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Abstract: One of the most critical challenges for architects in façade design is providing an effective
view from the indoors to the outdoors of a building for users, although the main role of the parametric
façade is covering openings to control daylight and temperature. This study uses a genetic algorithm
to optimize and evaluate the number and place of nodes and the position of supports required for
a parametric façade based on the geometric patterns. Using the dataset with genetic algorithms is
effective in reducing or replacing the nodes and supports of the façade. It also creates broader and
irregular patterns just around the windows, which decreases the visual disturbance experienced by
occupants. Accordingly, optimal building facade operation in terms of both building aesthetics and
performance is important. The method used in this study, validated through three geometric grid
patterns based on node positions, can be used to analyze dataset-incorporated patterns for potential
irregular façade extensions. The nodes are considered by analyzing the cross-section optimization
using the Galapagos program, and then data are obtained with Karamba based on reaction force,
node force, and the deformation energy. The results show that among the three grid patterns, i.e.,
triangular, square, and hexagonal, the hexagonal grid is most efficient, exhibiting up to 60% lower
reaction force, 40% lower node force, and 30% less deformation energy than the square grid pattern.
The proposed GA also shows its effectiveness in enhancing the performance of parametric façades
with patterns, thereby improving the occupants’ visual experience.

Keywords: genetic algorithm; façade optimization; pattern; visual of occupants

1. Introduction

In contemporary architecture, the façade has more than just a decorative or protective
function. It plays a significant role in influencing the view from the interior to the exterior of
a building and, as such, affects the experiences and perceptions of the building’s occupants.
However, achieving the optimal design for a building façade that balances both aesthetic
appeal and functional performance presents a complex challenge for architects [1]. In addi-
tion, the geometric pattern design and support positions in the façade structure significantly
affect the overall performance and visual disturbance experienced by occupants. Thus,
there is a need for comprehensive strategies that can facilitate more efficient façade design.

Façade design is one of the items that affect indoor visual comfort, significantly
influencing user satisfaction [2]. A well-designed façade can enhance daylight, thermal
comfort, and energy efficiency and reduce reliance on artificial lighting, thereby improving
overall building performance [3]. Also, contrary to what we may think, how we design
façade elements such as window patterns, support positioning, and façade geometry can
cause visual disturbances. Daylight can cause visual discomfort like glare and unwanted
reflections and affect the thermal balance of rooms through overheating [4]. Therefore,
the main challenge for designers in an effective daylighting design is to keep the balance

Buildings 2024, 14, 1086. https://doi.org/10.3390/buildings14041086 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings14041086
https://doi.org/10.3390/buildings14041086
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://doi.org/10.3390/buildings14041086
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings14041086?type=check_update&version=1


Buildings 2024, 14, 1086 2 of 19

between maximizing daylight harvesting and controlling the risk of potential discomfort [5].
Tabadkani et al. (2018) [6] developed an innovative approach for the parametric analysis
of daylighting and visual comfort using a sun-responsive shading system. The results of
the study showed that the proposed approach was capable of significantly improving the
shading’s flexibility in controlling daylight metrics and glare via a full potential adaptive
pattern to achieve the maximum visual comfort level. Abboushi (2018) [7] investigated
the positive geometrical attributes of sunlight’s effects on visual comfort that should
be examined through fractal patterns, striped patterns, and clear patterns of daylight
in an office building. Attia (2017) [8] demonstrated that although the Al Bahar Tower
has a creative design, inspired by various motifs and being covered by a honeycomb
structure and having an automated dynamic solar screen responds to the sun’s movement
(Figure 1) [9,10]. feedback from a significant portion of the occupants suggested that the
adaptive façade system resulted in discomfort. This discomfort primarily stemmed from the
system’s limitations on manual adjustments to natural lighting and ventilation. It remains
unclear whether visibility from the windows of this tower is an issue. The complaints
received about insufficient natural light suggested that visibility, and consequently the
quality of indoor spaces, is also adversely affected. Future studies specifically investigating
visibility aspects could provide valuable insights into this matter.
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1.1. Genetic Algorithms for Parametric Facades

In the context of design solutions, conventional, intuitive, and experience-based
decision making plays an important role [11]. In determining the indoor conditions and the
visual identity of a building, façade design not only plays a crucial role but also represents
the main interface between a building and its external environment [12]. Optimizing facade
design for visual comfort, energy efficiency, and esthetic quality is a research aim that
has seen a surge in recent years. One of the areas that has been investigated is the role of
the façade in providing an effective view of the exterior from the inside of the building.
Figure 2 shows the visual disturbance of occupants experienced from indoors. An aspect
that has been less explored in the architectural discourse is the increasing complexity of
facade design by considering the effect of geometric patterns and support positions. The
use of optimization techniques has become increasingly prevalent in architectural design.
Generative design refers to an iterative design process used to formulate patterns and create
multiple solutions in building facades by utilizing parametric modeling and simulation
tools. Wright (2009) [13] optimized window size and placement while considering both
daylighting and energy. To explore how generative design can be utilized to analyze and
model a rhythmic facade, Wardhani (2020) [14] focused on identifying formal elements of
the dominant structures in the area to serve as references for new façade designs, aiming to
preserve historical characteristics. To utilize genetic algorithms to optimize facade design
based on daylighting performance goals, a range of facade design options can be explored
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by varying parameters such as materials, geometry of apertures, and shading devices [15].
The exploration of generative design’s potential in enhancing façade functionality could
provide an approach that is a subset of the evolutionary algorithms used in computing to
solve optimization problems in architectural innovation.
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Despite being relatively new within the field of architectural design optimization, the
application of genetic algorithms (GAs) is rapidly developing. GAs could solve complex
design problems in architecture early on [16]. Mahmoud et al. (2016) [17] summarized
kinetic structure simulation results in a daylight environment, focusing on the impact of
hexagonal patterns on south-facing office spaces and indicated that all of them helped
improve the visual environment. Although research on façade optimization using GAs
is growing, there is gap in the research on the optimization of façade patterns based on
support position data, which would be practical for some kind of parametric façade that
uses panels, such as kinetic façades, responsive façades, and so on. Most studies researched
optimizing façade design for energy performance and visual comfort, but few studies have
considered the effect of different geometric patterns and support positions of the structure
on visual disturbances based on real data and case studies.

Genetic algorithms (GAs) are examples of metaheuristic algorithms, which are a class
of algorithms used for solving complex optimization problems on the basis of natural
selection and genetics within multiple domains; they include iterative processes of muta-
tion, crossover, and selection in large and complex design spaces [18]. Since traditional
methods could not efficiently address the complexity of design problems, GAs balance
various objectives of multifactorial nature in architectural design to achieve optimization.
Several studies have explored the application of GAs in architectural design for a variety of
purposes. Gero et al. (2001) [19] successfully applied GAs in the generation and evaluation
of architectural design alternatives, considering parameters like solar exposure, views, and
spatial arrangement. Similarly, Jo et al. (1998) [20] utilized a GA for the spatial configura-
tion of architectural layouts. GAs have been used by several researchers in the context of
façade design optimization, thermal performance, and visual comfort to determine optimal
window/wall area ratios, enhance energy efficiency, and improve indoor environmental
quality. Kim et al. (2019) [21] proposed a novel hybrid optimization algorithm called tabu-
based adaptive pattern search simulated annealing (T-APSSA) for optimizing the design of
responsive building façades. T-APSSA is more efficient in calculations (two to four times
faster than other algorithms). So, for the sensor-triggered optimization of responsively
operational patterns in a façade form, metaheuristic algorithms have been hybridized to
shorten the iterative solution search. Reki et al. (2021) [22] explored the design of kinetic
Jali façades using parametric patterns by using Grasshopper to explore two-pattern tessella-
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tions using a hexagon. They suggested potential areas for future research on window shape
and kinetic façades. Table 1 presents some research on the use of GAs in façade design.

Table 1. Genetic algorithm advancements in façade design.

Objective Façade Focus Key Findings Reason for GA Selection Years

Improve daylight and
visual comfort

Sun-responsive
shading systems

Significantly improved
shading flexibility to

control daylight metrics
and glare

GA’s iterative nature and
ability to simulate and

evaluate multiple
configurations were key for

optimizing dynamic
shading systems

2018

Optimize daylight performance
for kinetic façades

Kinetic façades with
hexagonal patterns

Enhanced visual
environment by

optimizing rotation and
translation

kinetic motions

Utilized to dynamically
simulate kinetic façades and

to find optimal
configurations for

daylight performance

2016

Optimize responsive façade
design during schematic

design phases

Responsive
building façades

More efficient
calculations and supports

rapid building
performance simulation

The hybrid approach
combined the strengths of

different algorithms for
efficient façade optimization

2019

Explore new forms with
parametric patterns for

responsive façades
Kinetic Jali façades

Suggested areas for
future research on

window shape and
kinetic façades.

Its flexibility in exploring
complex form generation

and optimization in
responsive façade design

2021

1.2. Visual Quality and Façade s

The evaluation of visual quality and performance in the indoor environment depends
on multiple factors including the conditions surrounding the building, aperture size, and
the optical properties of the window, which all affect view quality and create complex
problems for design [23]. Window view quality depends on window design, which affects
occupant health, well-being, and work performance. Also, the view direction and percent-
age of window view (PWV) area in the visual field are two items that could be used to
calculate occupants’ satisfaction with the view access. This view access depends on the
geometric relationships between the window(s) and the occupant, which are determined
by window size and shape, viewing distance, and direction. The view calculation methods
used for assessing view access are based on solid-angle or view vectors. However, all fac-
tors that affect visual access cannot be easily assessed without empirical findings obtained
using a controlled environment [24].

The design and composition of façade patterns play a crucial role in shaping occupants’
impressions of the building exterior. Chamilothori et al. (2022) [25] evaluated four façade
pattern variations with equal aperture ratios (horizontal stripes, vertical stripes irregularly
distributed, rectangular openings, irregular lines). Irregular lines received higher ratings
for complexity, interest, and excitement than the others.

Generally, we have insufficient knowledge on how façade geometry and the resulting
sunlight patterns affect perception. Ko et al. (2023) [24] investigated how geometric
variables influence occupants’ perception of window views and their overall satisfaction
with the visual environment. Chamilothori (2018) [26] presented the architect’s intuition
on how façade geometry can impact occupant perception and also evaluated this intuition
with different façade geometries. Different façade patterns and designs impact human
perception and physiological responses in architectural spaces. These patterns represent
variations in the design of building façades, which can influence the distribution of natural
light, visual aesthetics, and the overall spatial experience for occupants. Therefore, the
“best” kind of pattern may depend on the specific context and desired outcome.
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As a result, this study focused on using GAs in conjunction with geometric patterns
and the position of the supports in façade design, which previously has not been explored.
This research utilized GAs for the optimization of parametric façade, targeting a reduction
in visual disturbance while enhancing building aesthetics and performance. The primary
objective of this study was to decrease the visual disturbance around window for indoor
occupants. Recognizing geometric patterns that have the potential to minimize the numbers
of nodes and supports by leveraging a dataset of GAs leads to a stretched pattern shape
and an increased view area. The scope of the research extended to the examination of three
specific geometric grid patterns, i.e., triangular, square, and hexagonal, focusing on the
positioning of nodes. These façade patterns were evaluated by analyzing cross-section
optimization using a GA-driven tool called Galapagos, which aided in generating the
requisite data for the study. The results of this work not only contribute to the computation
and optimization of parametric façades but also provide users with a psychological visual
connection to the outdoors. This study is, therefore, expected to open avenues for future
research, and it is hoped that it will inspire further investigation into the application of
algorithmic tools in architectural design optimization.

2. Research Methodology

The pursuit of optimized façade design through genetic algorithms, as mentioned in
this paper, can be demystified through systematic methodology. Our research approach
was structured in a progressive manner, ensuring clarity, repeatability, and precision. The
structural design of the joints connecting the optimized façade system to the building’s
main bearing structure was not included in the algorithms or analysis presented in this
study. Using genetic algorithms (GAs) for façade pattern optimization leads to identifying
efficient patterns and recommending manipulations for irregular extensions. Also, it has
the potential to enable innovative pattern exploration by flexibility exploring vast design
spaces and customizing solutions. In this research, a visual programming language-based
software package, named “Grasshopper” (Version 1.0) (Scott Davidson, n.d.), was used for
the analysis and optimization of different grid patterns, owing to its ease of use for creating
parametric designs and its widespread popularity among architects. This program offers
the advantage of optimization capabilities in conjunction with a plugin called “Galapagos”,
which utilizes a genetic algorithm-based approach. Galapagos includes two parts for setting
up a simulation: the gene pool and the fitness through which this plugin can optimize a
shape and search a parameter space to find designs to optimize a “fitness” function. For
this to work, it needs a series of options or genes to try out and a defined goal or fitness
value. The fitness function is some code that produces a numeric value that Galapagos tries
to maximize.

Figure 3 presents a flowchart of the research methodology adopted in this study. The
process of analysis and optimization can be categorized into three stages. Firstly, the
geometric shapes of the grid were chosen, and number of genes, nodes, and generations
were determined. In the second stage, the initial population was built by selecting the
cross-sectional, material, and boundary conditions of the façade grids. Finally, once the
initial population was set, the model was assembled to check if compliance with the target
requirements was made. For the case where it was a “No”, the initial conditions were
revised, and the process was repeated again. In the case of a “Yes”, the processes of analysis
and optimization were carried out in the next stage. During the analysis and optimization,
the reaction, nodal forces, and deformation energy were evaluated and compared with the
fitness function values. For the cases where the iteration process did not converge, the initial
conditions were revised, and the process was repeated until the desired convergence was
achieved. Once the iterations reached convergence, the corresponding values of reaction
forces, node forces, and deformation energy were considered optimum.
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In this research, the three most widely used grid pattern models in façade design were
used for analysis and comparison in almost equal conditions, i.e., the number of nodes
in which the supports are likely to be placed. The selected grid patterns are presented in
Figure 4. As shown, the three patterns had hexagonal, triangular, and square grid shapes.
Table 2 shows the number of genes, nodal supports, and maximum distance of the selected
grid shapes. A square surface (10 × 10 m2) was assumed for all three patterns, which
included a total of about 100 nodes, but, according to the form of the pattern, the number
could not be exactly 100. For example, the triangle form had 98 nodes, the hexagonal form
had 96 nodes, and the square form had 100 nodes, since the façade supports were not
placed on all nodes.
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Table 2. Details of grid patterns, nodes, genes, and maximum distance.

Grid Shape
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Nodes 100 98 96
Supports = Genes 32, 16, 8 32, 16, 8 32, 16, 8

Max distance 6 6 6

We assumed the number of maintenance supports was 1/3 of 100 nodes for all three
patterns, so 1/3 of them was considered to be about 32 genes, and the number of remaining
genes was divided into two parts so that the factors being analyzed could be well checked,
which were considered to be 16 and 8, respectively. Finally, the factors considered for
optimization included node force, deformation energy, and reaction force. Three distinct
geometric grid patterns were designed to serve as the foundational blueprint for façade
optimization. Each pattern varied in complexity and layout, ensuring a diverse dataset
for evaluation. The fitness factor was assumed to be in 2, 50, and 100 generations. The
optimization factors and an illustration of random gene selection are summarized in Table 3.

Table 3. Optimization factors and illustration of 8 genes selected for optimization.

Optimization Factors, Galapagos Illustration of Random Gene Selection

Fitness in 2, 50, 100 Generations
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Table 3 illustrates a comparison of the hexagonal pattern, featuring 8 randomly dis-
tributed genes (indicated by red circles) in two distinct areas: the periphery and the center.
The outcome of the optimization process revealed a tendency for the genes to gravitate
toward the center.

2.1. Genetic Algorithm Framework

For the genetic algorithm, the parameters, such as population size, mutation rate,
and selection criteria, were set in accordance with this study’s objectives. The algorithm
aimed to determine the optimal position and count of nodes and supports that would
lead to an efficient façade pattern, minimizing visual disturbance. Figure 5 presents a
screenshot of the interface of the Grasshopper program, giving details on genes, nodes, and
optimization factors.

Figure 6 shows the Galapagos editor interface, which is an evolutionary solver compo-
nent of Grasshopper. The solver progress chart indicates the convergence of solutions over
multiple generations, indicated by the color bands and lines. The solid line at the top of the
bands represents the “best” fitness score found in each generation. In all three patterns,
each color band represents a range of fitness scores, with darker bands likely representing
a higher density of solutions. The overall shape of the graph, with the bands narrowing,
suggests that as the generations progress, the spread of fitness scores decreases. The sharp
peaks and troughs in the early generations indicate significant variation in fitness. We
selected 100 generations that were represented on the x-axis. Fitness is a measure of how
well a solution meets the set criteria or objectives, which were labeled on the y-axis. The
convergence graph of the hexagonal pattern shows a wide range of fitness at the beginning
(left side of the graph), indicating high diversity in the initial population. Mutation started
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from the 21st generation. The triangle pattern is similar to the hexagonal pattern but shows
a more volatile progression with larger jumps in fitness values. This could indicate a more
aggressive mutation strategy starting 18 on the y-axis or a different parameter. The color
bands in the triangle pattern seem to represent a higher density of solutions with a larger
spread in fitness, suggesting less convergence than for the hexagonal pattern.
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Figure 6. Interface of Galapagos, showing different parameters being analyzed.

The square pattern started with a very narrow fitness range, indicating that either the
initial population was already highly optimized, or the diversity of the population was
low. After that the fitness values improved quickly and then leveled off, showing very little
variance. The top smooth line indicates consistent performance across generations. The
hexagonal and triangle patterns presented initial rapid improvements in the evolutionary
progression that slowed down as the algorithm refined the solutions, compared to the
square pattern, which showed rapid early improvement but then almost no further progress.
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In the case of a displacement item, the square pattern included the highest initial peak,
indicating a lot of initial movement. The triangle pattern began with a moderate peak that
dropped and then leveled out, which could mean less initial movement compared to the
hexagonal pattern, which exhibited a high initial peak and then stabilized to a low value,
indicating a steady optimization process. For the energy item, the hexagon’s energy peaks
were high and quickly stabilized; the triangle pattern showed a moderate, steady decline to
stability, while the square’s energy, being between that of the other two, dropped to zero,
indicating a successful optimization. In the gene pool, the hexagonal pattern was quickly
optimized with low diversity, the triangle pattern optimized more slowly, and the square
pattern showed a consistent, smooth optimization process.

2.2. Cross-Section Optimization through Galapagos

Galapagos, known for its design exploration capability, was harnessed to analyze the
cross-section of the façade patterns. By inputting the patterns and the genetic algorithm’s
findings into Galapagos, a comprehensive analysis of the nodes in terms of structural
support and visual obstruction was carried out. Three items were considered for analysis:
Displacement that shows how the design responds to external forces; minimizing displace-
ment is important. Another item was related to assessing the structural efficiency provided
through deformation energy. Lastly, the gene pool in the genetic algorithm led to a more
robust search for an optimal solution.

2.3. Data Acquisition and Analysis

Postoptimization, the data, including node positions and their respective visual impact
scores, were extracted. These data were then systematically categorized based on the three
geometric grid patterns. Statistical tools and visual diagrams aided in comparing the perfor-
mance of each pattern. One of the fundamental concepts in structural mechanics is related to
maintaining equilibrium in a structure under loads by forces, which is called “reaction forces”.
The reaction forces were analyzed for each support to find how different geometries transfer
and respond to the applied loads. The corresponding node forces and deformation energy
were also analyzed to evaluate the structural mechanism of all grid patterns. Figure 7 presents
the screenshot of the program, illustrating the data acquisition process.
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3. Analysis of Results
3.1. Reaction Forces

As discussed above, the performance of the different façade patterns was compared in
terms of reaction forces, node force, and deformation energy. Based on these parameters,
the grid pattern with its nodes and supports could easily be identified to improve visibility
from indoors. The results of the analyses indicated that the hexagonal pattern consistently
showed the maximum variation and range across all optimization levels. The square
pattern consistently occupied an intermediate position, while the triangle patterns showed
the minimum variation and range for all optimization levels.

The reaction forces of three grid patterns are shown in Figure 8. The x-axis, with the
label “Gene”, presents gene values of 8, 16, and 32, and the corresponding reaction forces
are presented on the y-axis. The reaction force values of three grid patterns are represented
with three different colors. In general, the reaction forces decreased with the increasing
number of genes. This was expected because a larger number of genes, which was equal
to the number of supports in this case, provide more load distribution and hence reduced
reaction force at the single gene level. The reaction forces seemed to be affected by the
shape of the grid as well as the direction of the measurements. Lower reaction forces were
observed for the hexagonal pattern, while the square pattern showed a considerable spread
in values, especially at gene counts of 8 and16, where it reached the highest reaction force
values. A moderate level of reaction forces was noticed for the triangular pattern. Some
outliers stand out from the main clusters, particularly within the square pattern. Table 4
presents the maximum and minimum reaction force values in the X and Y directions for
the three selected grid patterns corresponding to 32, 16, and 8 genes. The reaction forces
were higher in the Y direction than in the X direction. The reaction forces were higher for
fewer gene counts, while the values were lower for the hexagonal pattern in general. The
maximum values of the reaction forces in the X direction for the hexagonal, triangular, and
square patterns were 0.814, 2.53, and 2.41 for gene counts of 8, 16, and 16, respectively. In
the Y direction, the maximum reaction force values of the three patterns were measured as
3.93, 7.72, and 20.78 for 8, 16, and 8 genes, respectively.
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Figure 8. Reaction forces in X and Y directions with respect to number of genes.

The results of this research showed a strong relationship amongst the reaction force,
grid shape, and gene count. However, more research may be needed to fully understand
this relationship. Figure 9 shows the relationship between reaction forces in the X and Y
directions for all pattern shapes, i.e., hexagon, square, and triangle. The figure also presents
the corresponding logistic regression lines and correlation coefficients (r), indicating weak
linear relationships across the categories. Notably, the plot includes scaled data point sizes
representing various reaction force values in X direction and potential outliers that deviate
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significantly from the main data cluster. The shaded areas around the logistic regression
lines indicate confidence intervals, adding a statistical inference dimension to the analysis.

Table 4. Maximum and minimum reaction force vales in X and Y directions corresponding to 32, 16,
and 8 genes.

Gene No.

Grid Pattern Hexagon Triangle Square

Max Min Max Min Max Min

32 Genes in X 0.57624 −0.673309 0.359299 −0.48164 0.017893 −0.0103

32 Genes in Y 1.266096 0.021265 2.744062 0.482286 2.229679 0.28622

16 Genes in X 0.766971 −0.637311 2.525882 −0.691433 2.418571 −2.38919

16 Genes in Y 2.554651 0.595967 7.721508 1.353604 15.33934 0.406666

8 Genes in X 0.814027 −1.155777 0.926743 −0.670066 7.809752 −7.84061

8 Genes in Y 3.928235 1.491619 7.612843 3.768745 20.78388 0.008427
Buildings 2024, 14, x FOR PEER REVIEW 12 of 20 
 

 
Figure 9. A direct comparison of reaction forces in X and Y directions. 

To demonstrate potential trends or patterns within the data, we used logistic regres-
sion lines, which here suggest a very weak linear relationship between the reaction forces 
in the X and Y directions. The correlation coefficient r = 0.17 for the hexagonal patterns 
suggests a slight positive trend in the reaction force in the Y and X directions. The negative 
correlation coefficients (r = − 0.02 for square and r = − 0.19 for triangular patterns) indicate 
no real and a very weak correlation, respectively. There is a visible spread of data points 
for the hexagonal and triangular patterns, while that of the square pattern is less spread 
out. 

3.2. Node Forces 
The forces at the grid node may be a crucial index in the structural analysis and op-

timization of grid patterns. An individual node experiences different forces in a geometric 
pattern under given loading and boundary conditions. Table 5 presents the variation in 
node forces at various optimization levels. The results showed that the square patterns 
generally exhibited the highest values, especially for node force in the Z direction. The 
triangle grid patterns typically had intermediate values, while the hexagonal patterns 
demonstrated the lowest values of node forces. 

Table 5. Variation in node forces for different gene optimization levels. 

Optimization Level Square Triangle Hexagon Order 

32,16,8 

Exhibits a broader range 
on both the “Node Force 
X” and “Node Force Y” 

axes 

Appears to have data points clus-
tered mainly in the upper re-

gions. 

Displays a spread 
across the entire 3D 
space, suggesting a 

varied range of values 

Not speci-
fied 

32 

Generally exhibits the 
highest “Node Force Z” 

values for the entire 
“Node Force X” range 

Generally has higher “Node 
Force Z” values than the hexago-
nal pattern but values lower than 
the square pattern for most of the 

“Node Force X” range 

Generally has the 
lowest “Node Force 
Z” values across the 

“Node Force X” 
range 

Square > Tri-
angle > Hex-

agon 

16 Generally exhibits the 
highest “Node Force Z” 

Generally has higher “Node 
Force Z” values than the hexago-
nal pattern but lower values than 

Generally has the 
lowest “Node Force 
Z” values across the 

Square > Tri-
angle > Hex-

agon 

Figure 9. A direct comparison of reaction forces in X and Y directions.

To demonstrate potential trends or patterns within the data, we used logistic regression
lines, which here suggest a very weak linear relationship between the reaction forces in the
X and Y directions. The correlation coefficient r = 0.17 for the hexagonal patterns suggests a
slight positive trend in the reaction force in the Y and X directions. The negative correlation
coefficients (r = − 0.02 for square and r = − 0.19 for triangular patterns) indicate no real
and a very weak correlation, respectively. There is a visible spread of data points for the
hexagonal and triangular patterns, while that of the square pattern is less spread out.



Buildings 2024, 14, 1086 12 of 19

3.2. Node Forces

The forces at the grid node may be a crucial index in the structural analysis and opti-
mization of grid patterns. An individual node experiences different forces in a geometric
pattern under given loading and boundary conditions. Table 5 presents the variation in
node forces at various optimization levels. The results showed that the square patterns
generally exhibited the highest values, especially for node force in the Z direction. The
triangle grid patterns typically had intermediate values, while the hexagonal patterns
demonstrated the lowest values of node forces.

Table 5. Variation in node forces for different gene optimization levels.

Optimization Level Square Triangle Hexagon Order

32,16,8

Exhibits a broader
range on both the

“Node Force X” and
“Node Force Y” axes

Appears to have data
points clustered mainly

in the upper regions.

Displays a spread
across the entire 3D
space, suggesting a

varied range of values

Not specified

32

Generally exhibits the
highest “Node Force Z”

values for the entire
“Node Force X” range

Generally has higher
“Node Force Z” values

than the hexagonal
pattern but values

lower than the square
pattern for most of the
“Node Force X” range

Generally has the
lowest “Node Force Z”

values across the
“Node Force X” range

Square > Triangle >
Hexagon

16

Generally exhibits the
highest “Node Force Z”

values for the entire
“Node Force X” range

Generally has higher
“Node Force Z” values

than the hexagonal
pattern but lower

values than the square
pattern for most of the
“Node Force X” range

Generally has the
lowest “Node Force Z”

values across the
“Node Force X” range

Square > Triangle >
Hexagon

8

Covers the highest
range of “Node Force

Z” values for the entire
“Node Force X” range.

Generally has higher
“Node Force Z” values

than the hexagonal
pattern but lower than
the square pattern for

most of the “Node
Force X” range

Generally has the
lowest “Node Force Z”

values across the
“Node Force X” range

Square > Triangle >
Hexagon

The node forces due to the installed patterns on the façade were analyzed in the
X and Z directions. Figure 10 illustrates the relationship between the node forces for
both directions for different gene optimization levels for the three grid patterns. The
results showed that the hexagonal pattern’s data points in the eight-gene group were
scattered across the entire plot, with values spanning from almost −1 to 1 on the x-axis. For
eight genes, the hexagonal pattern is marginally better, but still weak, showing predictive
relationship between the two forces. The triangular pattern with 16 genes had a lower
R-squared value (nearly zero), indicating almost no linear relationship between the nodal
forces at this gene level. The data points for the hexagonal and triangular patterns with
32 genes were more scattered than those in the 8- and 16-gene plots; also, the R-squared
value was very low, suggesting no meaningful relationship.
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3.3. Deformation Energy

Generally, deformation energy refers to the energy absorbed by a material or a struc-
ture when subjected to forces as it deforms under load. In the context of Galapagos, a
genetic algorithm plugin for Grasshopper in Rhino 3D, the deformation energy is not a
standard or built-in parameter, but it can be a term used in a specific context or project. For
instance, one might want to minimize the deformation energy in a structural component to
ensure it efficiently resists loads without undergoing excessive deformation or failure. The
deformation can be elastic (temporary) or plastic (permanent). Table 6 shows the variation
in the deformation energy measured in this study for different gene optimization levels.
The results showed that the rankings of deformation energy varied across optimization lev-
els. The hexagonal pattern often appeared at the top or in the middle of the rankings, while
the triangle and square patterns switched places depending on the optimization level.

Table 6. Variation in deformation energy for different gene optimization levels.

Optimization Order

32, 16, 8 Triangle > Hexagon > Square

32 Triangle ≈ Hexagon > Square

16 Triangle > Hexagon ≈ Square

8 Triangle > Hexagon ≈ Square

Figure 11 presents the deformation energy distribution according to grid pattern shape
for gene optimization levels of 8, 16 and 32. The deformation energy was affected by the
number of genes. For the gene optimization level of 32, it was clear that all grid patterns
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required more energy to deform than for the other gene levels. The gene optimization levels
of 8 and 16 showed intermediate or higher values of deformation energy. The maximum
energy dissipation values were 7.91 × 10−6, 1.90 × 10−5, 1.16 × 10−6, and 4.02 × 10−6,
1.87 × 10−6, and 6.41 × 10−7 for the triangle and hexagonal grid shapes for the 8, 16,
and 32 gene levels, respectively. The maximum energy dissipation of all grid shapes for
the different gene levels is reported in Table 7. For structural mechanisms considering
deformation energy, the hexagonal and triangular patterns appear to be the most efficient.
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Table 7. Maximum energy dissipation values of all grid patterns.

Gene No.
Grid Pattern Hexagonal Triangle Square

32 Gene 6.41 × 10−7 1.16 × 10−6 1.39 × 10−6

16 Gene 1.87 × 10−6 1.90 × 10−5 9.80 × 10−5

8 Gene 4.02 × 10−6 7.91 × 10−6 2.23 × 10−4

4. Discussion and Recommendations

Through the results obtained from this study, numerous important observations can
be made on the optimization of façade patterns utilizing genetic algorithms. For optimizing
façade design, GAs showed potential by manipulating the node and support positions of
grid patterns. Our research results indicated that, from the evaluation of the reaction forces,
node forces, and deformation energy, the hexagonal grid pattern was the most efficient
amongst the three chosen grid patterns. In hexagonal grid patterns, a higher number of
genes provided a more uniform force distribution, along with low deformation energy
values. Similar observations were reported by Gagne and Andersen (2012) [15]. The grid
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pattern had a significant influence on the visual performance of façade. The analyses of
three different patterns for a façade grid showed that pattern selection could be an important
aspect in façade optimization. Abboushi (2021) [7] also emphasized the importance of grid
geometry in façade pattern optimization. The cross-sectional optimization approach used
in this study with Galapagos was shown to be effective for data acquisition by providing
efficient way to consider several important factors and constraints in façade optimization.
Petrovski et al. (2014) [27] reported similar conclusions about the potential usefulness of
Galapagos in architectural design.

Based on the results of this study, it is recommended that regular and nonregular
patterns be used on the designed façade at the same time. This can be achieved by manipu-
lating hexagonal grid patterns, where nonregular patterns can be used in places with larger
openings, such as windows. By using nonregular patterns where windows are placed, the
patterns can be extended to increase the view from the windows and having no design for
windows on the façade. Figure 12 shows that, generally, in the case of irregular patterns,
there are at least three tiling of irregular hexagons, according to hand-calculated formulas,
which helped us to understand the pattern [28]. Figure 13 presents the concept of the
suggested manipulation with a hexagonal grid. The key criteria considered in this pattern
are the uninterrupted visual connection between the indoor and outdoor environments
and the optimal utilization of supporters in the façade’s design.
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In the following, methods and techniques are mentioned that can be used to change
patterns and provide dynamic patterns. These techniques are often used in computer
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graphics, computational design, and surface meshing for the analysis of different elements
and surfaces. A homogenization technique is commonly used in the analysis of com-
posite materials and heterogeneous structures to characterize structural patterns from a
mechanical perspective. Montuori et al. introduced a general homogenization approach
to characterize structural patterns from a mechanical perspective, focusing on hexagrids
and diagrids. They proposed a design procedure based on a simple stiffness criterion and
applied it to a tall building case study, evaluating various structural solutions by varying
the geometric parameters of the patterns [29]. The Sinosteel building, designed by MAD
Architects and China Construction Design International, was the first tall building that
utilized the hexagonal grid pattern for the tube structure. Using the homogenization tech-
nique in the design of the façade provided a transition zone between the lower hexagrid
and the upper diagrid (43rd–49th floors) as an irregular grid to connect two different kinds
of patterns [30].

Another approach, hyperbolic tiling, is based on non-Euclidean geometry; distances
are not measured using standard methods in hyperbolic geometry. The shortest path
between two points in the hyperbolic metric is no longer along a straight line but rather
a distinct type of curve (Figure 14). The sides of every tile are all the same length. This
also holds for any two different tiles. Each tile’s sides appear slightly curved, but in the
hyperbolic metric, they are straight.
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To describe a tiling, all you need is a description of the initial tile together with a list
of symmetries that generate the tiling. Although there are infinite numbers of tiles, the
list of symmetries is finite, because it may be possible to use all the tiles by applying the
same symmetries repeatedly. To create a two-dimensional tiling, whether Euclidean like
the one in Figure 15a,b or hyperbolic, a method of creating identical copies of an initial tile
and placing them alongside each other is needed. Mathematically, this job is performed
by reflections, rotations, and translations in sequence, which is collectively known as rigid
motions or symmetries. Each tile is obtained by shifting the initial tile into a given direction
by a given distance.
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In conclusion, the integration of regular and nonregular hexagonal patterns, informed
by advanced computational techniques as mentioned above, allows for the generation of
patterns through methods such as anisotropic parameterization, optimality criterion (OC),
and pattern search function parameterization. Each of these methods or theories can be
applied to transition patterns, which architects can integrate with parametric façade design
depending on the specific requirements of the project to improve the indoor environment
for building occupants. Furthermore, reductions in the number of nodes and supports
not only enhance the visual performance of the façade but also potentially contribute to
resource efficiency and cost savings. Future research should explore different geometric
pattern designs by using genetic algorithms and other computational design methodologies
to create a combined regular and nonregular pattern.

5. Conclusions

This study investigated the potential of using genetic algorithms (GAs) in determining
efficient patterns for façade design, aiming to identify patterns that could be extended by
reductions in nodes and supports. This optimization crucially diminishes visual distur-
bances, a fundamental objective for architects aiming to seamlessly integrate indoor and
outdoor views, thereby enriching the experience of the building’s occupants.

Three grid patterns, i.e., hexagonal, triangular, and square, were investigated through
GAs to achieve an optimized façade. The important parameters for this optimization pro-
cess were the reaction force, node force, and deformation energy. A programing language-
based software “Grasshopper”, along with a plugin “Galapagos”, and “Karamba” (Version
2.2.0) were used in this study. The reaction forces were found to be higher for lower gene
levels, while the values were lower for the hexagonal pattern in general. The maximum
values of the reaction forces in the X direction for hexagonal, triangular, and square patterns
were 0.814, 2.53, and 2.41 for gene counts of 8, 16, and 16, respectively. In the Y direction,
the maximum reaction force values of the three patterns were measured to be 3.93, 7.72,
and 20.78 for 8, 16, and 8 genes, respectively. The results showed that the square grid shape
exhibited the highest levels of deformation energy, with maximum energy dissipation
values of 2.23 × 10−4, 9.8 × 10−5, and 1.39 × 10−6 for 8, 16, and 32 genes, respectively. The
maximum energy dissipation values for the triangular and hexagonal grid shapes were
7.91 × 10−6, 1.90 × 10−5, and 1.16 × 10−6, and 4.02 × 10−6, 1.87 × 10−6, and 6.41 × 10−7

for 8, 16, and 32 genes, respectively.
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The analysis of the results showed that, with its low deformation energy, low node
force, and reduced reaction force, the hexagonal pattern is more efficient than the two other
patterns. This efficiency provides an opportunity for adaptation and transformation into
an irregular pattern around window placements, increasing the field of view for building
occupants. Based on the result of this study, it is recommended that, with manipulation,
a hexagonal pattern with a combination of regular and irregular patterns can be created.
Such an approach may facilitate a better façade design with higher visibility for those
indoors. Through this methodical approach, this research conclusively demonstrated that
with the right tools and strategies, optimizing façade designs can lead to superior visual
experiences for occupants, harmoniously blending the indoor and outdoor environments.

Further research can be carried out utilizing more patterns and/or more variables to
explore the potential of genetic algorithms and other computational design methodologies
to further push the boundaries of architectural design, particularly in the domain of
façade optimization.
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