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Abstract: Enhancing the efficiency of windows is important for improving the energy efficiency
of buildings. The Korean government has performed numerous building renovation projects to
reduce greenhouse gas emissions and mitigate energy poverty. To reduce the costs and manpower
requirements of conventional field surveys, this study presents a deep-learning model to examine the
insulation performance of windows using photographs taken in low-income housing. A smartphone
application using crowdsourcing was developed for data collection. The insulation performance of
windows was determined based on U-value, derived considering the frame-material type, number of
panes, and area of windows. An image-labeling tool was designed to identify and annotate window
components within photographs. Furthermore, software utilizing open-source computer vision was
developed to estimate the window area. After training on a dataset with ResNet and EfficientNet,
an accuracy of approximately 80% was achieved. Thus, this study introduces a novel workflow to
evaluate the insulation performance of windows, which can support the energy-efficient renovation
of low-income housing.

Keywords: image processing; window composition detection; energy poverty; low-income housing;
energy-efficient renovation

1. Introduction
1.1. Energy Poverty and Energy-Efficient Renovation Projects in South Korea

Energy poverty is a major concern, exacerbated by the recent surge in global energy
costs. It refers to the state in which a group of households spend more than 10% of their
income on energy costs for cooling, heating, and cooking [1]. Typically, three issues are
considered the underlying causes of energy poverty, namely low income, high energy
costs, and energy inefficiencies in housing projects [2]. Energy poverty in South Korea
is mostly observed among the socially disadvantaged, such as the elderly population
living alone, families headed by children, and the disabled, who constitute approximately
1.6 million households across the country. Energy-poor households typically live in old
houses (aged more than 30 years) and spend a significant portion of their income on
energy [3–6]. In South Korea, energy costs are a large economic burden for the energy-
poor households because a large proportion of them live in old houses with low energy
efficiency [7]. Low energy-efficiency dwellings are more vulnerable to heat and cold waves.
Such houses also tend to have low accessibility to low-cost energy sources, such as city gas
and district heating. This makes it difficult to maintain a proper indoor temperature even
with sufficient use of energy. To address this energy poverty, the Korean government has
performed numerous cash and commodity disbursals and building renovation projects.
Particularly, the building renovation project is the most important one in the building sector
for carbon neutrality, and the budget for subsidies has gradually increased as part of a key
policy to tackle energy poverty. Previous studies have indicated that enhancing energy
efficiency in the housing industry could reduce greenhouse gas emissions, mitigate climate
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change, alleviate energy poverty, and boost regional economic growth [8–10]. Although
emergency support has mostly been provided using cash and commodity programs, such as
energy vouchers and electric fans, a long-term improvement in the residential environment
and energy efficiency of housing is fundamentally crucial to energy poverty alleviation.

South Korea unveiled a government-supported policy referred to as the energy-
efficiency improvement project for low-income households, which supports both heating
and cooling improvement projects. The heating improvement project is aimed at improving
the energy efficiency of walls, windows, and boilers via upgrading the insulation, windows,
and floor construction, as well as boiler replacement. The cooling improvement project
provides free installation of air conditioners. There are many ways to improve the overall
energy performance of low-income housing. In South Korea, window replacement is often
considered the fastest approach and the best way to address the issue of moving costs
and alternative housing for occupants, which are often necessary when adopting other
approaches. As a result, in South Korea, window replacement is the most common method
used to improve energy performance through renovations of low-income buildings. The
energy-efficiency improvement project for low-income households in South Korea sup-
ported approximately 609,000 households and 3035 social welfare facilities from 2007 to
2022, with a budget of approximately USD 600 million. In 2023, USD 1800 was provided,
on average, per household for a total of 34,000 households. Thus, long-term building
renovation for energy-poor households has been gaining prominence.

Nevertheless, the question of whether the priorities of building renovation are effec-
tively determined for budget distribution according to the target population and purpose
of use [11–14] persists. While problems caused by procedural and systemic issues exist,
the most significant issue is that energy poverty in blind spots is not identified through
field surveys; furthermore, the same buildings may be repeatedly identified for funding.
Currently, experts visit an extremely small part of the 1.6 million households in the country
and conduct field surveys. Evaluating the energy status of old buildings occupied by
individuals facing energy poverty in a limited timeframe with minimal manpower is not
feasible. Complex field surveys to examine the insulation performance of existing buildings
in the field entail considerable cost and manpower.

Owing to the limited budget availability for building renovation, the performance
of old houses in the existing project for low-income households is also diagnosed based
on a simple evaluation of building designs, drawings, and the year of construction [15].
This renders the diagnosis of the performance of old housing difficult and may decrease
the reliability of the renovation effort [7]. Therefore, it is important to simply measure the
performance of old houses in the field and renovate those that require urgent repairs rather
than perform indiscriminate renovations to achieve high efficiency on a low budget [7].

The importance of online evaluation technology has been emphasized based on the
data obtained from field surveys. Numerous studies have been conducted to recognize the
characteristics or components of buildings using photographs alone. Particularly, studies
to recognize windows from the building envelope through photographs are frequently
conducted. Accurate information regarding the windows of a building is essential for
energy-efficiency ratings. As windows act as thermal bridges, they are the major source
of thermal loss. Window operation has significant effects on ventilation rates as well as
heating and cooling loads in building energy usage [16–19]. Therefore, analyzing the energy
efficiency of a building mainly relies on its windows. In general, window replacement can
improve the energy efficiency of old buildings rapidly and easily. Consequently, window
replacement is a service that accounts for the largest portion of the budget allocated to
energy-efficiency improvement projects for low-income households.

1.2. Literature Review concerning Window Detection Using Image Processing

Detailed information on windows is included in construction plans and similar docu-
ments; however, high levels of expertise and considerable human efforts are required to
extract the relevant information [20]. Accurate and reliable data pertaining to the windows
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of a building may be acquired from two primary sources—from building blueprints or by
personally examining the facade of the building. The initial step in obtaining construction
drawings for many buildings is submitting a formal request to the land registry offices.
However, in certain instances, these plans may no longer be up-to-date, particularly in the
case of a limited number of buildings.

To overcome these issues, recent studies have manually and easily collected data by
obtaining window images from web services (e.g., Google Street View), capturing images
with cameras fixed on the ground, or using drones around the target building [21–23].
However, due to technical or privacy issues, window images constructed based on a
satellite map do not have a sufficiently high resolution to extract detailed information
regarding the windows. In contrast, photographs taken using drones may have a high
resolution. Owing to cost and time constraints and the survey distance range that may be
limited only to the target building, methods for collecting window images directly from
buildings are still being commonly used [20].

Numerous previous studies have concentrated on the analysis of the relationship
between the opening of windows and occupant behavior. To identify the opening of
windows, sensors were directly installed in buildings, and the status of windows was
recognized through photographs. In contrast to commonly used ambient sensors (e.g., air
temperature), window-opening sensors should be installed in large numbers and are hence
considered a hindrance to everyday life [24,25]. Furthermore, the data collected from these
sensors require preprocessing in many cases because raw data can rarely be used owing to
the errors that may occur during the measurement stage (e.g., data transfer failures and
accidents) [26,27].

This study begins with the following question: If the insulation performance of
windows can be approximately estimated using numerous collected window photographs
alone before implementing the energy-efficiency improvement project for low-income
households, would it not be possible to significantly reduce the cost and manpower required
for actual window replacement owing to the availability of window information before the
site visits?

Most of the previous studies focused on recognizing windows or their opening status
from photographs [21]. In other words, it is important to obtain information on window
components through field surveys for energy diagnosis and the energy-efficiency improve-
ment project for low-income households; however, there have been no studies on the
development of algorithms for recognizing the window components.

Therefore, in contrast to the previous studies, this study collected and analyzed data
from the window photographs of houses inhabited by energy-poor households through
a field survey. As this was conducted for numerous houses in South Korea as part of a
preliminary survey, drone or camera-installation methods that require high resolutions
and significant amounts of information on houses were not utilized. From this perspective,
this study differs from previous ones that collected window photographs through facades
and performed learning. The window photographs collected through field surveys are not
taken with fixed machines, and the angle, height, and direction may vary depending on
the photographer. Therefore, a practical guide for taking window photographs was also
proposed. Additionally, a tool was developed to detect and label the window components
from the photographs collected through the field survey. Software based on an algorithm
for calculating the window area was developed so that the window area information can
be directly obtained from the photographs. The results obtained expand the theoretical
knowledge and could affect the determination of priorities before the field surveys as well
as actual projects and policies, such as fairer and more efficient distribution methods [12].

This research introduces a novel approach to window insulation performance anal-
ysis based on crowdsourced window photographs, a method not previously explored in
depth in the field of energy-efficient building renovation. Our study uniquely focuses on
developing algorithms for recognizing window components from varied and unstructured
photographic data, filling a major gap in current architectural and energy-efficiency re-



Buildings 2024, 14, 966 4 of 22

search. A practical guide for photographing windows is proposed, and a novel tool for
window component detection and area calculation is developed. This approach signifi-
cantly diverges from traditional methods, offering a more efficient and scalable solution
for projects intended to alleviate energy poverty. The methodology and tools developed in
this study represent a significant advancement in terms of cost efficiency and practicality,
particularly for preliminary surveys in large-scale energy-efficiency improvement projects.

2. Materials and Methods

This research adopts a groundbreaking methodology that integrates deep learning
with crowdsourced photographic data. Our approach uniquely combines the scalability
of crowdsourced data with the precision of advanced computational analysis to evaluate
window insulation performance. To address the potential limitations and biases of our
data collection and analysis methods, we rigorously tested the model’s performance under
varying photographic conditions, ensuring a comprehensive evaluation of its reliability and
applicability. This study comprised four distinct stages: (1) window data collection, (2) data
labeling, (3) development of a method for calculating the window area from window
photographs, and (4) model training and testing; subsequently, a window composition
detection workflow was proposed.

2.1. Data Collection
2.1.1. Crowdsourced Data Collection

The first stage involved window data collection. The most difficult aspect of collecting
photographic data of the windows installed in the energy-poor households was accessibility.
Generally, it is difficult to know the address location of energy-poor households; the
building or occupant information is strictly controlled by a government department for
privacy protection and security reasons. Information on energy poverty can only be
received through a government agency, which requires a significantly complex process.
In general, creating large-scale datasets is expensive, difficult, and likely to give rise to
errors [28]. There have been significant advances in the method of continuously collecting
building data in terms of both quantity and contents [29], spurred by the diversity of
stakeholders and their types. Today, the building data collected by volunteers as well as
the government, companies, and academia are utilized in research [30–35].

This study considered the crowdsourcing method, which leverages the help of general
citizens for data collection. A method was devised so that citizens benefiting from energy
or housing welfare could directly participate in data collection. Considering the efficacy
and reliability of crowdsourced data, we implemented stringent quality control measures,
including a validation process to assess and enhance data consistency and accuracy. As an
example of our method, when social workers or volunteers visited energy-poor households
to deliver lunchboxes or briquettes, they were asked to conduct a survey on the living
environment and obtain photographic data of aged windows. They were educated on
window data collection methods and data labeling. Effective data of sufficiently high
quality could be obtained using the time and labor of citizens who have easy access to
energy-poor households. A smartphone application was developed and provided to the
volunteers and social workers. This application allowed for the easy conduct of surveys
and the immediate capture and transmission of window photographs (Figure 1).

As shown in Figure 1, the window components can be directly observed, and related
details as well as data on current status, such as window deterioration and inconvenience
in the use of windows, can be transmitted to a server. Although all the components can
be visually identified through photographs, only window photographs and information
on window components were collected with valid answers that can be used for future
learning. The application was developed in such a way that anyone can easily take and
transmit photographs anytime and anywhere through the internet. To address the issue
of possible real-time errors, a website was also created to enable the upload of window
photographs stored on a smartphone. Moreover, we established collaborative partnerships
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with non-governmental organizations (NGOs) and community welfare entities to determine
the locations of buildings inhabited by individuals experiencing energy poverty across
various regions. Efforts were devoted to improving the quantity and quality of data on a
broader level.
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Figure 1. Smartphone application for window status survey and photograph collection.

As emphasized by Yan et al., ethical considerations, such as privacy, could arise while
collecting occupant-related photographs [36]. To address such concerns, volunteers who
conducted the field survey were asked to avoid taking photographs of the interiors of the
residential spaces. This could be achieved by choosing an appropriate camera position
while taking the photographs. However, the ethical debate over the privacy of occupants
is important, and the cases among the collected data that contained the facial details
or personal information of the occupants have to be carefully examined. In this regard,
the authors underwent a familiarization exercise on various phrases related to personal
information; the written consents of the occupants were collected regarding the use of their
personal information for this research. Overall, it was presumed that the benefits of this
study would outweigh the potential risks associated with privacy.

The ideal distance of a camera would be different in each study [37]. The distance
determines the amount of detail for each window and the number of windows per image.
As it is difficult to consider all the various environmental factors of the field survey, the
volunteers were educated on the good and bad cases of window photographs. A guide
was provided to them so that they could take high-quality photographs (Figure 2).

Photographs taken outside a house could be affected by numerous environmental
factors, such as illumination, rain, snow, and solar glare, as described in [37]. In this study,
differentiated window photographs were collected by taking window photographs from
the inside through a field survey. The photographs taken from the inside of a house were
less affected by the external environment; however, their quality was significantly affected
by internal lighting and obstacles. Such factors adversely affect the quality of images
and the accuracy of detecting window components. To address this issue, it is important
to establish and develop guidelines on window photograph collection and on window
photograph data refining and labeling.
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Figure 2. Ideal and undesirable cases of window photographs for image detection. (a) Ideal case: A
photo taken from the front of the window with minor obstructions. (b) Ideal case: Photo with the
window as visible as possible, even if there are curtains or other obstructions. (c) Undesirable case:
Dark photo with backlighting. (d) Undesirable case: Out-of-focus photo.

2.1.2. Window U-Value Information

The surveyed items mainly comprised an occupant survey, a window photograph
satisfaction survey, window information, and photographs. In this study, the survey of
information on photographs related to the detection of window components was the
primary area of focus. Through questions on the state of windows, factors that affect the
insulation performance of the windows were investigated. The insulation performance
of a window was determined based on a parameter termed the U-value (W/m2 K) (also
referred to as the “U-factor”) of the window, which can be obtained through an experiment
if the window frame-material type (e.g., wood, PVC, and aluminum), air-layer thickness
of the glass (e.g., 6, 12, and 16 mm), air type, number of panes (single, double, triple,
and quadruple), width, height, and area are available. In addition, window design is
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affected by other important parameters like solar factor, solar transmittance, and light
transmittance. Nevertheless, the methodology employed in our study, leveraging crowd-
sourced photographic data, encounters inherent limitations in accurately capturing the
nuanced details requisite for determining these parameters directly from images. Only
variables that can be determined through image processing methods were considered as
important influencers in this study. Thus, in the field, the U-value of a window cannot
be directly evaluated. Furthermore, the U-value of a window in a laboratory will not
be identical to that of the window after its long-term use. In addition, extracting all
the items required for the U-value entails expensive verification products and expertise.
The U-values of windows can be affected by the types of external or internal shading
devices. In addition, glazed surfaces, including the glazing and frame, can affect the
thermal insulation of windows, and complex relationships exist among these factors.
However, after consulting with other experts, we decided to limit our U-value analysis to
a simple influence factor, serving as a determinant of a window’s thermal performance.
Therefore, this study aimed to easily and rapidly identify factors that affect the U-value of
a window that are related to the insulation performance of the window through window
photographs. The U-value was determined by the aforementioned factors; however, object
recognition technology can extract only the information visible from photographs. This
study developed a process that could select only those items that could be recognized
through window photographs, perform learning using a deep-learning method, and extract
the necessary information. It is acknowledged that perfectly identifying the insulation
status of windows in the field or creating related formulae using attribute information that
can be obtained from photographs alone is not possible. However, an attempt was made
to provide help in partially determining the insulation status of the windows in the field
through such additional information. Table 1 lists the information to be extracted from the
window photographs for assessing the U-value.

Table 1. Window composition information that can be recognized from photographs.

Attribute Information Category

Number of panes Single/double/triple/quadruple/unknown
Frame material PVC/wood/aluminum/composite/unknown

Opening method Fixed/hinged/projecting/horizontally sliding/unknown
Area calculation Glass/frame/unknown

Glass The gas layer thickness and gas type between glass panes cannot
be recognized from photographs.

The survey was conducted, and window photographs were collected in five cities
(Seoul, Daejeon, Gwangju, Mokpo, and Busan). Approximately 800 households were
surveyed, and 5000 photographs were collected for three years, from 2020 to 2022. However,
most of the photographs included the poor condition of houses in addition to the windows.
Following a thorough selection process, approximately 3000 photographs were selected. Of
these, the number of finally selected photographs of adequately high quality to detect the
window components was 1866.

2.2. Data Labeling
2.2.1. Development of Image Labeling Tool

In the second stage, annotations were manually inserted into the collected photographs
for their utilization in deep learning. Previous studies have suggested that manual data
processing is required to identify windows from photographs [37,38]. This problem can
be resolved by designating the positions of windows and window components on the
photographs. This process is called data labeling.

Given the large size of the photograph dataset, manual data labeling can be extremely
laborious and time-consuming, and often requires domain knowledge and labeling skills
to ensure quality. Although numerous crowdsourcing services (e.g., Amazon SageMaker
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data labeling [39] and Google Cloud data labeling [40]) are available to significantly reduce
the manual labor for the dataset owners, these services can be expensive for large datasets.
Additionally, the manual process can be error prone. For instance, [41] reported that the
ImageNet validation set contained labeling errors, including missing and incorrect labels,
to the extent of 6%.

To address these problems, we created a customized, simple data labeling tool from
open-source code that could label the window photographs. This was to avoid the escalat-
ing costs of commercial cloud services (Figure 3).
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Figure 3. Data labeling tool for window composition detection.

The tool supports drawing points, circles, rectangles, and polygons. Appropriate
shapes can be used according to the presented guidelines. In this study, only rectangles
(bounding boxes) were used. Additionally, the tool has functionality for moving the
labeling objects, increasing/decreasing the size of the displayed image, and changing its
brightness. Briefly, the steps involved in the use of the tool are as follows. A window image
to be labeled was imported through the import menu, and its size was adjusted through
the increase/decrease function. Following the selection of the bounding box of the labeling
tool, a box was drawn over the part that corresponded to a window on the screen. The label
name, window type, frame material, and opening method corresponding to the window
were entered inside the box. Finally, the label was saved as an XML file (Figure 4).

Next, we attempted to address one crucial shortcoming of the manual data labeling,
which was the person-to-person variation introduced in the process. Therefore, a guideline
was developed through an expert meeting, ensuring that the same procedure and criteria
would be applied irrespective of the person applying the labels. The window photograph-
labeling method and criteria to be adopted are as shown in Figure 5. To enhance the model’s
accuracy and ensure its applicability in real scenarios, our study meticulously defined the
window glazing and framing quality. This was accomplished through a standardized data
labeling process, as demonstrated in Figure 5, underpinned by a set of rigorous guidelines
established by domain experts. The guidelines stipulate the identification and annotation of
window components with high precision, accounting for material characteristics, glazing,
and framing. Such granularity in data labeling minimizes intra-observer variability and
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enhances the model’s ability to predict the thermal performance of windows accurately,
facilitating its deployment in the field for energy-efficient retrofitting projects.
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Figure 5. Data labeling manual for window composition detection.

However, as the photographs inside the housing varied from case to case, it was
difficult to apply the same labeling method to all the window photographs based on the
guidelines in the manual. Therefore, regular discussions on labeling for each case were
conducted with the volunteers. Several example cases are shown in Figure 6.

2.2.2. Window Area Calculation Algorithm

The window area is an important factor for determining the U-value of a window and
evaluating its insulation performance. Direct measurements were generally performed
using a tape measure in field surveys to identify the window area. However, cumbersome
direct measurements lack reliability and accuracy. In practice, the window glass and frame
sizes collected by citizens contained erroneous values and were unusable.
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Figure 6. Various cases explaining window image labeling. (a) Despite the occlusion caused by
curtains, the window’s presence can be inferred from the visible frame on the left, warranting
its labeling. (b) When recognizable attributes like rails and glass are obscured by laundry and
appliances, labeling is confined to discernible frames. (c) Instances with obstructions are incorporated
into the labeling process, provided the boundaries of such obstructions can be reasonably deduced.
(d) For double-pane windows, labeling is performed based on the observable lock and frame of the
posterior window.

Therefore, in this study, the citizens who photographed the windows were instructed
to do so with and without a Post-it™ note. Since the area of the Post-it note used is known,
it would serve as a reference in the window photographs. The area of the Post-it note, as it
appears in the window photographs, would help estimate the window and frame sizes.
The algorithm and software created for this purpose are explained below.

The basic algorithm for calculating the image area using window photographs used
perspective transformation provided by open-source computer vision (OpenCV), a real-
time computer vision signal processing library. This transformation is used to convert
the four points (red cross–shaped dots) designated by the user on a given window image
into a rectangular photograph. To perform warping within the input photograph using
the WarpPerspective() function in the OpenCV library, four points that designate the area
on the input photograph to be transformed and four corresponding points on the output
photograph are required. A transformation matrix for four corresponding points can be ob-
tained using the getPerspectiveTransform() function, and the transformation is performed



Buildings 2024, 14, 966 11 of 22

using the WarpPerspective() function. In perspective transformation, all the straight lines
on the original input photograph remain straight lines on the output photograph. The
perspective transformation uses a 3 × 3 matrix to calculate the orthogonal coordinates. If
Mp is the matrix that expresses perspective transformation, the pixel coordinates of the
input image (x, y) are moved by the matrix Mp, and the image pixel coordinates (x′, y′) are
calculated as follows:wx′

wy′
w

 = Mp

x
y
1

 =

p11 p12 p13
p21 p22 p23
p31 p32 p33

x
y
1

. (1)

The calculated transformation matrix values for two examples of input photographs
are as shown in Figure 7.
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Figure 7. Calculated transformation matrix values in the window area calculation algorithm.

The Python programming language was used for the software implementation. The
libraries required to operate the implemented software were numpy, cv2, and PyQt5. The
areas, measured using a Post-it note and the developed software, were validated as follows.
The reflection of the photographer on the glass was covered with a white quadrangle. The
Post-it note (Model 657) used as the reference had a length and breadth of 102 and 76 mm,
respectively, with a total area of 7752 mm2. As illustrated in Figure 8, four points were
designated to the Post-it note by left-clicking the mouse. This would mark red circles on
the photograph according to the designated coordinates. Additionally, four points were
designated on the window photograph to be measured by right-clicking the mouse. This
would mark blue circles on the photograph according to the designated coordinates. Once
the unit area of the Post-it note was entered, the target area, that is, the window area, would
be automatically calculated after designating all eight points.

As observed in the two example photographs, accuracy may differ depending on
the camera angle. The errors for the photographs in Figures 8a and 8b were 1.21% and
2.53%, respectively. Additionally, it was observed that the discrepancy in the computed
area remained relatively constant even when the photograph was captured from a non-
perpendicular perspective, as depicted in Figure 8a.
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Figure 8. Validation of window area calculation software. (a) A photo of the window from the front.
(b) A photo of the window from a slightly sideways angle. To measure the window area, the windows
are marked with blue circles and the Post-it note used as the reference is marked with red circles.

2.3. Data Preprocessing and Model Training

The next step involves the process of learning the window components with the
photograph dataset that was subjected to labeling. The number of learning data elements
that were labeled was 1866; among them, 1745 photographs were of the horizontally sliding
windows, based on the window-opening method. This predominance could introduce
a bias in learning. Consequently, the window-opening method was not analyzed in this
study. Additionally, unclear data pertaining to windows or frame material were removed,
which reduced the total number of learning data elements to 1738. The following data
elements were confirmed: double-pane windows, 838; single-pane windows, 896; triple-
pane windows, 4; PVC, 722; wood, 430; and aluminum, 586. For these data, the images
were resized to 256 × 256 to fit the pre-trained model learning input size. As the number
of data elements for triple-pane windows was substantially small for learning, they were
excluded during model classification.

As for the Baseline model, two commonly used models, which are known to have high
performance efficiency as image classification models, were utilized [42]. One is the ResNet
model, which introduced the residual learning method for stable learning in a deep-learning
model. ResNet series (e.g., ResNet50 and ResNet101) have been proposed to alleviate the
vanishing gradient problem; in fact, they significantly reduce the difficulty of training
in deeper layers of neural networks [43]. The second is EfficientNet, which significantly
improves the efficiency of the structure compared to the existing CNN models [44]. In this
study, this model was implemented with Pytorch (2019) [45]. The training was performed
using cross entropy loss for the loss and the Adam optimizer. A learning rate of 0.001
was used.

Among the structures of the Baseline model, ResNet50 and EfficientNet-B0 with a
small number of parameters were used, considering the size of the model, and the pre-
trained model was used. The fully connected layer of the pre-trained model was replaced
with two types of fc layers that fit the number of classes corresponding to the number
of windows and frame-material type. Learning was performed by dividing the dataset
into training, validation, and testing sets in the ratio of 80:10:10. The batch size was set
to 64. Data augmentation was applied during learning. HorizontalFlip, rotation, and
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GaussianBlur were used, as shown in Figure 9. The ratio of data-augmented images was
used to the original one as one to three. This approach was chosen after preliminary
experiments to balance the diversity of data without overwhelming the original dataset
characteristics. Regarding the impact of data augmentation on model accuracy, we found
that incorporating augmented images improved the model’s robustness, increasing the
overall accuracy by approximately 5%. This enhancement is attributed to the model’s
improved generalization capability from the varied training examples.
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3. Results

In this study, we utilized both ResNet and EfficientNet architectures, applying 100 epochs
learning process to assess the accuracy of window number and frame material detection.
The accuracy evaluation of these models was limited to the testing data sets and did
not include the training data sets. The results, as illustrated by the learning curve of
EfficientNet-B0 (Figure 10), reveal a noteworthy trend in the learning process, with the
loss significantly decreasing and stabilizing at low values while maintaining an accuracy
consistently exceeding 73%. This stability demonstrates the effectiveness of our deep-
learning approach. With a precision of 82%, a recall of 78%, and an F1-score of 80%, our
findings confirm the efficacy and reliability of our deep-learning approach for window
component detection. The insights gained from the confusion matrix further guided the
efforts to enhance model accuracy, particularly in distinguishing between various window
components. The learning process was rigorously tested across five different data splits to
ensure robustness; the aggregated accuracies are listed in Table 2. These findings not only
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demonstrate the efficacy of our proposed method but also mark a significant advancement
in the application of deep learning to architectural research.
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Table 2. Model training accuracy results.

Accuracy for the Number of Windows Accuracy for the Frame Material

Resnet50 73.99% 78.73%
EfficientNet-B0 76.16% 79.88%

4. Discussion

The accuracy of the Resnet50 and EfficientNet-B0 models for the number of windows
and frame material was found to be approximately 80%. This accuracy may not be high
enough to be used in the field; however, it is judged that window components were identi-
fied with high accuracy from window photographs with various obstacles. Additionally,
the model training results showed that it would be difficult to identify environmental
conditions, such as lighting, obstacles, and reflection, and achieve an appropriate general-
purpose accuracy. Herein, we discuss four additional developments aimed at improving
the performance of the algorithms.

First, it is necessary to analyze which photographs were less or more amenable to
learning window components from. Testing the accuracy by training the models based on
various types of window photographs provided insight into the limitations of photographs
that may decrease the accuracy of or hinder learning. These limitations were related to
specific structures in individual window photographs, obstacles, image noise, the inap-
propriateness of the labeling used to filter the definition conditions, and environmental
conditions related to lighting and reflection. As the survey was conducted to obtain correct
answers during the collection of window photographs, those for which the values expected
by the trained models were different from the correct answers were analyzed.

For the photographs in Figures 11a and 11b, a strong backlight made it difficult to
identify the surface texture. Possibly, only the smooth surface rendered by the backlight was
detected, and the material was predicted to be PVC when, in fact, it was wood. Particularly,
in Figure 11b, the frame material was wood, but was painted. Therefore, it might be difficult
to determine the material. Because it is also difficult to identify the number of window rails
on the photograph, only one window was visible, and thus the triple-pane window was
detected as a single-pane window. In Figure 11c, Korean traditional and modern windows
were both present, which caused a problem in selecting the window to be classified by the
trained models. This caused certain windows to be identified as single-pane windows. In
the case of the material, the white paint on the wood was detected as PVC. Therefore, when
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there were different types of windows in one photograph, they could decrease the accuracy
of the model, indicating that a separate manual classification method is required during
data collection or preprocessing.
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Figure 11. (a) Case where wood was detected as PVC. (b) Case where wood was detected as PVC
and triple-pane window as single-pane window. (c) Case where wood was detected as PVC and
triple-pane window as single-pane window.

The material of the windows shown in Figures 12a and 12b was aluminum; however,
the metallic texture of aluminum could not be detected owing to the low illumination
in the photograph. Consequently, the material was detected as PVC, which represented
the largest proportion of the training data. Particularly in Figure 12b, the number of
windows could not be determined owing to the opaqueness of the glass. The photographs
in Figures 12c and 12d show a combination of various elements, including the windows.
In Figure 12c, the windows and walls of external buildings became indistinguishable from
the windows in the photograph. This indicates that external as well as internal obstacles
significantly affected the learning accuracy of the model, which must be considered during
the data collection or refining. Eventually, obstacles present in the window photographs
were highly likely to lead to an incorrect identification of the number of windows or frame
material because they hindered the process of distinctly identifying the windows.

The photograph in Figure 13a shows stains on the PVC window frame. Such stains
could be mistaken for wood texture. Similarly, the photograph in Figure 13b shows low
illumination and backlight, which could cause the PVC window frame to be mistaken for a
wooden frame. Two windows, one single-pane and another double-pane, were recognized
as triple-pane windows because of the difficulty in identifying the number of window
rails, and learning the number of windows was degraded by the opaque stickers attached
to the window (Figure 13a). In Figure 13b, the front window is a double-pane window,
which was determined to be a triple-pane window because of another window on the
outside. This photograph also shows that an obstacle outside a window affects the learning
of the window.

The four photographs in Figures 14a and 14d show that the window frames were
particularly dark. They could have been easily detected as PVC frames if they had been
visually inspected. They were wrongly detected as aluminum owing to the black or brown
stickers on the PVC frame or the dark-colored paint. Furthermore, PVC was mistaken for
aluminum owing to the illumination or window-composition problem. In the case of the
photograph in Figure 14a, the texture of the material might have been detected as that of
aluminum owing to the old and unmaintained condition of the PVC frame and window
guard outside the window. From the photograph in Figure 14b, it was difficult to detect
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the texture or shape of PVC owing to low illumination. The window guard could also
affect the identification of the material and number of windows. From the photograph in
Figure 14c, the material was not accurately identified because only a part of the window
was included. It was also difficult to determine the number of windows for the same reason.
For the photograph in Figure 14d, detection was hindered by an obstacle that resembled a
carpet. Low illumination could also have resulted in the frame being detected as aluminum.
For the photograph in Figure 14e, the accuracy was reduced by various elements outside
the window. The number of windows could not be identified owing to the insect-screen
frame or safety railing between the window frames. For the photograph in Figure 14f, the
window frame was detected as aluminum owing to the influence of the window guard
that occupies a large proportion in the photograph. Additionally, the biased composition
or confusing image components, such as the landscape outside a window and the carpet
attached to the window, appear to have rendered an accurate classification difficult.
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Figure 15 shows that the composition of the photographs was biased. As a result,
the probability of wrongly identifying the material increased. It appears that the material
was classified as aluminum because most of the photographs of windows with aluminum
frames had biased structures. This implies that it is important to determine the same
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photograph frame without biased structures among the classes when photographs are
collected for each class.
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Figure 15. (a) Case where a triple-pane window was detected as a double-pane window. (b) Case
where wood was detected as aluminum. (c) Case where wood was detected as aluminum, and a
triple-pane window was detected as a double-pane window.

In Figure 15a, the frame at the bottom left was possibly wrongly recognized as the
window frame to be analyzed. It appears that the learning rate was decreased by the
presence of several window members in one window photograph. In Figure 15b, elements
other than a window, including those outside the window, occupied a large area, and the
insect screen was made of aluminum. This case shows that the accurate detection rate
might decrease when various window material elements are present in one photograph.
A double-pane window was determined by the number of window rails. This indicates
that using photographs that do not show the accurate number of rails for training would
decrease the correct answer rate. In Figure 15c, the paper attached to the window was
recognized as an obstacle, and the material could not be accurately determined between
aluminum and wood. As the window rail could not be identified, the window appeared
to have been detected as a double-pane window, based on the window frame on the back
side of the opaque glass.

Based on the analysis, it was found that errors occurred mostly in images with low
light, deep shadows, and partially covered windows. Upcoming research will plan to
conduct a more thorough analysis of these conditions to better understand the limitations
of our current model and explore possible improvements. The influential factors behind
photographs being identified incorrectly with the trained data of window photographs
are summarized as follows. These factors affect model training accuracy. They must be
considered during the collection, preprocessing, and labeling of window photograph data.

1. When taking window photographs, environmental conditions related to lighting and
reflection should be considered. Thus, taking photographs without a backlight is
required during window photograph collection. It is also important to take and collect
photographs after securing sufficient brightness using both natural and artificial light.

2. Biased compositions or photographs that emphasize only certain areas must be
avoided during collection or labeling. It was confirmed that photographs with a
biased window composition decreased the recognition rate during model learning. It
is proposed that photographs that contained the entire window structure should be
considered and that the training dataset should be constructed by excluding biased
photographs during data refining or labeling. For severely tilted photographs, the use
of the data refined using the rectifying function is proposed.

3. It was inferred that the presence of surrounding obstacles other than the window
decreased the window recognition rate. Therefore, it is important to organize the sur-
rounding environment to the extent possible while taking photographs; furthermore,
while taking photographs, the focus should be on the window alone. Additionally, as
the accuracy was affected by both the internal and external environments of a win-
dow, the background photograph would need to be obscured using the out-focusing
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method. Moreover, as the window guard affected the frame material and number
of windows, it would be necessary to perform training on the window guard sepa-
rately. If the results of recognizing the window guard alone were excluded during the
window component learning, the correct answer rate would have been higher.

Second, the amount of high-quality data needs to be increased. Numerous data
elements are required for deep learning. In this study, however, data were collected at a low
cost from five cities in the country through crowdsourcing, and only 1800 data elements
were used for learning. A higher level of accuracy and reliability could be achieved using a
greater amount of high-quality data. In this study, data augmentation was employed to
enhance the learning dataset, aiming to mitigate the potential insufficiency of the collected
data for deep learning. Despite the extensive collection of window photographs, the
dearth of data with specific window annotations decreased the efficacy of the deep-learning
models. Moreover, achieving a balanced representation for each class proved challenging.
For example, although both horizontally sliding and hinged windows were photographed,
the visited houses predominantly contained windows of the former type, posing challenges
to data learning. To address this disparity, future field surveys will prioritize the collection
of photographs representing diverse window-opening methods. In addition, while this
study utilized 256 × 256 resolution images to match the input size of our pre-trained models,
we hypothesize that higher resolution images could potentially improve the accuracy by
providing more detailed features for the model to learn from. We propose to investigate this
in future work, as it extends beyond the scope of the current study due to computational
and resource constraints.

Third, it is possible to increase the amount of learning data by generating sufficient
synthetic data through a new artificial intelligence (AI) method. To address the problem
of insufficient data with annotations, many studies have been conducted to reduce the
effort required to construct learning datasets. In recent years, attempts have been made to
automatically and cost-efficiently generate synthetic data in controllable and computable
virtual environments to augment the amount of learning data [28,46,47]. In virtual environ-
ments, all elements can be edited, including virtual cameras (unique parameters, locations,
and poses), object or scene models (geometry, material, and texture), and environment (e.g.,
weather and lighting conditions). Thus, users can capture various images in an unlimited
manner and insert annotations into such images flexibly and automatically [47,48]. Accord-
ing to these studies, the related deep-learning models trained with synthetic images or
the actual image dataset augmented using synthetic images can exhibit higher or similar
performance compared to the models trained with actual images alone [49]. In future
research, methods to further increase the accuracy of the models using synthetic data will
be explored.

Fourth, as the performance of AI models has been rapidly improving, it is necessary to
implement optimal pre-trained models, as well as the Resnet50 and EfficientNet-B0 models
used in this study. In the future, it is also necessary to create optimal algorithms that can
identify window components by upgrading the algorithms to fit hyperparameter-tuning
or the corresponding domain. Upgraded algorithms will be applied to actual building
energy-efficiency improvement projects, and further research will be continued to reduce
energy poverty.

Finally, in future research, it is necessary to create an evaluation method that can
determine the insulation status of windows in the field as well as improve the performance
of algorithms. The information extracted in this study is helpful in partially estimating the
insulation status of windows; however, it did not comprise any formula or weight in any
form, rendering it only an element of subjective judgment. It is necessary to create methods
to determine the grade or score for windows in the field with extracted information on
the window frame-material type, number of windows, and area, and to comprehensively
evaluate the information related to the insulation performance of different windows. This
was the motivation for this study, and diverse image processing methods through window
photographs are expected to be the basis for further development.
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This research marks a significant advancement in the field through the use of deep-
learning models, specifically Resnet50 and EfficientNet-B0, to accurately analyze window
components, a methodology previously unexplored in building energy-efficiency studies.
Our study’s application of advanced AI techniques to the complex task of identifying
window numbers and materials from photographs presents a complete workflow for energy-
efficient renovation in buildings. The distinct framework used in this research, which can
overcome obstacles like unfavorable lighting and reflections, showcases the potential of
image-based analysis in the decision-making process of building renovation assessments.

5. Conclusions

This study marks a significant stride toward enhancing energy efficiency, with a special
focus on low-income households, by introducing a methodology for window component
detection. Globally, numerous initiatives aim to retrofit buildings, ranging from residential
homes to commercial offices, to improve their energy performance. Particularly in South
Korea, the scope of energy-efficiency improvement projects has been broadened to assist
energy-poor households, which have limited means to upgrade their living spaces. The ur-
gency to enhance the thermal performance of windows, a critical component of a building’s
envelope, is evident, especially when operating under financial and temporal constraints.
This research illustrates a comprehensive methodology for gathering, preprocessing, and
analyzing window photographs to facilitate the identification of window components in
need of replacement or upgrade. In conclusion, our novel workflow not only reduces cost
and manpower requirements for field surveys but also facilitates more informed decision
making based on precise data analysis. By streamlining the initial stages of building reno-
vation surveys through this approach, we can expand the reach of renovation projects to
include a greater number of energy-vulnerable households.

Building on this groundwork, the study has unveiled the promising potential of lever-
aging advanced image processing and deep-learning techniques to refine the assessment
of window insulation performance. The inclusion of crowdsourced data has not only
enhanced the scalability of our methodology but also its applicability across diverse en-
vironments, showcasing a novel way to engage communities in energy-efficiency efforts.
Collaborative efforts with government bodies, non-profit organizations, and industry stake-
holders will be pivotal in translating our research findings into actionable strategies that
can be integrated into existing building renovation frameworks. Such partnerships will
ensure that the advancements made through this study can have a tangible impact on the
lives of those most affected by energy poverty, aligning with broader goals of sustainability
and climate resilience.

Looking ahead, the pursuit of higher-resolution imagery stands out as a promising
research direction, potentially unlocking finer details and features critical for assessing
window performance more accurately. This endeavor will require a careful balance between
computational demands and the depth of analysis achievable with higher-quality images.
Additionally, adapting our models to better handle various environmental conditions
remains a key challenge. Overcoming these obstacles will not only enhance the reliability
of our methodology but also its versatility in real-world applications.

Therefore, this study not only proposes a novel workflow that could revolutionize the
preliminary stages of energy-efficient renovations but also lays a solid foundation for future
advancements in the field. Through continued innovation and collaboration, we aspire to
significantly improve the energy efficiency of buildings, particularly for low-income and
energy-poor households, thereby contributing to a more sustainable and equitable future.
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