 34 factors. They determined seven key
factors and three critical paths for tower crane accidents by calculating statistical indicators
such as degree, strength, and shortest path in the network model [15]. From a behavioral
safety perspective, most researchers believe that human errors are related to a multitude of
Performance Shaping Factors (PSFs). Efforts related to human factors in tower crane safety
have successfully established the relationship between human errors and PSFs. Researchers
have identified workload as a crucial factor influencing human performance. In the tower
crane industry, workload is considered a factor contributing to risky behavior and accident
probability [12]. Researchers have pointed out that additional workload can reduce job
performance [16]. Situation Awareness (SA) is also considered a factor influencing human
performance [17]. In tower crane applications, SA is a factor that can predict and evaluate
human performance [18]. Other relevant factors, such as job pressure and task complexity,
may also be related to safety. Job pressure [19] has a negative impact on the safety of tower
crane personnel. Task complexity has been recognized as one of the Performance Shaping
Factors (PSFs) in Human Reliability Analysis (HRA) methods [20]. The human–machine
environment is also considered to affect the safety of tower crane operators [21]. However,
as mentioned earlier, human errors are determined by a series of mistakes when considered
together [22]. The human factors exhibit interrelationships among different Performance
Shaping Factors (PSFs). The term “interrelationships” broadly encompasses all possible
interactions between PSFS states and the influences generated by PSFS on human perfor-
mance, such as correlations, dependencies, overlaps, or combined effects, including causal
relationships, indicating the direction of influence [23]. Park and Jung noted a relationship
between the task complexity of emergency operating procedures and the workload of oper-
ators in Nuclear Power Plant Simulators (NPPSs) [24]. Relationships between experience
and workload have been reported in various domains, including driving, aviation [25],
and nuclear power stations. However, most Human Reliability Analysis (HRA) methods
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treat PSFs independently and do not consider these characteristics of PSFs [26]. If HRA
neglects the interrelationships of PSFs, the Human Error Probability (HEP) may be either
overestimated or underestimated [27]. For instance, in cases where a complex task imposes
a high workload on operators, considering only the complexity and workload may lead to a
redundant calculation of the impact of complexity, resulting in an overestimation of HEPS,
and vice versa. However, many HRA methods handle PSFs independently and generally
do not account for the integrated effects of PSFs on human performance when estimating
HEP [28]. This paper aims to provide a prediction of human reliability. Therefore, to
determine the Human Error Probability (HEP) using all relevant PSFs, we chose the HRA
method as the primary approach in this study.

Human reliability is defined as the probability of successfully executing a task, while
human error refers to human behavior exceeding the system’s tolerance range. Human
reliability and human error are closely intertwined concepts, where human reliability
is quantified by assessing the probability of human errors occurring during task execu-
tion [9]. Typically, the HRA process includes five stages: problem definition or analysis
scope specification, task modeling, human error analysis, human error quantification,
and error management recommendations [29]. Numerous studies have been utilized to
quantify human reliability. The techniques in the field of Human Reliability Assessment
(HRA) can be categorized into two generations. The typical first-generation HRA methods
include techniques like the Technique for Human Error Rate Prediction (THERP), the Hu-
man Error Assessment and Reduction Technique (HEART), the Simplified Plant Analysis
Risk–Human Reliability Assessment (SPAR-H), and the Success Likelihood Index Method
(SLIM). THERP, a well-established HRA technique, employs task decomposition, nominal
Human Error Probabilities (HEPs), the impact of Performance Shaping Factors (PSFs),
dependencies between different HEPs, and HRA event trees to compute the final HEP [30]
HEART represents a user-friendly approach [31]. A widely known HRA method, SLIM,
relies on a small set of PSFs to estimate HEP data, primarily based on the influences of
certain error-promoting conditions [26]). SPAR-H, akin to a simplified version of THERP,
employs eight PSFs to determine the ultimate HEP value. In second-generation HRA
methods, representative approaches include the Assessment Technique for Human Error
Rates (ATHENA) and the Cognitive Reliability and Error Analysis Method (CREAM) [32].
Athena is time-consuming and provides limited quantitative analysis. Over the past two
decades, Human Reliability Analysis (HRA) has been used as a systematic technique to
mitigate the risks associated with various industries, including nuclear energy [33], oil [34],
healthcare [35], and other safety-critical industries [36]. The SPAR-H method, compared to
other methods, encompasses a more comprehensive set of PSFs. SPAR-H is characterized
by its flexibility, clear hierarchy, and consideration of the digital environment. When using
SPAR-H, minimizing overlaps and maintaining the hierarchical structure should be taken
into account [37].

The eight PSFs in SPAR-H encompass three fundamental components: the individual,
system, and environment. SPAR-H categorizes task types into “Diagnosis” and “Action.”
“Diagnosis” tasks involve relying on knowledge and experience to understand existing
conditions, prioritize activities, and determine suitable courses of action. “Action” tasks
encompass planning, team communication, resource allocation during task execution, and
subsequent activities [38]. SPAR-H calculates the contextual influences related to human
error events using PSFs and adjusts HEP through dependency assignments. Once the
PSF level is determined, the final HEP is obtained by multiplying the Basic Human Error
Probability (BHEP) by the PSF [23]. This represents a prediction of human reliability. Eight
factors impacting human performance were further researched: the available time for task
completion, pressure, experience and training, task complexity, ergonomics, procedures,
adaptability, and workflow [39]. To address the needs of multi-unit HRA processing, Park
et al. identified and classified human and organizational factors for six types of multi-unit
tasks [37]. In refining SPAR-H, Elidolu systematically expanded the method for predicting
human reliability by using evidential reasoning, taking into account dependencies between
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Performance Shaping Factors [40]. S. Chen developed a method for predicting human
reliability based on SPAR-H and applied Bayesian Networks (BNs) to validate the usability
of the method [41]. Additionally, Yan et al. developed a reliability model using SPAR-H,
establishing Performance Shaping Factors for human reliability and employing fuzzy IF-
THEN rules to determine prior probability distributions of intermediate nodes, aligning
with results from the Cognitive Reliability and Error Analysis Method (CREAM) [42].
The introduction of interface management tasks represents the most significant change in
the way operators interact with the system. On the one hand, it makes the handling of
information by operators more convenient and flexible. This shift in interaction poses the
greatest challenge to traditional human reliability analysis, as noted by Porthin [9]. To a
certain extent, it alters the cognitive behavioral characteristics of drivers, and the analysis
of these characteristics is inseparable from the task analysis of operators. In comparison
to drivers who are not accustomed to hook visualization, those who adapt to it tend to
engage in more individual operations or overly rely on the information conveyed by the
interface [43]. Furthermore, the development of hook visualization poses a challenge to
organizational management in enterprises [44]. Therefore, studying the characteristics
of operators performing interface management tasks is particularly necessary for human
reliability analysis in a digital environment. However, the SPAR-H method does not address
content related to interface management tasks. Considering the systemic, structural, and
complex nature of behavioral safety characteristics in tower crane operators [45], this study
primarily adopts DEMATEL-ANP to refine the SPAR-H method for accurate human factor
reliability assessment in tower crane operators.

Due to the limited availability of empirical data on accidents involving intelligent
construction site tower cranes, this study heavily relies on expert assessments of crane
operational reliability. Despite the contested nature of expert evaluation methods, they
continue to play a crucial role in human reliability research [46]. Intelligent tower cranes
in smart construction sites differ from failure modes in nuclear power plants. Therefore,
the SPAR-H method, known for its flexibility, clear hierarchical structure, and suitabil-
ity for digital environments, was employed [37]. This method primarily focuses on the
interaction between intelligent crane operators and the machinery. To minimize overlap
and maintain a hierarchical structure, the study initially used text mining techniques to
analyze 229 accident reports from both traditional and intelligent tower crane incidents
between 2018 and 2023. The SPAR-H model, commonly employed in nuclear power plant
safety, was then applied to categorize the human–machine elements within the crane’s
cabin. These elements include available time, pressure, complexity, training/experience
level, procedures, human–machine environment, job applicability, and procedures. The
relationships between performance shaping factors (PSFs) in SPAR-H exhibit complexity,
with previous research indicating potential causal or correlational connections between
different PSFs [23]. This complexity highlights the dynamic nature of PSF interrelationships.
Subsequently, a novel approach combining the Decision-Making Trial and Evaluation Labo-
ratory (DE-MATEL) and Analytic Network Process (ANP) was employed to assess human
errors in intelligent construction site tower crane operations. This approach enables the
modeling of causal relationships and processing of complex connections [47]. Through
expert surveys and the DE-MATEL method, a comprehensive influence matrix among the
indicators was computed. The ANP method was then utilized to analyze the network
structure of these indicators and determine their weighted significance. Finally, the weights
obtained from the DEMATEL-ANP method were integrated with the SPAR-H method and
validated through case analysis to predict the human reliability in intelligent construction
site tower crane operations. The aim of this study is to address the limitations of previous
research on the prediction of human reliability in tower crane operations. However, it is
important to note that expert assessments play a key role in this study due to the constraints
of accident data involving intelligent construction site tower cranes. Further research and
practical applications will contribute to a more comprehensive and accurate prediction of
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human reliability in intelligent construction site tower cranes. This, in turn, will provide
targeted measures and solutions to effectively mitigate human errors.

2. Research Process

This study involves six steps to evaluate the human reliability analysis of tower crane
operators:

1. Text Mining (TF-IDF-TruncatedSVD-ComplementNB): Analyzing 229 Chinese tower
crane reports using text mining techniques to extract information about accident
causation. The aim is to precisely categorize characteristic terms associated with the
causes of accidents.

2. Identification of Tower Crane Human Error Types: Classifying the terms obtained
from text mining and aligning them with the Performance Shaping Factors (PSFs)
in the SPAR-H model. This step involves finding corresponding failure modes and
potential causes in the existing literature to refine the understanding of PSFs.

3. Determination of PSF Levels in Tower Crane Cabs: The SPAR-H method simplifies
human cognitive processes into diagnostic and executive elements. Each PSF’s level
is established through comparisons with prior research to define standardized levels.

4. Quantification of Human Error Probability (HEP): Due to the intricate relationships be-
tween PSFs in SPAR-H involving both causal and correlational aspects, the DEMATEL-
ANP method is employed here for quantitative assessment.

5. Demonstration of Method Feasibility through Practical Cases: The viability of the
methodology is showcased through practical case studies.

3. Research Methodology
3.1. SPAR-H Methodology

The SPAR-H method, developed by the U.S. Nuclear Regulatory Commission, has
found extensive application in the management of human resources and risk within nuclear
regulatory bodies and power plants in countries like the United States and China. This
method classifies tasks into “Diagnosis” and “Action.” “Diagnosis” involves leveraging
knowledge and experience to understand existing conditions, plan activities, establish
priorities, and determine appropriate courses of action. “Action” includes planning, team
communication, resource allocation during task execution, and subsequent operational
activities [38]. The SPAR-H method employs Performance Shaping Factors (PSFs) to
calculate contextual conditions related to human error events. Adjustment of Human Error
Probability (HEP) is achieved through dependency allocation. Eight factors influencing
human performance have been identified through further research: available time for task
completion, pressure, experience and training, task complexity, ergonomics, procedures,
adaptability, and workflow [23]. Once the PSF levels are assigned, the final HEP is the
product of the Basic Human Error Probability (BHEP) and the PSFs [23].

HEP = NHEP × ∏8
i=1 PSFi (1)

HEPi = HEPidiagnosis + HEPiaction (2)

where NHEP represents the basic human error probability, and PSFi stands for the i-th level
of the performance shaping factor, where i ranges from 1 to 8.

SPAR-H incorporates eight PSFs, which consist of three common basic components:
the individual, system, and environment. When using SPAR-H, it is important to minimize
overlap, maintain hierarchy and flexibility, and consider the digital environment [37].

(1) Reducing Overlap: Excessive overlap between PSFs can hinder experts in reducing
the uncertainty of specific human error events. Therefore, it is crucial to clearly define
the scope of each PSF to avoid redundancy with others.

(2) Hierarchical Structure: Describing each PSF should adhere to a hierarchical frame-
work, such as components, factors, and indicators. Given the multitude of factors
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influencing the HRA process, a hierarchical framework for PSFs provides clear guid-
ance in minimizing their impact.

(3) Flexibility: The work environments of personnel in different industries vary, necessi-
tating adaptability in Human Reliability Analysis methods. The states of PSFs should
be flexible to address different events based on the characteristics of each PSF.

(4) Digitization: Considering the trend toward digitization, especially in industries like
crane operations, with visualized hook technology, it is essential to factor in the
impact of digital environments on operators. Digitalization is becoming increasingly
prevalent, making it necessary to account for its influence.

3.2. Text Mining for Tower Crane Accidents

Due to the different characteristics of accidents involving tower cranes in smart con-
struction sites compared to nuclear power plant accidents, the SPAR-H method offers
flexibility. By employing text mining techniques to understand the accident features of
tower cranes in smart construction sites, we can enhance the hierarchy of indicators and
reduce overlap, thereby facilitating subsequent accurate calculations. The development
of smart construction sites in China started relatively late, with large-scale construction
beginning around 2016. However, the practical application and promotion of smart con-
struction sites have gradually matured in recent years. Currently, the development of
smart construction sites in China is rapidly progressing and has become a new trend in
construction site management. According to data released by the Ministry of Industry and
Information Technology, as of the end of 2020, there were 1023 smart construction sites
in China, with Shanghai, Guangdong, Tianjin, Zhejiang, and Jiangsu having the highest
number of smart construction sites. Currently, most tower cranes in smart construction sites
are equipped with hook visualization systems, resulting in lower accident rates and fewer
accident reports. A total of 229 tower crane accident reports (including both traditional
and smart tower cranes) from 2018 to 2023 were collected from the website of the State
Administration of Work Safety and the Crane Engineer website. These reports were used as
the data source to ensure the authority, accuracy, and timeliness of the data. However, tower
crane accident reports often lack standardization and consistency, leading to redundant
information. Given the semantic complexity and sparsity of long texts in text mining, text
preprocessing was initially performed to address these characteristics. Irrelevant informa-
tion, such as details about the accident unit, improvement suggestions, and the accident
investigation process, was removed to focus specifically on unsafe behaviors and their
causes. Only the accident process, accident causes, and accident liability attribution were
retained and integrated for subsequent text mining.

After cleaning and denoising text data, the first step in text mining typically involves
representing the text using appropriate models. Common text representation models de-
scribe documents as feature vectors, which include frequent words or phrases as well as
the syntactic structure of sentences [48]. Most simple text vector representations treat text
as a bag of words (BOW) or a combination of BOW and character n-grams. Considering the
length and semantic complexity of text, the choice of feature vector extraction often involves
the term frequency–inverse document frequency (TF-IDF) model [49]. BOW models tend
to overly emphasize frequency in text mining, potentially overlooking less frequent but
more meaningful vocabulary [50]. Logistic regression is a binary classification algorithm
that uses a logistic function as a hypothesis. The model then optimizes the algorithm to
minimize the associated cost function J, determining the separation curve between two
classes [51]. Truncated-SVD is a matrix decomposition technique used for tasks such as di-
mensionality reduction, feature extraction, and data compression. It helps in understanding
the underlying structure in data, identifying patterns and correlations, thereby achieving
data dimensionality reduction or extracting important features [52]. LLM is commonly
used to estimate parameters of probability distributions to maximize the likelihood of
observed data. It is widely used in statistical modeling and machine learning to fit model
parameters [53]. Unlike SVD, LLM focuses more on describing the probability process
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that generates observed data rather than data dimensionality reduction. In the context of
feature extraction, SVD helps identify the most important features in data, reducing them
to a lower-dimensional space while preserving the main structure and helping to eliminate
noise and redundancy. Additionally, Truncated-SVD may perform well in handling sparse
data, capturing main patterns, and demonstrating tolerance to missing values [54]. TF-IDF
is better suited for handling structurally complex long texts compared to BOW and similar
lexical processing methods and can capture less frequent vocabulary. Truncated-SVD is
commonly used for dimensionality reduction and feature extraction. It helps remove noise
and redundant information from data, extracting the most important features, thereby
reducing data dimensionality and improving model performance. It has wide application
in natural language processing (NLP), image processing, and recommendation systems,
among other fields. Furthermore, in validating the TF-IDF-Truncated SVD model using the
COMPLETMENT-NB algorithm, a result of 1 indicates good adaptability of this model to
long texts.

First, the tower crane accident text corpus was preprocessed using python3.0 by
removing non-Chinese characters, tokenizing, and eliminating stop words. This step
involved constructing a tower crane safety feature dictionary. Next, the inverse document
frequency (IDF) value of each word was calculated to build a custom IDF dictionary,
enhancing the accuracy of keyword extraction. The TF-IDF algorithm was then applied to
extract keywords from all the tower crane safety texts collected [55]. Using the constructed
tower crane safety domain feature dictionary, feature matching was performed on the
extracted keywords, obtaining the feature attributes of each tower crane safety accident
text. Since the text contains nearly 600,000 words and yields a large number of feature
words through TF-IDF, TruncatedSVD was selected to reduce dimensionality, resulting
in 127 representative feature words [52]. Finally, the ComplementNB class was used
to train the Naive Bayes classifier with the obtained features and target variables. The
model parameters of the classifier were fitted, and predictions were made, producing an
accuracy output of 1. This preliminary result indicates that the model possesses accuracy
and generalization capabilities on the training set [56]. Due to the abundance of feature
words, 97 representative features were selected through sorting after manually excluding
irrelevant items such as “construction” and “safety management.” Expert opinions from
the construction industry were sought, suggestions were considered and discussed, and
the relevant literature was reviewed [57]. The 97 feature values were chosen based on their
representativeness and weight, and the encoding results are summarized in the Table 1.

Table 1. Dimension reduction results of the feature items of the intelligent site tower crane accident
investigation report.

Impact Factors Frequency Impact Factors Frequency Impact Factors Frequency

Feel unwell 0.1273 Teamwork 0.0202 Cockpit temperature 0.0015
Physical state 0.0079 Teamwork 0.0015 Cockpit humidity 0.0014

Illness 0.0318 Operating
specification 0.0099 Illumination 0.0028

Health 0.0015 Operating system 0.0128 Hue 0.0014
Fatigued 0.0012 Rules and regulations 0.0124 Noise 0.0014

Dispersion of
attention 0.0012 Reward and

punishment system 0.0028 Vibration 0.0012

Distracted 0.0020 Management system 0.0076 Crossing condition 0.0014
Inattention 0.0021 Job training 0.0318 Construction site 0.0049

Emotional stability 0.0014 Safety education 0.0341 Site obstacle 0.0330
Testiness 0.0021 Job management 0.0012 Weather 0.0034

Safety awareness 0.0069 Operating procedure 0.0180 Digital interface display 0.0049

Professional skill 0.0861 Technical specification 0.0036 Digital interface
information delivery 0.0055
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Table 1. Cont.

Impact Factors Frequency Impact Factors Frequency Impact Factors Frequency

Operational skill 0.0359 Regulation 0.0031 Information
transmission 0.0082

Defense 0.0038 Long working hours 0.1220 Safety sign 0.0440

Safety belt 0.0029 Work schedule is not
reasonable 0.0012 Display and control

page layout 0.0070

Safety Helmet 0.0015 Cable worker
communication 0.0021 Display and control

operation mode 0.0015

Safety measure 0.0018 Signalman 0.0096 Display and control
device density 0.0073

Protective device 0.0015 Untimely signal 0.0055 Drive-by-wire reliability 0.0144
Working hours 0.0021 Improper command 0.0250 Space comfort 0.0063

Staffing 0.0023 Emergency drill 0.0507 Cockpit seat comfort 0.0011
Distribution of
responsibilities 0.0423 Emergency plan 0.0032 Communication

equipment 0.0064

Time pressure 0.0091 Preventive measures 0.0061 System intelligence 0.0076
Time shortage 0.0334 Working atmosphere 0.0954 System reliability 0.0070

3.3. Types of Human Error in Tower Crane Operations

In order to minimize overlap among Performance Shaping Factors (PSFs) and enhance
their hierarchical structure, an alignment was established between feature words extracted
through text mining and the PSFs in SPAR-H. However, the complete avoidance of fuzzy
and overlapping issues in term classification is currently a formidable challenge [23]. This
challenge arises because, despite the apparent quantification of accidents, SPAR-H funda-
mentally quantifies the rationality of human behavior. Consequently, previous attempts
by researchers to deconflict Performance Shaping Factors (PSFs) have yielded diverse out-
comes. The underlying reasons for this variability can be attributed to two factors: (1) the
multifaceted and diverse content encapsulated within each Performance Shaping Factor
(PSF), and (2) cognitive biases among some experts and scholars in their understanding
of Performance Shaping Factors (PSFs) [58]. Therefore, achieving a suitable classification
is complex, and the perspectives of experts are particularly crucial in this endeavor [57].
This alignment involves appropriate categorization while identifying corresponding failure
modes and potential causes from the literature. PSFs refer to background factors in the
work environment that influence human performance behaviors. These factors can either
positively reduce error probability or negatively increase it [59]. During the development
of the fundamental SPAR-H model, an assessment was made of task availability, task
complexity, and pressure (during task handling). These three factors focus on the impact
of task attributes themselves on the likelihood of human errors occurring. In various
application domains, there were no significant differences observed in the standardization
of PSF levels. As the scope of SPAR-H application expanded, the remaining five PSFs
(experience/training, procedures, human factors engineering and human–machine inter-
face, applicability, and work process) were generally evaluated as nominal values. This
evaluation was due to their event-specific, factory-specific, or personnel-specific nature [39].

3.4. Standard for Determining the Level of PSFs in the Cab of Tower Cranes

The SPAR-H method operates on the principle of treating the human–machine–
environment system as an integrated system. Initially designed for calculating human-
induced accidents in nuclear power plants, the SPAR-H method, when applied to smart
construction site tower cranes, maintains its applicability [26]. The conceptual framework
of each PSF (Performance Shaping Factor) remains consistent across different applications,
with the understanding that the extension of each PSF’s concept may vary to suit the
system under consideration. For instance, in the context of tower crane incidents on smart
construction sites, the extension of the human–machine–environment concept encompasses
the technical and physical environment within which the crane operator operates. The
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SPAR-H method simplifies the cognitive processes of humans into diagnostic and executive
components. In the context of tower crane incidents in intelligent building construction
sites, digital systems have the potential to provide enhanced support to operators. The be-
haviors of operators in these digitized environments exhibit characteristics akin to cognitive
behaviors [43], emphasizing the critical role of diagnostic actions.

(1) Diagnostic Component: This involves personnel understanding the current conditions
and operational status of the system based on their knowledge and experience. They
then formulate appropriate plans accordingly.

(2) Executive Component: Personnel operate the equipment based on specified proce-
dures, plans, and operational instructions.

According to Gertman, the concept of task complexity involves “how difficult it is
to perform a task in a given environment. Complexity takes into account both the task
itself and the environment in which the task is executed” [26]. Studying human complexity
should consider various aspects of integrated systems. Liu described the objective com-
plexity and subjective complexity of human integrated systems in his research, considering
factors like task goal clarity, task information quantity and complexity, required cognitive
processes, task time constraints and pressures, prerequisite knowledge and experience, task
environment, and conditions for task execution. Factors such as interference, noise, time
pressure, and multitasking in task execution increase complexity [60]. Task complexity is
intricate and intertwined with other nominal values. Here, based on previous research, text
mining results, and the actual situation of smart construction site tower crane operations,
task complexity is divided into situational complexity and operational complexity [22].
The complexity of the work environment for tower crane operators implies that they are
dealing with intricate work situations. For instance, they may encounter the simultaneous
operation of multiple machines, requiring them to manage various tasks concurrently,
such as material handling, lifting, and placement. Therefore, in SPAR-H, there are four
criteria for assessing the complexity of the situation: (1) the need to monitor three or more
changing targets; (2) the requirement to calculate/estimate/convert observed parameters;
(3) the necessity to recall relevant experiences/knowledge for judgment; and (4) the need
to differentiate between different alarm signals. On the other hand, operational complexity
focuses more on whether the operational skills are intricate, for example, whether a specific
operation is routine and if the crane operator can cleverly apply their own experienced
skills to solve challenges. In SPAR-H, the assessment criteria for operational complexity
include four aspects: (1) can be accomplished with common sense; (2) operational actions
are simple/require observation of 1–2 objects; (3) operational actions are complex/require
simultaneous observation of multiple objects; and (4) tasks exceed the cognitive and skill
level of the operator. There exists a certain degree of correlation and causation between sit-
uational complexity and operational complexity. In practical applications, it is not feasible
to completely separate these factors. Therefore, when applying the SPAR-H method, expert
discussions based on actual situations and incident details are necessary.

Task processing time refers to the time available to operators or personnel to diagnose
and take action during abnormal events [28]. This Performance Shaping Factor (PSF) shows
independence from other PSFs, considering the ratio of available time to required time
in the cabin. Personnel operation time availability varies with specific operational steps,
requiring judgment based on engineering practice experience in real applications. For
instance, consider a crane operator tasked with moving an item. The estimated time for the
crane operator to complete the task is one hour, yet the actual time it takes the operator to
accomplish the job is only forty minutes. In this case, the ratio of available time to required
time is 3/2.

The pressure used in SPAR-H refers to the level at which adverse conditions hinder
operators from easily completing tasks. Pressure may include mental stress, excessive
workload, or physical stress (e.g., from difficult environmental factors). It encompasses
narrowed attention and muscle tension, including anxiety. Environmental factors, known
as pressure sources, such as heat, noise, poor ventilation, or radiation, can induce stress
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and affect operator mental or physical performance [28]. This PSF intersects with task
complexity, responsibility, adaptability, and human–environment factors [26]. Determining
how performance is influenced by complexity, pressure/stress, or human–environment at
specific stress and complexity levels is challenging due to their subjective nature. Pressure
is categorized into daily pressure and non-daily pressure [61]. To facilitate diagnosis and
implementation differentiation, pressure is further classified into context severity-based
pressure and decision severity-based pressure [62]. Context severity-based pressure aligns
with daily pressure and is intricately linked with the intensity of work demands [63],
emphasizing the prominent role of workload intensity as a primary risk factor in everyday
workplace stress. On the other hand, decision severity-based pressure corresponds to
non-daily pressure, primarily manifesting in the decision-making pressure faced by drivers
in emergency scenarios [64].

Experience/training refers to the experience of drivers involved in the task and the
safety training received [26]. Time is a crucial metric for assessing experience/training [65].
Additionally, it should be correlated and evaluated in conjunction with the safety skill profi-
ciency of crane operators. Often, the driver’s own perception and the opinions of colleagues
hold significant relevance in this regard [66]. Factors influencing experience/training levels
include whether the driver has years of operational experience and has received sufficient
safety training. Based on previous research, text mining results, and the actual situation of
smart construction site tower crane operations, experience/training is divided into safety
education/emergency drills and plans and working hours per month [67].

Operating procedures refer to the formal operating procedures present and used
during the operation process. The purpose of these procedures is to guide human actions
during task execution, increasing the likelihood of safely achieving task goals [26]. The
assessment of operational procedures primarily revolves around their alignment with real-
world situations. Therefore, field research methods are predominantly employed to validate
the integrity of operational procedures, encompassing key steps such as document review,
expert evaluation, and on-site verification [68]. Therefore, the judgment of operating
procedures mainly considers their alignment with real situations. Based on previous
research, text mining results, and the actual situation of smart construction site tower crane
operations, operating procedures are divided into completeness of operational regulations
and completeness of tower crane operation procedures [69].

In the SPAR-H method, initially defined human factors/human–machine interface
refers to the devices, displays and controls, layout, and quality and quantity provided
by instruments, as well as the interaction between operators and equipment [26]. In the
tower crane cab, the human–machine environment is constituted by the driver, equipment,
workbench, and internal environment, forming a specific human–machine environment.
Hence, a comprehensive consideration of the human–machine environment can be derived
from both the physical and technical aspects. Initially, an assessment of the physical
and technical environment is conducted by five experts in the field of human factors
engineering [70]. Subsequently, relying on the assessment outcomes, inquiries are made
regarding the driver’s comfort and level of concentration during work [71]. Therefore, the
human–machine environment level can be comprehensively considered from the physical
environment and technical environment. Based on previous research, text mining results,
and the actual situation of smart construction site tower crane operations, the human–
machine environment is divided into physical environment and technical environment [72].

Occupational suitability refers to whether a person’s physiological and psychological
state is suitable when performing tasks. It lacks specific quantitative analysis standards
in all analyses [26]. Therefore, a comprehensive consideration can be made from the
aspects of individual capability and individual state, with normality generally determined
for occupational suitability. Firstly, an assessment is conducted regarding the driver’s
professional proficiency, examining whether operational skills are reasonably mastered
and if there is a sufficient level of safety awareness [73]. Secondly, the driver’s professional
evaluation is sought from colleagues and supervisors [74]. Additionally, reviewing relevant
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work logs and safety records is crucial to determining whether the driver consistently
prioritizes safety [75].

Process definition refers to various aspects of work, including inter-organizational,
safety culture, work planning communication, management, support, and policies [26]. In
the cab, the process involves safety culture and team organization. Combining the above
analysis, specific PSF level determination criteria for tower crane operations are shown in
the Table 2 [37].

Table 2. Types of human error for tower cranes in smart construction sites based on SPAR-H method.

PSFs Human Error Factor Index Description Literature Reference

Task availability time Time pressure Time pressure, time shortage The time crunch and pressure that
tower crane drivers feel at work [62]

Experience and
training

Adequacy of job
training

Job training, safety
education

Whether the work training is
similar to the actual working
conditions of the tower crane, and
whether it covers all working
scenarios

[18]

Emergency drills and
plans

Emergency drills, emergency
plans, preventive measures

The frequency and quality of
emergency drills and the adequacy
of safety plans for emergencies

[18]

Human–machine
environment

Digital interface
information delivery

Device interface information
is poorly designed, device is
over-used/fatigued, and
device panel alarm is not
clear

The prominence of important
information display in the digital
interface, the speed of obtaining
information, text, icon symbols

[76]

Mandatory sign Safety sign Clarity, legibility, and reliability [17]

Crossing conditions, site
obstacles

Crossing condition
The accuracy and differentiation of
relevant indicator symbols and
marks in the display control panel [76]

Construction site, site road
conditions

Multiple working conditions or
conditions that exist at the
construction site simultaneously
and affect each other

Display and control
device layout

Display and control page
layout, display and control
operation mode, display and
control device density,
display and control device
reliability

Road and traffic conditions around
the construction site [77]

Overall spatial layout Space comfort, vision,
operating lever

The visibility of the display device,
the position reachability of the
control device, and the
corresponding relation of the
display and control combination
layout

[77]

Cockpit seat Cockpit seat
Department, function division in
line with personnel experience and
expectations

[2]

Communication
equipment Communication equipment

Structural dimensions of work
areas, channels, and activity
Spaces

[18]

Abnormal climate
change Weather anomaly

The degree to which the structure
of the seat matches the operation
of the sitting position and the
comfort of the human spine

[77]

Lighting, color Lighting, color

The good working condition of
communication equipment, the
stability and clarity of
communication signals

[77]

Noise and vibration Noise and vibration

Unusual or abrupt weather
conditions at the construction site
will affect the work of the tower
crane driver

[77]

Completeness of
operating system
standards

Operation standard,
operation system

Whether the lighting and color are
conducive to the visual recognition
function of personnel, visual
information exchange, etc.

[18]



Buildings 2024, 14, 1083 12 of 31

Table 2. Cont.

PSFs Human Error Factor Index Description Literature Reference

Operating procedure

Completeness of
operating procedures
for tower cranes

Complete operating
procedures, technical
procedures

Whether noise and vibration are
beneficial to people’s auditory
sensitivity, manipulation accuracy,
and emotional state

[16]

Rationality of reward
and punishment system

Rules and regulations,
reward and punishment
system, management system

Organization and management,
operating standards and systems
are scientific and accurate

[18]

Process Clear division of labor
and responsibilities

Division of labor, staffing,
responsibility distribution

The adequacy of procedures and
specifications for the flight deck
crew to perform operational tasks

[18]

Degree of teamwork Teamwork

Whether the reward and
punishment system can effectively
mobilize the enthusiasm of tower
crane drivers

[76]

Communicate properly
with the operator

Cable worker and signal
worker communication,
signal is not timely,
improper command

The positioning of the tower crane
staff for their role and the clarity of
their job responsibilities

[16]

System automation level System intelligence, system
reliability

The quality of information
exchange between staff and the
quality of operation coordination

[14]

Working atmosphere Working atmosphere
Able to communicate properly
with the operator and ensure
smooth work

[20]

Safety atmosphere Safety culture, safety
training

Automation system reliability,
equipment complexity

Fatigue degree Fatigued Harmonious working atmosphere [77]

Occupational
suitability

Physical fitness Physical discomfort,
physical condition, disease

Relevant departments supervise
building safety and publicize and
educate around safety culture

[77]

Knowledge skills and
business ability

Safety awareness,
professional skills,
operational skills

An individual’s subjective
perception of physical fatigue [17]

Degree of teamwork Teamwork

Whether the personal physical
quality is good, such as eyesight,
physical coordination, and other
elements

[12]

Concentration level Distraction, inattention

The reserve of personal knowledge
of tower cranes, the mastery level
of tower crane skills, and the
cognition and decision-making
levels of situational awareness

[72]

Emotional state Emotionally stable, irritable

The quality of information
exchange and operation
cooperation between team
members

[12]

Working time rationality
Long working hours and
unreasonable working
schedule

Personal focus on work [12]

3.5. Verification of Human Error Classification in Tower Crane Operation

The reliability performance shaping factors (PSFs) of the human–machine interface
in the operation of intelligent construction tower cranes, as presented in Table 3, were
validated through a questionnaire survey. The survey targeted male participants with
experience operating visualized tower cranes on intelligent construction sites, primarily
in Shanghai, Shenzhen, and Hubei. Participants aged 26–55 constituted 72.86%, those
with 3–10 years of work experience represented 63.57%, and 81.43% reported working
daily. Participants with a bachelor’s degree were the minority, at 8.57%. The survey,
distributed before the formal questionnaire, encompassed 55 identified items divided into
15 s-level PSFs across eight dimensions. Through data analysis of the survey responses,
this investigation provides robust support for the construction of the PSF system.
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Table 3. PSFs level determination criteria related to smart site tower cranes.

PSFs Level Adjustment Factor

PSF11 Scenario
Complexity

More than three changing
targets need to be monitored Meeting three is very high 5

PSF12 Operation
Complexity

The observed parameters need
to be calculated/
estimated/transformed

Meeting two is high 2

Need to recall relevant
experience/knowledge to make
judgment

Satisfying less than two is
normal 1

Different alarm signals need to
be distinguished

PSF1 task complexity Common sense can accomplish
this Easy to diagnose 0.1

The operation is simple/l to 2
objects need to be observed Normal 1

The complexity of the operation
requires that multiple objects be
observed simultaneously

Medium complexity 2

Tasks are beyond the operator’s
cognitive and skill level Highly complex 5

Insufficient information 1
PSF2 task processing
time

PSF11 Available time vs.
required time

≥50 times the required time Time affluence 0.01

≥5 times the required time Plenty of time 0.1
≈Required time Just in time 1
≈2/3 times the required time Hardly enough time 10

Insufficient information 1

PSF3 Pressure
PSF31Pressure based on the
severity of the situation

The operator has no
life-threatening pressure Normal 1

Operator experiencing low
life-threatening pressure High 2

Operator experiencing high
life-threatening pressure Very high 5

Insufficient information 1
PSF32 Pressure based on the
severity of the

The operator has no
life-threatening pressure Normal 1

Decision Operator experiencing low
life-threatening pressure High 2

Operator experiencing high
life-threatening pressure Very high 5

Insufficient information 1

PSF4 Experience/safety
training

PSF41 Safety
Education/Emergency
Drills and plans

1. Receive safety training before
operation All satisfied 0.5

2. Regular safety training Normal: 1 or 2 items are
not satisfied 1

3. Classified safety training Low: More than 2 items
are not satisfied 10

4. Graded safety training Insufficient information 1
5. Special safety training

PSF42 Working hours
X/month X ≥ 12 High 0.5

6 ≤ X ≤ 12 Normal 1
X ≤ 12 Low 10

Insufficient information 1
PSF51 operating code
system completeness 1. Symptom-oriented procedure Good 0.5

2. It matches with the current
task and has a direct
guiding role

Normal 1

PSF5 Operating
procedures

3. The number of operating
procedures is less than the
actual number of steps

Range 5

4. No operating procedures Worse 20
Insufficient information 1



Buildings 2024, 14, 1083 14 of 31

Table 3. Cont.

PSFs Level Adjustment Factor

1. Symptom oriented procedure Good 0.5
PSF52 Tower crane
operating procedure
completeness

2. It matches with the current
task and has a direct
guiding role

Normal 1

3. The number of operating
procedures is less than the
actual number of steps

Range 5

4. No operating procedures Worse 20
Insufficient information 1

PSF6 Human–machine
environment

PSF61 Physical
environment 1. Lighting, color suitable All satisfied 0.5

2. The noise is not more than 88
db

Normal: 1 or 2 items are
not satisfied 1

3. Clear indication mark Low: More than 2 items
are not satisfied 10

4. Cross conditions are clear, no
obstacles on the site Insufficient information 1

5. The overall layout of the cab space is suitable
6. The height of the cab seat and the operating table is suitable, and the seat is suitable
7. Suitable temperature and humidity
8. The climate is suitable

PSF62 Technical
environment 1. The digital interface is clear All satisfied 0.5

2. Excessive/fatigued use of
equipment

Normal: 1 or 2 items are
not satisfied 1

3. Communication equipment
functions normally

Low: More than 2 items
are not satisfied 10

4. The device panel alarm is not
clear Insufficient information 1

5. The density of display and control equipment is suitable
6. Display and control operation mode is suitable
7. Reliability of display and control device

PSF7 Occupational
suitability

PSF71 Personal
capabilities

1. Have sufficient team
cooperation, knowledge, skills
and business ability

Good 1

2. General level of team
cooperation, knowledge, skills,
and business ability

Normal 5

3. Less team cooperation,
knowledge, skills, and business
ability

Indisposition P (Failure) = 1.0

PSF72 Individual status

1. Individual state (physical
fitness, fatigue,
concentration) can complete the
task with high quality

Good 1

2. Individual state (physical
fitness, fatigue,
concentration) can complete the
task

Normal 5

3. Individual state (physical
fitness, fatigue,
concentration) cannot complete
the task

Indisposition P(Failure) = 1.0

PSF8 Process PSF81 Organization
Management

1. Reasonable staffing and
responsibility allocation All satisfied 0.8 (diagnosis)/0.5

(action)
2. Perfect reward and
punishment system

Normal: 1 or 2 items are
not satisfied 1

3. High degree of teamwork Low: More than 2 items
are not satisfied 5

4. Unimpeded communication
with the cable operator,
cable operator commands
properly

Insufficient information 1

5. Regular safety training
6. High reliability and intelligence of the system
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Table 3. Cont.

PSFs Level Adjustment Factor

PSF82 Safety Culture
1. Incorporate safety culture
construction into cultural
construction planning

All satisfied 0.8 (diagnosis)/0.5
(action)

2. Organize safety culture
publicity and educational
activities in various forms

Normal: 1 or 2 items are
not satisfied 1

3. Disclose the contact
information of safety complaints

Low: More than 2 items
are not satisfied 5

4. Hold safety production month Insufficient information 1
5. Carry out safety commitment activities

The questionnaire included basic information and an inquiry into PSFs affecting hu-
man reliability, rated on a Likert scale from 1 (“minimal impact”) to 5 (“significant impact”).
A pilot survey was conducted before the formal distribution to ensure its effectiveness. A
total of 140 questionnaires were collected, with 137 deemed valid. Rigorous testing was
performed to ensure data validity.

Assessment of the reliability and validity of the survey:
Using SPSS 26.0 software, overall reliability was determined to be 0.992. Dimension-

specific reliability coefficients were as follows: Task Time (0.854), Experience and Training
(0.907), Human–Machine Environment (0.968), Task Complexity (0.940), Procedures (0.832),
Processes (0.946), Occupational Adaptability (0.939), and Pressure (0.951). This indicates
good consistency across dimensions.

Content validity, concurrent validity, and construct validity were examined. The
Kaiser–Meyer–Olkin (KMO) test yielded a value of 0.976, and Bartlett’s sphericity test’s
approximate chi-square value was 8739.554. Commonalities for all study items were above
0.4, indicating effective information extraction. The KMO value of 0.976, exceeding 0.6,
suggests efficient information extraction from the data.

AVE (Average Variance Extracted) and CR (Composite Reliability) are utilized for
assessing convergent validity. AVE is a metric that gauges the internal consistency of con-
structs, representing the average amount of variance explained by the observed variables
for a construct. CR, on the other hand, measures the reliability of constructs, indicating
the total amount of variance explained by the observed variables for a construct. Typically,
when AVE exceeds 0.5 and CR surpasses 0.7, it suggests a high level of convergent validity,
as presented in Table 4.

Table 4. Model AVE and CR indicator results.

Factor AVE CR

PSF1 0.691 0.94
PSF2 0.753 0.859
PSF3 0.682 0.951
PSF4 0.71 0.907
PSF5 0.622 0.831
PSF6 0.716 0.968
PSF7 0.659 0.939
PSF8 0.672 0.953

In terms of discriminant validity, Pearson correlation coefficients and the square roots
of AVE are commonly used to assess the correlation and distinctiveness between constructs.
If the correlation between two constructs is low while their respective AVE values are
high, this indicates that they are, to some extent, distinct. Typically, when the correlation
coefficient is below 0.7, it can be considered that there is a relatively low correlation between
constructs, as presented in Table 5.
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Table 5. Discriminant validity: Pearson correlation and square root of AVE.

PSF1 PSF2 PSF3 PSF4 PSF5 PSF6 PSF7 PSF8

PSF1 0.831
PSF2 0.934 0.868
PSF3 0.944 0.93 0.826
PSF4 0.926 0.907 0.931 0.843
PSF5 0.891 0.881 0.914 0.877 0.788
PSF6 0.945 0.929 0.971 0.943 0.909 0.846
PSF7 0.935 0.903 0.942 0.923 0.907 0.949 0.812
PSF8 0.947 0.925 0.956 0.934 0.902 0.963 0.949 0.82

The variances of the eight factors—task complexity, task time, pressure, experience and
training, operating procedures, human–machine environment, occupational adaptability,
and processes—are, respectively, 73.564%, 87.469%, 71.765%, 73.861%, 78.240%, 74.879%,
73.861%, 70.056%, and 70.487%. The cumulative explained variances after rotation are
also consistent, indicating effective information extraction. Principal component analysis
filtered out items with scores below 0.5; all items in this study exceeded this threshold,
demonstrating the validity of subdividing the eight primary PSFs into 15 secondary PSFs.
This study lays a solid foundation for the development of PSF systems and provides insights
into understanding the human reliability factors in smart building tower crane interfaces.

4. Quantification of Human Error Probability (HEP)
4.1. Determining Interrelationships of Factors Based on DEMATEL

A framework for assessing human errors in smart construction site tower crane opera-
tions, based on the SPAR-H method, is established. This framework involves analyzing the
causal relationships and logical connections among indicators using the DEMATEL-ANP
methodology, thereby determining their respective weights. Subsequently, these weights
are integrated with the multipliers assigned by the SPAR-H method. This comprehensive
approach not only enhances our understanding of the human factors leading to errors but
also provides valuable insights for improving safety measures at construction sites. The
DEMATEL-ANP (Decision Making Trial and Evaluation Laboratory–Analytic Network
Process) method is a modeling approach used to address complex real-world problems [78].
It employs graph theory and matrix tools to analyze the relationships among various
factors within a system. This method has been applied in the decision experimentation
and evaluation laboratory for tracing and analyzing the erroneous behaviors of intelligent
tower cranes. The reason for choosing the DEMATEL-ANP method to analyze the complex
relationships between the SPAR-H framework and Performance Shaping Factors (PSFs)
lies in its ability to effectively reveal the interactions, causal relationships, and importance
among factors [79]. This method can handle intricate relationships, identify dominant
factors, allocate weights, and provide a structured analytical framework, aiding in the
systematic management and improvement of human error aspects. Ultimately, it offers
valuable support for decision-making processes.

The DEMATEL method simplifies the structure of complex systems, analyzing the
logical interactions and causal relationships among the elements in the system. This allows
for determining the functional relationships and importance of these factors within the
system [80]. In comparison to Multiple Criteria Decision Making (MCDM) [81], DEMATEL-
ANP places greater emphasis on the causal and associative relationships between indicators,
while MCDM focuses more on the ranking and evaluation of different choices [82].

In the DEMATEL method, the six steps involved are described as follows.
Step 1: Calculate the average direct relationship matrix. Initially, experts conduct

pairwise comparisons based on the direct impact between criteria. We use impact levels of 0
(no impact), 1 (low impact), 2 (moderate impact), 3 (high impact), and 4 (very high impact)
for comparison. If K experts are involved, the results formed by each expert correspond
to an n × n matrix, representing the direct impact of criterion i on criterion j. The main



Buildings 2024, 14, 1083 17 of 31

diagonal of the matrix is set to zero because in DEMATEL, the self-impact of criteria is
not considered.

X =


0 x12 · · · x1n

x21 0 · · · x2n
...

...
. . .

...
xn1 xn2 · · · 0


Incorporate all options from each expert to obtain Z = [aij], and calculate the average

score for each respondent using Equation (3).

aij =
1
k ∑k

k=1 xk
ij (3)

Step 2: Normalize the average matrix. The normalized representation of matrix M reflects
the relative strength of direct relationships. This can be obtained from Equations (4) and (5).

S = ma
i
x =

n

∑
j=1

aij (4)

N =
Z
S

(5)

Step 3: Compute the total relationship matrix. The above matrices display all re-
lationships between factors, including both direct and indirect relationships. The total
relationship matrix, T, can be calculated using Equation (6), where i is the identity matrix.

T = lim
k→∞

(
N + N2 + · · ·+ NK

)
= N(1 − N)−1 (6)

Step 4: Calculate the levels of impact and effect. Vectors c and r represent the sums of
columns and rows of matrix T, respectively, as shown in Equations (7) and (8). In essence,
both c and r indicate the ratios of direct and indirect interactions and influences among
elements in the system.

cj =
n

∑
i=1

tij (7)

ri =
n

∑
j=1

tij (8)

Step 5: Compute impact and relationship vectors. The value of r − c defines the
power-effect vector, which is a vertical vector. Positive values of r − c indicate causality,
while negative values signify a consequential relationship. In contrast, the value of r + c
indicates that the relationship vector is a horizontal vector, indicating the importance
of each criterion with respect to others. Higher levels of r + c represent greater mutual
relationships between any given factors.

4.2. ANP Analysis Procedure

ANP, or the Analytic Network Process, is a Multi-Criteria Decision Making (MCDM)
technique designed to overcome the limitations of hierarchical structures [16]. ANP extends
the Analytic Hierarchy Process (AHP) developed by Saaty in 2009, serving as a valuable
tool for addressing complex decision problems. Unlike AHP, which establishes one-way
hierarchical relationships between criteria at decision levels, ANP employs a network
system among elements at each decision level. Therefore, ANP is an enhanced version
of AHP, addressing dependency issues among criteria in a system divided into different
decision clusters, each containing several criteria [83]. In ANP, network connections
between clusters and criteria represent dependencies, categorized as either internal or
external dependencies. Dependencies among elements within a cluster are internal, while
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dependencies between criteria in the same cluster and criteria in different clusters are
external [70]. The ANP model allows for complex relationships between criteria but does
not construct a hierarchical structure for decision problems involving dependencies and
interactions between higher- and lower-level elements [70]. Next, we describe the steps
associated with the ANP method. The technique consists of four steps.

Step 1: Pairwise Comparisons.

This involves comparing elements pairwise, accomplished through surveys that assess
interactions between elements. The questionnaire employs a nine-point scale ranging from
equal importance to extremely important. Experts determine the relative importance of
each series of comparisons.

Step 2: Forming the Supermatrix.

In this step, the results from the previous step are used to construct an unweighted
supermatrix. This matrix includes priorities derived from various pairwise comparisons.
The supermatrix can be described in a general form, as shown in Equation (9), where
cm represents the mth cluster, emn indicates the nth element in cluster m, and wij is the
principal eigenvector of the elements’ influence on clusters i and j [47].
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4.3. DEMATEL-ANP Analysis Process 

(9)

Step 3: Obtaining the Weighted Supermatrix.

Initially, the matrix should be normalized by the sum of each column, since clusters in
the network are usually interdependent, and elements in a column are separated by the
number of clusters. Normalization ensures equal weights for clusters. Subsequently, the
unweighted supermatrix is multiplied by the corresponding cluster priorities to obtain the
weighted supermatrix.

Step 4: Limiting the Supermatrix.

In this final step, the weighted supermatrix is raised to a sufficient power k using
Equation (10) until it stabilizes enough to obtain overall priorities or the contributed weights
of the ANP.

limk→∞wk (10)



Buildings 2024, 14, 1083 19 of 31

4.3. DEMATEL-ANP Analysis Process
4.3.1. Intelligent Tower Crane Operator Misbehavior Traceability Analysis and
Evaluation System

Based on the previous content, we initially employ text mining techniques to extract
229 accident causation feature words. Combining this with the SPAR-H model and com-
plemented by literature review methods, the evaluation system for tracing and analyzing
human errors in intelligent tower crane operations is categorized into 8 primary criteria
layers and 15 secondary indicator layers.

4.3.2. Data Collection

According to Pourahmad et al. [84], the number of questionnaires for the DEMATEL
technique should range between five and fifteen respondents. The profile of respondents is
illustrated in Table 6. As seen in the table, the majority of respondents hold key positions
and have over ten years of experience in the construction industry. The questionnaire
was administered to collect expert opinions, including those of four safety supervisors,
two equipment maintenance technicians, three tower crane operators, and one quality
control personnel.

Table 6. Index system for human error in tower cranes in smart construction site.

Target Layer Criterion Layer Index Level

PSF1 task complexity PSF11 Scenario complexity
PSF12 Operation complexity

PSF2 task processing time PSF21 Available time vs. required time
F3 Pressure PSF31 Pressure based on situational severity

Human error

PSF32 Pressure based on situational severity
in terms of decisions

PSF4 Experience/safety
training

PSF41 Safety education/Emergency drills
and plans
PSF42 Working hours X/month

PSF5 Operating procedures PSF51 Operational code system completeness
PSF52 Tower crane operating procedure
completeness

PSF6 Human–Machine
Environment PSF61 Physical Environment

PSF62 Technical environment
PSF7 Occupational suitability PSF71 Personal capabilities

PSF72 Personal status
PSF8 Process PSF81 Organization Management

PSF82 Safety Culture

4.3.3. DEMATEL Analysis

In the first step, fifteen experts were tasked with indicating the degree of direct
influence between the defined criteria, using a range from zero to four. To analyze the
interrelationships among the eight dimensions By using python3.0, the DEMATEL method
is used to analyze the source of human error in the operation of intelligent tower crane and
calculate the causal influence of each dimension in the system. Initially, a direct relation
matrix was developed based on pairwise comparisons of individual expert opinions,
considering the direction and impact of factors. Equation (1) was then utilized to create
an average direct relation matrix, combining all ratings from the experts. Subsequently,
Equations (2)–(4) were applied to compute the total relation matrix, representing the
overall influence among factors, based on the normalized direct influence matrix. The
resulting comprehensive relation matrix is presented in Table 7, derived from expert surveys
using DEMATEL in the analysis of the tracing system for human errors in smart tower
crane operations.
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Table 7. Profile of experts surveyed in the study.

Years of Experience in Construction Job Position

Description Less than
10 years 10–20 years More than

20 years
Safety

supervisor

Equipment
maintenance

technician

Tower crane
operator

Quality control
personnel

Number of people 2 7 1 4 2 3 1
Percent 20% 70% 10% 40% 20% 30% 10%

As seen in Table 8, factors such as F11 Scenario Complexity, F21 Available Time vs. Re-
quired Time, F41 Safety Education/Emergency Drills and Plans, F62 Technical Environment,
F71 Personal Skills, and F82 Safety Culture exhibit positive values. Consequently, these fac-
tors influence other dimensions, with F12 Operation Complexity being the most influenced
by all other factors. To calculate the impact vector and relation vector, Equations (5) and (6)
were employed. For the 15 dimensions, the impact vector and relation vector are presented
in Table 9, denoted by (r − c) and (r + c), respectively. F51 Completeness of Operational
Standards and F81 Organizational Management interact significantly with other factors, as
they have the highest levels of r + c. In contrast, the interaction of F12 Operation Complexity
with other factors is minimal.

Table 8. Total relationship matrix of expert survey.

F11 F12 F21 F31 F32 F41 F42 F51 F52 F61 F62 F71 F72 F81 F82

F11 0.00 0.79 1.10 1.21 1.31 0.95 1.05 1.26 1.00 1.21 0.84 0.68 0.74 0.95 0.79
F12 0.73 0.00 0.29 0.26 0.18 0.44 0.29 0.48 0.51 0.26 0.33 0.15 0.11 0.40 0.18
F21 0.36 1.07 0.00 1.07 0.87 1.17 0.77 1.23 1.12 1.17 1.33 0.61 0.77 1.17 0.97
F31 0.87 0.82 0.68 0.00 0.68 1.11 0.82 1.01 0.97 0.87 0.68 1.11 0.92 1.16 0.87
F32 0.98 0.33 0.84 0.75 0.00 0.75 0.65 1.07 0.98 0.84 0.89 0.61 0.51 1.03 0.89
F41 0.72 1.18 1.08 1.02 0.92 0.00 0.77 1.08 0.97 1.18 1.08 1.28 1.18 0.92 0.87
F42 0.63 0.83 0.53 0.88 1.02 0.49 0.00 0.97 1.07 0.78 0.83 0.97 0.92 0.83 0.97
F51 0.90 1.00 1.30 1.15 1.25 0.80 0.90 0.00 1.00 1.05 1.20 1.10 1.15 0.70 0.85
F52 1.00 0.95 0.90 1.05 1.09 0.81 0.95 0.71 0.00 0.67 0.86 0.71 0.62 0.52 0.33
F61 0.72 0.29 0.95 0.91 1.05 0.95 1.00 1.05 0.86 0.00 0.81 0.67 0.52 0.91 1.00
F62 0.92 0.56 1.17 0.92 1.12 1.12 1.02 1.27 0.97 1.02 0.00 0.92 1.02 0.87 0.82
F71 0.99 1.10 0.82 1.32 0.99 1.43 1.26 1.32 0.99 0.88 1.10 0.00 1.26 1.04 1.15
F72 1.08 0.70 0.91 1.08 0.75 1.35 1.18 1.29 1.24 1.40 0.91 0.81 0.00 1.02 1.18
F81 1.01 0.48 1.28 1.39 1.34 1.01 1.12 0.96 0.75 1.12 1.23 1.34 1.28 0.00 1.23
F82 0.89 1.00 1.05 1.15 1.26 0.95 1.10 0.79 0.53 1.21 0.95 0.84 1.05 1.15 0.00

Table 9. Overall impacts and relationships for each dimension.

r s r + s r − s

F11 26.4 23.9 50.3 2.5
F12 12.6 21.8 34.4 −9.2
F21 26.8 25.7 52.5 1.1
F31 26 27.9 53.9 −1.9
F32 23.8 27.3 51.1 −3.5
F41 27.8 26.5 54.3 1.3
F42 24.1 25.5 49.6 −1.4
F51 28.7 28.9 57.6 −0.2
F52 23.5 25.9 49.4 −2.4
F61 24.5 26.9 51.4 −2.4
F62 26.9 25.9 52.8 1
F71 28.5 23.5 52 5
F72 27.7 23.8 51.5 3.9
F81 29.1 25.4 54.5 3.7
F82 26.5 24 50.5 2.5
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4.3.4. ANP Analysis

In this section, following the determination of mutual dependencies among criteria
using DEMATEL, the ANP technique is applied to obtain the final weights of fifteen factors
influencing human errors. Utilizing Saaty’s nine-point scale for pairwise comparisons,
a survey was distributed to fifteen construction experts in a first-tier city in China. The
questionnaire survey was conducted based on the relationship network structure between
the ANP model and criteria. Participants were asked questions such as, “How much do
you consider ‘Physical Environment’ to be more important than ‘Technical Environment’?”.

The first step of the analysis involves constructing the ANP model based on the
relationship structure developed using DEMATEL, as illustrated in Figure 1. This process
generates the ANP network structure diagram (Figure 1) used to assess human errors
in intelligent tower crane operator behavior on smart construction sites. In the diagram,
the arrows pointing to the element sets represent the interdependencies among elements
within each set. Bidirectional arrows between element sets indicate mutual influencing
factors between the two sets, while circular arrows represent mutual dependencies within
element sets. To build the decision model and solve the supermatrix, Super Decisions 3.2
software was employed. This professional software facilitates the construction of decision
models, assisting in establishing pairwise comparison matrices, calculating the results
defining the supermatrix, and determining the finite supermatrix and weights for each
factor. Throughout the calculation process, consistency testing was conducted using the
software. Consistency Ratio (C.R.) serves as a measure of consistency, confirming that the
original ratings by experts are upheld. It is recommended that the consistency ratio be less
than or equal to 0.10.
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Figure 1. ANP network structure diagram.

Based on the network structure diagram, it is evident that there are interconnections
and mutual influences among the evaluation factors for human error in tower crane
operators on smart construction sites. Therefore, based on the relationships between the
8 primary indicators and the 15 secondary indicators, 10 experts (4 managers and 6 technical
personnel) were invited to conduct pairwise comparisons of importance using a nine-point
scale. The experts’ evaluation scores were entered into the Super Decisions 3.2 software,
and a consistency test was performed. If the consistency requirements were not met, further
input from the experts was sought.

The process involved sequentially selecting criteria from the secondary indicators to
create judgment matrices for assessing the primary and secondary indicator items. Once
all the judgment matrices were constructed, the software automatically calculated and
generated the unweighted supermatrix, weighted supermatrix, and limit supermatrix.
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Additionally, it computed the priorities of each indicator, i.e., the weights of the secondary
indicators, as depicted in Figure 2.

Buildings 2024, 14, x FOR PEER REVIEW 22 of 31 
 

 
Figure 2. Indicator priority. 

The DEMATEL method can calculate the interrelations between elements, but it as-
sumes equal weights for all elements, which does not align with the actual situation. 
Therefore, the ANP method is employed to compensate for this limitation. Based on the 
following formula, the mixed weights of each secondary indicator can be calculated: 

h = w × T + w (5) 

where “h” denotes the vector of mixed weights for the indicators, while “w” denotes the 
vector composed of absolute weights of each element calculated using the ANP method. 
After normalizing the calculated mixed weights, we can obtain the weights of each sec-
ondary indicator in the evaluation system, as illustrated in Table 10. 

Table 10. Mixed-weights table. 

Target Layer Criterion Layer Index Level Mixed Weights Normalized Weights 

 

PSF1 Task complexity PSF11 Scenario complexity 0.986 0.071 
 PSF12 Operation complexity 0.347 0.025 
PSF2 Task processing 
time 

PSF21 Available time vs. required time 0.971 0.070 

F3 Pressure 
PSF31 Pressure based on situational  
severity 

0.881 0.064 

Human error 

 
PSF32 Pressure based on situational  
severity in terms of decisions  

0.808 0.058 

PSF4 
Experience/safety 
training 

PSF41 Safety education/Emergency drills 
and plans 

1.031 0.075 

 PSF42 Working hours X/month 0.836 0.060 
PSF5 Operating  
procedures 

PSF51 Operational code system  
completeness 

1.058 0.077 

 
PSF52 Tower crane operating procedure 
completeness 

0.824 0.060 

Figure 2. Indicator priority.

The DEMATEL method can calculate the interrelations between elements, but it
assumes equal weights for all elements, which does not align with the actual situation.
Therefore, the ANP method is employed to compensate for this limitation. Based on the
following formula, the mixed weights of each secondary indicator can be calculated:

h = w × T + w (11)

where “h” denotes the vector of mixed weights for the indicators, while “w” denotes the
vector composed of absolute weights of each element calculated using the ANP method. Af-
ter normalizing the calculated mixed weights, we can obtain the weights of each secondary
indicator in the evaluation system, as illustrated in Table 10.

Table 10. Mixed-weights table.

Target Layer Criterion Layer Index Level Mixed Weights Normalized Weights

PSF1 Task complexity PSF11 Scenario complexity 0.986 0.071
PSF12 Operation complexity 0.347 0.025

PSF2 Task processing
time

PSF21 Available time vs. required
time 0.971 0.070

F3 Pressure
PSF31 Pressure based on
situational
severity

0.881 0.064
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Table 10. Cont.

Target Layer Criterion Layer Index Level Mixed Weights Normalized Weights

Human error

PSF32 Pressure based on
situational
severity in terms of decisions

0.808 0.058

PSF4 Experience/safety
training

PSF41 Safety
education/Emergency drills and
plans

1.031 0.075

PSF42 Working hours X/month 0.836 0.060
PSF5 Operating
procedures

PSF51 Operational code system
completeness 1.058 0.077

PSF52 Tower crane operating
procedure completeness 0.824 0.060

PSF6 Human–Machine
Environment PSF61 Physical Environment 0.843 0.061

PSF62 Technical environment 0.998 0.072
PSF7 Occupational
suitability PSF71 Personal capabilities 1.076 0.078

PSF72 Personal status 1.045 0.076
PSF8 Process PSF81 Organization Management 1.131 0.082

PSF82 Safety Culture 0.989 0.072

5. Case Calculation
5.1. Accident Background

An accident involving a tower crane occurred at a smart construction site in Guangxi.
It was reported that the tower cranes at this site were equipped with visual hooks. On the
morning of 19 December 2022, at 8:00 a.m., the team leader of the carpentry group, along
with eight employees, went to the construction site of the Yuan’an Tang project.

At around 8:30 a.m., due to maintenance work being carried out on 18th December, the
tower crane operator climbed up the tower crane to inspect the maintenance situation. After
about ten minutes, the construction supervisor and safety officer from a subcontracting
company responsible for the project contacted the tower crane operator via intercom,
instructing them to utilize the tower crane to unload steel pipes from a trailer to the open
ground near the base of the tower crane, with a smaller portion being unloaded at the
location where the support scaffolding was being erected.

At around 9:40 a.m., the safety officer asked the carpentry team leader to assign
personnel to assist in unloading the steel pipes from the trailer. The team leader then
assigned a scaffolding worker to help. The scaffolding worker used the tower crane’s
hoisting rope to secure the steel pipes (each weighing approximately 30 kg, measuring
about 5.2 m in length, with a diameter of around 50 mm). They were bundled and fastened
with steel wire ropes and U-shaped clamps. A substitute signalman directed the tower
crane operator to lift and transport the steel pipes. At the time, there were over ten
workers involved in erecting the support scaffolding within the range of the tower crane’s
swing arm.

At around 11:00 a.m., after multiple lifts, the tower crane lifted the steel pipes again
to a height of approximately 20 m. As the swing arm moved horizontally by about 10 m,
the U-shaped clamps securing the bundled steel pipes became loose (in this particular
lift, the steel pipes were not directly secured at both ends with the hoisting rope but
were suspended by passing the hoisting rope through the bundled steel wire ropes). The
detached steel pipes fell and struck employee A, who was working beneath the crane’s
jib, causing them to sustain injuries and lose consciousness. Simultaneously, scattered
steel bars also hit employee B’s foot. The on-site personnel immediately dialed emergency
numbers 120 (Emergency Medical Services) and 110 (police) and reported the incident
to the project manager. Within a short time, medical personnel from the EMS and police
officers arrived at the scene and initiated rescue measures. After more than 20 min of
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treatment, the on-site medical staff pronounced employee A deceased and transferred the
mildly injured employee B to People’s Hospital for medical treatment.

5.2. Analysis and Calculation

Reliability analysis for post-incident personnel focuses on diagnosis and execution.
In the smart construction site accident involving a tower crane, the digitalized system
provides more support to the driver, whose behavior is primarily cognitive [43]. Therefore,
the diagnostic behavior is crucial.

(1) Diagnosis: Personnel rely on their knowledge and experience to understand the
current system conditions and operating status, and based on that, develop an appro-
priate plan.

(2) Action: Personnel operate the equipment according to the corresponding procedures,
instructions, and operational guidelines.

In evaluating the smart construction site’s tower crane accident, we combine the
weights determined by DEMATEL-ANP and the Performance Shaping Factors (PSFs) of
SPAR-H to calculate the probability of the incident occurring.

1. Task Complexity: At the time of the accident, the driver had to handle the tower crane,
requiring relevant experience/knowledge to make reasonable judgments. Multiple
targets needed to be lifted, and they might not have the same weight or shape.
There are two target paths, from point A to point B and from point A to point C.
Additionally, the internal environment needed to be observed for issues. Therefore, the
complexity of the diagnostic scenario during the accident is high (PSF11 Diagnosis = 5,
PSF11 Action = 5). The operational part follows corresponding procedures, with
discrete control actions such as pulling control levers. The diagnostic operational
behavior is relatively clear, but in emergency situations, comprehensive scenario
consideration is required. Thus, the diagnostic operational complexity is moderate
(PSF12 Diagnosis = 5, PSF12Action = 2).

2. Task Processing Time: Given the accident background, it is evident that the tower
crane operator does not have sufficient time to react in the event of an emergency.
Therefore, the diagnosis of PSF21 task processing time is inadequate, with PSF21
Diagnosis = 10. The accident occurs as a sudden event, and during crisis management,
the operator’s task processing time for executing PSF21 is insufficient, with PSF21
Action = 10.

3. Pressure: The direct cause of the accident was the loosening of the U-shaped buckle
of the wire rope binding the steel pipes, constituting a sudden event. In tower crane
lifting operations, operators face significant pressure during sudden events, and
this incident posed a threat to life safety. There is stress based on the severity of
the situation and decision-making pressure. Therefore, PSFs31 Action = 5, PSFs31
Diagnosis = 5, PSFs32 Action = 5, and PSFs32 Diagnosis = 5.

4. Experience/Safety Training: The company provides minimal safety training, graded
safety training, and specialized safety training for tower crane operators. Hence, safety
education/emergency drills and plans (PSF41 Diagnosis/Action = 10) are lacking.
Tower crane operators have over 6 months of experience or training, are familiar
with basic operational knowledge, and have experience in handling emergencies.
Therefore, diagnostic/action PSF42 Diagnosis/Action = 1.

5. Operating Procedures System: The tower crane involved in the accident has a compre-
hensive sign-oriented procedure, equipped with appropriate monitoring and detection
systems for visualizing the hook. It monitors parameters such as the crane’s opera-
tional status, load conditions, tilt, and vibration, to promptly detect anomalies. This
supports the operator in correctly diagnosing events and effectively reduces negative
outcomes due to human error. Therefore, in the diagnostic/execution completeness
of the operating procedure system, PSF51 Diagnosis/Action = 0.5. Regarding this
accident, the construction company has well-established operating procedures for
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reference and compliance. In the diagnostic availability of tower crane operation
sub-procedures, PSFs52 Diagnosis = 0.5, and the execution availability and quality
level are moderate (PSFs52 Action = 1).

6. Human–Machine Environment: The environment where the tower crane accident
occurred was relatively cold, the construction site had obstacles, and the manage-
ment of construction site noise was not strict. Therefore, the physical environment
for diagnosis/action (PSF61 Diagnosis/Action) = 10. The digital interface was not
properly designed and somewhat chaotic, resulting in a technical environment for
diagnosis/execution (PSF62 diagnosis/Action) = 1.

7. Occupational Suitability: The tower crane driver had a moderate level of teamwork,
knowledge, skills, and job capabilities (PSF71 Diagnosis/Action = 5). It was understood
that work at the construction site often continued until late at night, and the driver had
a moderate individual state during the accident (PSF72 Diagnosis/Action = 5).

8. Process: The company’s organizational management had one or two areas that were
not satisfactory, such as poor communication between the substitute drivers and
the usual drivers as well as low reliability and level of automation. Therefore, the
diagnostic/execution PSF81 Diagnosis/Action = 1. The company’s safety culture was
somewhat lacking. Periodic safety production months were not regularly held to
encourage employee safety commitments. There were fewer organizational safety
culture promotion and education activities (PSF82 Diagnosis/Action = 5).

The quantification process for human error probability involves multiplying the nomi-
nal error probability by the composite behavior formation factor, Here, NHEP represents
the nominal error probability. The nominal error probability for diagnosis is 0.01, and for
execution, it is 0.001.

To visually demonstrate the impact of each PSF on the final outcome, the results for
each PSF are calculated according to Formula (1) and presented in Table 11. For instance,
the calculation method for PSF11, “PSF11 Scenario Complexity,” involves multiplying the
weight by the adjustment factor, resulting in 0.355.

Table 11. The results of each PSF.

PSF Diagnosis Weight Adjustment
Factor Result Action Weight Adjustment

Factor Result

PSF1 Task
complexity

PSF11 Scenario
complexity 0.071 5 0.355 PSF11 Scenario

complexity 0.071 5 0.355

PSF12 Operation
complexity 0.025 5 0.125 PSF12 Operation

complexity 0.025 2 0.05

PSF2 Task
processing time

PSF21 Available
time vs.
required time

0.07 10 0.7 PSF21 Available time
vs. required time 0.07 10 0.7

F3 Pressure
PSF31 Pressure
based on
situational severity

0.064 5 0.32
PSF31 Pressure based
on situational
severity

0.064 5 0.32

PSF32 Pressure
based on
situational severity
in terms of
decisions

0.058 5 0.29

PSF32 Pressure based
on situational
severity in terms of
decisions

0.058 5 0.29

PSF4 Experi-
ence/safety
training

PSF41 Safety
educa-
tion/Emergency
drills and plans

0.075 10 0.75

PSF41 Safety
educa-
tion/Emergency
drills and plans

0.075 10 0.75

PSF42 Working
hours X/month 0.06 1 0.06 PSF42 Working hours

X/month 0.06 1 0.06
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Table 11. Cont.

PSF Diagnosis Weight Adjustment
Factor Result Action Weight Adjustment

Factor Result

PSF5 Operating
procedures

PSF51 Operational
code system
completeness

0.077 0.5 0.0385
PSF51 Operational
code system
completeness

0.077 0.5 0.0385

PSF52 Tower crane
operating
procedure
completeness

0.06 0.5 0.03
PSF52 Tower crane
operating procedures
completeness

0.06 1 0.06

PSF6 Human–
Machine
Environment

PSF61 Physical
Environment 0.061 10 0.61 PSF61 Physical

Environment 0.061 10 0.61

PSF62 Technical
environment 0.072 1 0.072 PSF62 Technical

environment 0.072 1 0.072

PSF7
Occupational
suitability

PSF71 Personal
capabilities 0.078 5 0.39 PSF71 Personal

capabilities 0.078 5 0.39

PSF72 Personal
status 0.076 5 0.38 PSF72 Personal status 0.076 5 0.38

PSF8 Process
PSF81
Organization
Management

0.082 1 0.082 PSF81 Organization
Management 0.082 1 0.082

PSF82 Safety
Culture 0.072 5 0.36 PSF82 Safety Culture 0.072 5 0.36

In this incident, key factors during the diagnostic phase include safety education/
emergency drills and plans, task processing time, and physical environment, all of which
play important roles in cognitive psychology. The diagnostic phase involves individuals
receiving, processing, and assessing environmental and task information to make deci-
sions. Safety education/emergency drills and plans are the most probable, indicating that
individuals have deeply processed and evaluated existing safety knowledge and training
experiences, considering them as the primary considerations for decision making. The
importance of task processing time highlights individuals’ cognition of time urgency and
task efficiency, reflecting the critical roles of time perception and task planning in cognitive
psychology. During the execution phase, the importance of safety education/emergency
drills and plans is again emphasized, alongside task processing time and the physical envi-
ronment. The execution phase involves translating decisions into practical actions while
considering previously acquired knowledge and experience. Therefore, these factors are
incorporated into the behavioral execution process, reflecting the complexity of behavioral
execution and decision implementation processes in cognitive psychology [61]. Insufficient
task processing time can lead to time pressure, which may negatively impact individuals’
decision-making processes. In the diagnostic phase, it may result in increased cognitive
load, reducing diagnostic capabilities and increasing the risk of erroneous decisions. In
the execution phase, time pressure may cause anxiety and stress, affecting individuals’
behavioral execution efficiency and accuracy, and even leading to physiological stress
responses, further impacting cognitive and behavioral performance. Unfavorable physical
environments may also affect individuals’ cognition and behavior. In the diagnostic phase,
a noisy work environment may interfere with individuals’ attention and thinking, while
high temperatures or crowded conditions may increase discomfort and affect behavioral
execution efficiency. Therefore, measures such as advanced training and emergency drills to
enhance individuals’ coping abilities, optimize task allocation and time management, and
improve the comfort and safety of the work environment can help reduce time pressure
and mitigate the negative effects of the physical environment on individuals. This, in
turn, improves individuals’ decision-making and behavioral execution efficiency during
emergencies, reducing the occurrence of accidents [61]. Upon observing SPAR-H results, it
is evident that intelligent construction site tower cranes demand high levels of job skills,
safety skills, psychological qualities, and stress resilience from drivers, along with a require-
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ment for advanced organizational management capabilities within companies. This aligns
well with the characteristics of enterprise transformation during the 5G era.

HEPi = NHEP ×
8

∏
i=1

PSFcomposite

HEP = HEPdiagnosis + HEPaction

HEPi =
NHEP × PSFcomposite

NHEP ×
(

PSFcomposite − 1
)
+ 1

HEPdia =
0.01 × 0.07PSF21dia(0.071PSF11dia + 0.025PSF12dia)× · · · × (0.082PSF81dia + 0.072PSF82dia)

0.01[0.07PSF21dia(0.071PSF11dia + 0.025PSF12dia)× · · · × (0.082PSF81dia + 0.072PSF82dia)− 1] + 1

HEPdia = 3.9 × 10−5

HEPact =
0.001 × 0.07PSF21act(0.071PSF11act + 0.025PSF12act)× · · · × (0.082PSF81act + 0.072PSF82act)

0.001[0.07PSF21act(0.071PSF21act + 0.025PSF22act)× · · · × (0.082PSF81act + 0.072PSF82act)− 1] + 1

HEPact = 3.1 × 10−6

HEP = HEPdia + HEPact = 4.2 × 10−5

6. Discussion

In the analysis of human errors by crane operators on smart construction sites, the
researchers successfully identified patterns of human errors through the text mining of
229 accident reports. This method provides a more objective selection of influencing factors
compared to the traditional SPAR-H method. The identified factors were compared with
the Performance Shaping Factors (PSFs) of the SPAR-H model to determine relevant failure
modes and potential causes.

Additionally, based on on-site investigations and literature reviews, the researchers
considered the characteristics of crane operators and established standards for the levels of
PSFs in the SPAR-H model. This approach provides a more detailed and context-specific
selection of human error indicators for crane operators.

However, the original SPAR-H method lacked emphasis on causal and logical relation-
ships between PSFs and did not provide detailed explanations for the content of each PSF.
This could lead to overestimation or underestimation issues when calculating the Human
Error Probability (HEP).

To address this limitation, the researchers applied the DEMATEL-ANP method, build-
ing upon text mining and a literature review, to divide the 8 PSFs into 15 secondary
indicators and obtain their weights. This approach successfully revealed the relationships
between the indicators and established a comprehensive framework for assessing human
errors by crane operators in smart construction sites. This refined SPAR-H method better
aligns with the specific research context and improves the accuracy of calculating human
error probabilities.

It is worth noting that the safety of intelligent construction site tower cranes, equipped
with visualized hooks, relies heavily on the personal behavior of crane operators. There
exists a significant interdependence and impact among various indicators. Therefore,
researchers applied the DEMATEL-ANP method, identifying the “human–machine en-
vironment” and “work adaptability” as advanced Performance Shaping Factors (PSFs).
During the SPAR-H calculation, it was found that safety education/emergency drills and
the probability of contingency plans and task processing time significantly influence the
drivers. In-depth study of these key indicators can effectively enhance the safety level of
tower crane operations.

In summary, this study successfully identified fault patterns and human errors of in-
telligent construction site tower crane operators through text mining and the application of
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the DEMATEL-ANP method. Improvements were made to the SPAR-H model, optimizing
the selection of PSFs and the calculation of human error probabilities. This research holds
significant importance for ensuring the safety of crane operators and improving the overall
safety level of intelligent construction sites.

7. Conclusions

In conclusion, this study has made contributions to the analysis of human errors by
crane operators on smart construction sites. By utilizing text mining and the DEMATEL-
ANP method, the study successfully identified failure modes and potential causes, refined
the SPAR-H model, and improved the selection of Performance Shaping Factors (PSFs) and
the calculation of human error probabilities. This research is crucial for enhancing the safety
of crane operators and improving overall safety standards in smart construction sites.

However, there are some limitations to consider. Firstly, the analysis was based on
a sample of 229 accident reports, which may not fully represent the entire population of
accidents. Future research could aim to collect a larger and more diverse dataset to further
strengthen the findings. Additionally, while the identified PSFs provide valuable insights,
there may be other factors not considered in this study that contribute to human errors
by crane operators. Exploring these additional factors can enrich our understanding of
the phenomena.

Furthermore, the application of the DEMATEL-ANP method in this study provided a
structured approach to analyze and prioritize the relationships between PSFs. However,
it is important to note that this method relies on expert judgments, which may introduce
subjectivity. Exploring alternative methods or incorporating data-driven approaches can
enhance the objectivity of the analysis.

For future research, it would be beneficial to conduct longitudinal studies to assess
the effectiveness of implementing the refined SPAR-H model and the identified human
error indicators in real-world crane operator training and safety management initiatives.
Additionally, investigating the impact of technological advancements, such as automation
and artificial intelligence, on human errors in crane operations would be valuable in
designing interventions and strategies to improve safety.

Overall, this study provides valuable insights into understanding and addressing
human errors by crane operators on smart construction sites. It lays the foundation for
further research and offers recommendations for improving safety practices in the industry.
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33. Kančev, D. A plant-specific HRA sensitivity analysis considering dynamic operator actions and accident management actions.
Nucl. Eng. Technol. 2020, 52, 1983–1989. [CrossRef]

34. Abílio Ramos, M.; López Droguett, E.; Mosleh, A.; Das Chagas Moura, M. A human reliability analysis methodology for oil
refineries and petrochemical plants operation: Phoenix-PRO qualitative framework. Reliab. Eng. Syst. Saf. 2020, 193, 106672.
[CrossRef]

https://doi.org/10.1108/ECAM-10-2019-0578
https://doi.org/10.1086/630904
https://doi.org/10.1016/j.ress.2019.03.022
https://doi.org/10.1016/j.ssci.2020.104627
https://doi.org/10.1016/j.ssci.2018.05.001
https://doi.org/10.1016/j.ssci.2020.105028
https://doi.org/10.1016/j.ssci.2022.105957
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001860
https://doi.org/10.1016/j.ssci.2014.10.010
https://doi.org/10.1080/1463922021000054335
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000282
https://doi.org/10.1088/1755-1315/546/4/042070
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002186
https://doi.org/10.1016/j.ssci.2015.03.005
https://doi.org/10.1016/j.ergon.2020.103051
https://doi.org/10.1109/TNS.2006.882149
https://doi.org/10.1016/j.ssci.2009.01.005
https://doi.org/10.2298/NTRP1203319B
https://doi.org/10.1016/j.ress.2018.06.017
https://doi.org/10.1016/j.ergon.2021.103238
https://doi.org/10.1016/j.jlp.2017.04.021
https://doi.org/10.1016/j.net.2020.02.021
https://doi.org/10.1016/j.ress.2019.106672


Buildings 2024, 14, 1083 30 of 31

35. Pandya, D.; Podofillini, L.; Emert, F.; Lomax, A.J.; Dang, V.N.; Sansavini, G. Quantification of a human reliability analysis method
for radiotherapy applications based on expert judgment aggregation. Reliab. Eng. Syst. Saf. 2020, 194, 106489. [CrossRef]

36. Ung, S.-T. Evaluation of human error contribution to oil tanker collision using fault tree analysis and modified fuzzy Bayesian
Network based CREAM. Ocean. Eng. 2019, 179, 159–172. [CrossRef]

37. Park, J.; Arigi, A.M.; Kim, J. Treatment of human and organizational factors for multi-unit HRA: Application of SPAR-H method.
Ann. Nucl. Energy 2019, 132, 656–678. [CrossRef]

38. Xiao, T.; Yongping, Q.; Yucheng, Z.; Wenjing, L.; Juntao, H. Study of Application Optimization of SPAR-H Human Reliability
Analysis Method. In Proceedings of the 23rd Pacific Basin Nuclear Conference, Volume 2, Beijing & Chengdu, China, 1–4
November 2022; Springer Proceedings in Physics. Liu, C., Ed.; Springer Nature Singapore: Singapore, 2023; Volume 284,
pp. 91–102, ISBN 978-981-19877-9-3.

39. Laumann, K.; Rasmussen, M. Suggested improvements to the definitions of Standardized Plant Analysis of Risk-Human
Reliability Analysis (SPAR-H) performance shaping factors, their levels and multipliers and the nominal tasks. Reliab. Eng. Syst.
Saf. 2016, 145, 287–300. [CrossRef]

40. Elidolu, G.; Il Ahn, S.; Ilke Sezer, S.; Emek Kurt, R.; Akyuz, E.; Gardoni, P. Applying evidential reasoning extended SPAR-H
modelling to analyse human reliability on crude oil tanker cargo operation. Saf. Sci. 2023, 164, 106169. [CrossRef]

41. Chen, S.; Zhang, L.; Qing, T.; Liu, X. Use of Bayesian networks and improved SPAR-H for quantitative analysis of human
reliability during severe accidents mitigation process in nuclear power plant. J. Nucl. Sci. Technol. 2021, 58, 1099–1112. [CrossRef]

42. Yan, S.; Yao, K.; Li, F.; Wei, Y.; Tran, C.C. Application of a Bayesian network to quantify human reliability in nuclear power plants
based on the SPAR-H method. Int. J. Occup. Saf. Ergon. 2022, 28, 2588–2598. [CrossRef]

43. Yang, Y.; Karakaya, B.; Dominioni, G.C.; Kawabe, K.; Bengler, K. An HMI Concept to Improve Driver’s Visual Behavior and
Situation Awareness in Automated Vehicle. In Proceedings of the 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 650–655.

44. Jia, Y.; Shen, X.; Lin, X. Exploration of the Development Strategy of Building Industrialization Based on the Application of Smart
Construction Technology. In Proceedings of the 2023 4th International Conference on Management Science and Engineering
Management (ICMSEM 2023), Nanchang, China, 2–4 June 2023; Advances in Economics, Business and Management Research.
Zailani, S.H.B.D.M., Yagapparaj, K., Zakuan, N., Eds.; Atlantis Press International BV: Dordrecht, Germany, 2024; Volume 259,
pp. 1175–1185, ISBN 978-94-6463-255-2.

45. Wu, H.-H.; Chen, H.-K.; Shieh, J.-I. Evaluating performance criteria of Employment Service Outreach Program personnel by
DEMATEL method. Expert Syst. Appl. 2010, 37, 5219–5223. [CrossRef]

46. Liu, P.; Qiu, Y.; Hu, J.; Tong, J.; Zhao, J.; Li, Z. Expert judgments for performance shaping Factors’ multiplier design in human
reliability analysis. Reliab. Eng. Syst. Saf. 2020, 194, 106343. [CrossRef]

47. Dehdasht, G.; Mohamad Zin, R.; Ferwati, M.; Mohammed Abdullahi, M.; Keyvanfar, A.; McCaffer, R. DEMATEL-ANP Risk
Assessment in Oil and Gas Construction Projects. Sustainability 2017, 9, 1420. [CrossRef]

48. Pourahmad, A.; Hosseini, A.; Banaitis, A.; Nasiri, H.; Banaitienė, N.; Tzeng, G.-H. Combination of fuzzy-ahp and dematel-anp
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