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Abstract

This study systematically investigates the axial compression capacity calculation method
for 7075-T6 aluminum alloy rectangular hollow section (RHS) members based on the
Continuous Strength Method (CSM). Axial compression tests were conducted on nine
RHS specimens using a YAW-500 electro-hydraulic servo testing machine, and nonlinear
finite element models considering material plasticity and geometric imperfections were
established using ABAQUS/CAE. The numerical results showed good agreement with
experimental data, verifying the model’s reliability. Parametric analysis was then performed
on RHS members, leading to the development of a CSM-based capacity calculation method
and a modified curve for predicting the stability reduction factors of square hollow section
members. The approach combining this modified curve with Chinese codes is termed the
Modified Chinese Code Method. The axial capacities calculated by the CSM-based method,
Modified Chinese Code Method, EN 1999-1-1, and AASTM were compared for accuracy
evaluation. The conclusions indicate that the proposed modified curve provides more
accurate predictions of stability coefficients for square tubes, and the CSM-based method
yields more precise capacity predictions than existing international design codes, though
it may overestimate the capacity for Class 4 cross-section members and thus requires
further refinement.

Keywords: aluminum alloy structure; axial compression test; continuous strength method

1. Introduction

Aluminum alloys, with their lightweight, high strength, corrosion resistance, and aes-
thetic appearance, are widely used in engineering applications such as pedestrian bridges,
grid structures, and other civil engineering projects [1]. At the same time, aluminum alloys
have a very high recycling rate, typically ranging from 95% to 98%, and recycled aluminum
alloys can restore their original properties, offering significant environmental benefits [2].
However, the modulus of elasticity of aluminum alloys is relatively low, approximately
one-third that of steel, and coupled with the high strength of aluminum alloys, this leads to
typically slender section designs. Therefore, local stability remains a prominent issue [3].
If the design approach used for steel structures is adopted, where aluminum alloy com-
ponents are required to avoid local buckling before overall failure, i.e., not relying on the
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post-buckling strength of the material, the width-to-thickness ratio of compressed plate
components must be smaller, which results in very uneconomical section designs [4,5]. To
address this, both the “Code for Design of Aluminum Structures” (GB 50429-2007 [4]) and
the European Standard EN 1999-1-1:2007+A1 [6] employ the effective section method to
take advantage of the post-buckling strength of aluminum alloys. The effective section
method treats the individual plate components of a member as independent entities, cal-
culating the effective thickness of each plate and then determining the effective section.
However, the interaction between the plates, such as between flange plates and web plates,
which enhances the section’s load-bearing capacity, is not considered in the effective section
method. This interaction is known as the plate group effect [7,8].

In addition, the stress-strain curve of aluminum alloys does not exhibit a distinct
yield plateau but instead follows a continuous and smooth curve [9]. Both the “Code
for Design of Aluminum Structures” (GB 50429-2007 [4]) and the European Standard EN
1999-1-1:2007+A1 [6] adopt an ideal elastic-plastic model as the material constitutive model,
neglecting the strain-hardening behavior of aluminum alloys. Therefore, designs based on
these standards typically make more conservative predictions regarding the load-bearing
capacity of aluminum alloy components.

To address the aforementioned issues, the Continuous Strength Method (CSM) can
be used to calculate the load-bearing capacity of aluminum alloy components. The CSM
was first proposed by Leroy Gardner and others [10]. It moves away from the traditional
design approach based on section classification and instead determines the compressive
and bending strength of a member based on its deformation capacity. The method fully
considers the strain-hardening characteristics of the material and the plate group effect of
the member [10]. The CSM is particularly suitable for materials with nonlinear constitutive
relationships, such as high-strength steel, stainless steel, and aluminum alloys [11].

Currently, research on the Continuous Strength Method, both Chinese and internation-
ally primarily focuses on predicting the section strength of aluminum alloy components.
Su et al. conducted experimental and finite element simulations on aluminum alloy short-
columns and beams with different section types and found that the CSM is able to more
accurately predict the section strength of aluminum alloy components compared with the
calculation methods in current national codes, and it fully utilizes the strain-hardening
capacity of the aluminum alloy material [12-16]. Marina et al. studied the biaxial bending
of aluminum alloy rectangular tubes [17], while Craig et al. investigated the compression
and bending behavior of aluminum alloy circular tubes, both of which validated the ac-
curacy of the CSM in predicting the section strength of aluminum alloy components [18].
Xiang-Rong Chen et al. combined the calculation method in the Chinese Aluminum Struc-
ture Design Code (GB 50429-2007) [4] with the Continuous Strength Method and proposed
a calculation method for the axial compressive load-bearing capacity of aluminum alloy
rectangular tubes based on the CSM. They found that the stability load-bearing capacity
predictions in the Chinese aluminum code are generally conservative for components with
a section flexibility factor in the range of 0.228 to 0.906, especially for components with
large slenderness ratios, where the stability load-bearing capacity predictions are notably
more conservative [19]. Zhai Ximei, Zhao Yuanzheng, and others conducted experiments
on 6082-T6 aluminum alloy members and compared the experimental results with the cur-
rent American Aluminum Design Manual [20,21], European Aluminum Structure Design
Code [6], Chinese Aluminum Structure Design Code (GB 50429-2007) [4], as well as the
computational results from the Direct Strength Method and Continuous Strength Method.
They analyzed and evaluated the computational accuracy of each method [22-26]. Chen
et al. [27] performed tests on 11 short column specimens made of 7A04-T6 and 6061-T6 alu-
minum alloys. Through experimental validation, they applied a finite element model to a
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series of comprehensive parametric studies and proposed a new CSM (Continuous Strength
Method) relationship to determine the compressive sectional resistance of high-strength
non-slender CHS (Circular Hollow Section) aluminum alloy members.

Currently, the commonly used 6000-series aluminum alloy materials in engineering
structures have a yield strength of around 200 MPa, while the yield strength of 7000-series
aluminum alloys can reach up to 500 MPa. To explore the application of 7000-series
aluminum alloys in engineering structures, this study will focus on 7075-T6 rectangular
tubes as the research object. Based on the axial compressive tests of nine 7075-T6 aluminum
alloy rectangular tube specimens, the axial compressive load-bearing capacity will be
calculated using the Continuous Strength Method (CSM). The results obtained from the
CSM,, the design code methods, and the experimental results will be compared.

2. The Axial Compression Test

To study the axial compression performance of 7075-T6 aluminum alloy rectangular
tubes and provide a basis for validating finite element numerical analysis and the devel-
opment of load-bearing capacity calculation methods based on the Continuous Strength
Method, nine 7075-T6 aluminum alloy rectangular tube specimens were designed with the
cross-section width-to-thickness ratio and member slenderness ratio as variables. Axial
compression tests were conducted.

2.1. Tensile Test of Materials

According to “Metallic Materials—Tensile Testing—Part 1: Method of Test at Room
Temperature” (GB/T 228.1-2021 or ISO 6892-1) [28], tensile specimens were cut along the
longitudinal direction of the aluminum alloy square tubes for material tensile testing. For
each cross-sectional dimension of the tubes, three tensile specimens were extracted. The
dimensions of the specimens varied depending on the tube’s cross-sectional specifications,
as illustrated in Figure 1. The tensile tests were conducted using a hydraulic universal
testing machine, and use high-precision extensometer with a gauge length of 50 mm was
used to measure its strain, as shown in Figure 2.
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Figure 1. Tensile specimen dimension (Unit: mm).

Figure 2. Tensile testing equipment.
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Regarding the constitutive relationship of aluminum alloy materials, the most widely
used model is the Ramberg-Osgood model [29]. Proposed by Ramberg and Osgood in
1939, this model employs three material parameters to describe the stress-strain behavior
of aluminum alloys. The constitutive equation of the Ramberg-Osgood model is expressed

o fo2\"
e_E+oom<lg> (1)

as follows:

in the equation, E represents the elastic modulus at the origin; fp» denotes the nominal
yield strength at 0.2% plastic strain; n is the strain-hardening exponent, reflecting the
material’s strain-hardening capability. Among these parameters, E and fj» can be directly
measured through tensile testing, where n cannot be obtained directly from material tensile
tests. In practical calculations, the approximate formula proposed by SteinHardt (1971) [30]
is commonly employed , as expressed below:

n=0.1f2 2)

Based on the material tensile test results and SteinHardt’s proposed formula, the
constitutive parameters of 7075-T6 aluminum alloy were determined as follows: Elastic
modulus at the origin (E): 76.04 GPa; Nominal yield strength at 0.2% plastic strain (f(2):
418.03 MPa; Ultimate tensile strength (f,): 498.9 MPa; Strain-hardening exponent (n): 41.8.
The constitutive relationship curve of the 7075-T6 aluminum alloy is illustrated in Figure 3.
The tensile results of the specimens are listed in Table 1.
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Figure 3. Constitutive relationship curve of 7075-T6 aluminum alloy.

Table 1. Material tensile test results.

Tensile Specimen E/MPa fo1/MPa fo2/MPa fu
T-1 74,360 309.43 322.06 423.77
T-2 76,460 364.63 375.55 462.99
T-3 77,000 472.73 483.79 575.64
T-4 78,840 359.69 372.16 460.48
T-5 79,540 549.03 557.27 607.44
T-6 74,710 432.96 443,94 509.84
T-7 73,210 463.59 473.82 541.41
T-8 76,310 360.7 371.35 457.47

T-9 73,910 350.92 362.33 451.02
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2.2. Specimen Design

In this study, nine 7075-T6 aluminum alloy rectangular tube specimens were de-
signed with the cross-section width-to-thickness ratio and member slenderness ratio as
variables. The rectangular tube specimens were produced by Shanghai Jiehao Metal Prod-
ucts Co., Ltd., Shanghai, China. The specimens had three cross-sectional dimensions:
40 mm x 40 mm x 5 mm, 40 mm x 60 mm x 3 mm, and 60 mm x 80 mm x 3 mm, with
the width-to-thickness ratio ranging from 6 to 24.67. Three slenderness ratios were set for
the specimens: 30, 45, and 60 [31]. The cross-sectional dimensions of the rectangular tube
specimens are shown in the figure below. Detailed information about the rectangular tube
specimens is summarized in Figure 4.

Y

.

Figure 4. Schematic diagram of cross-sectional dimensions (unit: mm).

In Table 2, taking the specimen number “60-40-3-45" as an example to explain the
numbering convention, “60” indicates that the height of the specimen’s cross-section is
60 mm, “40” indicates that the width of the specimen’s cross-section is 40 mm, “3” indicates
that the thickness of the cross-section is 3 mm, and “45” indicates the preset slenderness
ratio of the specimen is 45.

Table 2. Summary of specific information on rectangular tube specimens.

Measured Measured Measured
Cross-

Specimen Sectional Preset Cr{)ss- Cr9ss- Cr(?ss- Acfual Actual
Number Dimensions Slenderness Sectional Sectional Sectional Height Slenderness

I Ratio Height Width Thickness /mm Ratio

'mm

/mm /mm /mm

40-40-5-30 40x40x5 30 39.94 40.01 499 493 342
40-40-5-45 40x40x5 45 40.01 39.96 5 710 49.24
40-40-5-60 40x40x5 60 39.98 39.98 499 926 64.18
60-40-3-30 60 x40x3 30 60.01 40.03 2.99 562 35.24
60-40-3-45 60 x40x3 45 60.01 40.01 3 729 45.75
60-40-3-60 60 x40 x 3 60 60.02 40.1 2.99 981 61.42
80-60-3-30 80 x 60 x 3 30 79.94 59.95 2.96 785 32,51
80-60-3-45 80 x 60 x 3 45 80.09 59.88 297 1146 47.51
80-60-3-60 80 x 60 x 3 60 79.94 59.92 297 1509 62.53

2.3. Axial Compression Test Plan

The axial compression tests on 7075-T6 aluminum alloy rectangular tubes were con-
ducted using a YAW-500 electro-hydraulic servo long-column testing machine from Jinan
Shijin Group Co., LTD., Jinan, China, as shown in Figure 5.
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Figure 5. YAW-500 electro-hydraulic servo long column testing machine.

The top of the testing machine is equipped with a reaction frame, which includes a
spherical hinge to simulate a pinned connection at the upper end. When installing the
specimen, the lower end of the specimen is placed in a bidirectional hinge support to
achieve a pinned-pinned boundary condition. The bidirectional hinge support consists
of three steel plates with arc grooves and two cylindrical steel blocks. A 3D rendering
of the bidirectional hinge support is shown in Figure 6. During installation, the box-
shaped clamping block is first fixed to the upper part of the support using bolts, creating
a reserved slot. The lower end of the specimen is then installed into the box-shaped slot.
The installation effect of the specimen is shown in Figure 7. To ensure that the specimen is
subjected to axial compression during the test, the specimen should be aligned so that the
geometric center of its cross-section coincides with the geometric center of the supports at
both ends while maintaining the verticality of the specimen.
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Figure 7. Actual installation effect of specimen.
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During the test loading process, the axial displacement of the specimen, the strain at
specific points near the mid-span, and the applied load values were recorded. The load was
applied from the bottom to the top. To measure the axial displacement at the loading end,
four dial gauges were arranged around the loading end to capture the displacement. The
average value of the displacements measured by the four dial gauges at each load level was
taken as the representative displacement value for that load level. The actual arrangement
of the dial gauges is shown in Figure 8.

>
>
7
)

1 Control and acquisition system

Figure 8. Actual arrangement of the dial gauge.

To further investigate the failure modes of the specimens, eight strain gauges were
arranged at the mid-span, where failure was most likely to occur. The centers of the strain
gauges were positioned 5 mm from the nearest edge of the plate. The strain gauges were
labeled from 1 to 9, and their data were collected using an XL2118A static resistance strain
gauge. The arrangement of the strain gauges is shown in Figure 9. As for the load values,
they were collected through the electronic data acquisition system integrated into the
testing machine.
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Figure 9. Schematic diagram of strain gauge arrangement.

Axial compression tests were conducted on all specimens. The stress was downward
along the axis, and the subjected load had a monotonic increment: (1) At the initial stage
of the test, each load increment was set at 5 kN, with a holding period of 2-3 min to
facilitate data acquisition; (2) When the displacement increased without a significant
change in the load data, the loading mode was switched to displacement control, and slow
loading was applied until the specimen exhibited pronounced deformation and the load
data demonstrated a significant decline, at which point the loading was terminated. The
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experimental results for the ultimate load-bearing capacity are presented in Table 3, in the
table, “C” is “Complete buckling”, “L” is “Local buckling”.

Table 3. Ultimate Load-Bearing Capacity Test Results.

Specimen  40-40- 40-40- 40-40- 60-40- 60-40- 60-40- 80-60- 80-60- 80-60-
Number 5-30 5-45 5-60 3-30 3-45 3-60 3-30 3-45 3-60

Test
Results 388.1 319.6 192.3 442.6 262.2 192.9 297.9 230.1 172.5
(%3 /MPa
Form of
destruction

C C L C C C C C

2.4. Finite Element Model Validation

In this study, the finite element analysis software ABAQUS was employed to establish
a finite element (FE) model of the experimental specimens. The material properties of the
model, with parameters determined from material tensile tests, were assigned based on
the numerical values provided in Sections 2.1 and 2.2. A buckling analysis was performed
on the finite element (FE) model of the specimens. After obtaining the buckling modes at
various orders, the appropriate buckling mode was selected and introduced as an initial
imperfection into the FE model based on the failure modes observed in the experiments.

The load-bearing capacity results obtained from finite element (FE) numerical analysis
are summarized in Table 4. The mean absolute error between the experimentally measured
and FE-predicted load-bearing capacities was 6.91%. Based on the results in Table 4, it can
be concluded that the established FE model accurately calculates the axial compressive
capacity of 7075-T6 square tubes and is validated for further parametric analysis.

Table 4. Comparison of ultimate load-bearing capacity.

. Finite Element . o
Specimen Number Test Results o;/MPa Results opga/MPa Difference/%

40-40-5-30 388.1 4121 6.18
40-40-5-45 319.6 3154 -1.3
40-40-5-60 192.3 203.1 5.65
60-40-3-30 442.6 407.4 —7.93
60-40-3-45 262.2 283.3 8.05
60-40-3-60 192.9 176.1 —8.73
80-60-3-30 297.9 329.1 10.48
80-60-3-45 230.1 246.1 6.97
80-60-3-60 172.5 186.3 6.18

The comparison between the experimental failure modes of all specimens and the
finite element (FE)-predicted failure modes is illustrated in Figure 10. We marked the
specimens in the picture, and the specific dimensions of the specimens are shown in Table 2.
Figure 11 compares the experimental load-axial displacement curve of the typical specimen
80-60-3-30 with the FE-predicted load-axial displacement curve, demonstrating that the
two curves exhibit consistent trends in their overall behavior.
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Figure 10. Comparison of failure modes between all specimen tests and finite element analysis.
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Figure 11. Comparison of load axial-displacement curve.

3. Current Standard Calculation Method
3.1. Chinese Standards

According to Chinese standards [4], the calculation formula for the axial compressive
capacity of aluminum alloy components is as follows:

N = fo2leNhaz A 3)

where N is the axial compressive load-bearing capacity of the aluminum alloy component,
fo2 denotes the nominal yield strength of the aluminum alloy material, 7, is the effective
section coefficient considering the effect of local buckling, which is calculated using the
effective thickness method, 7, is the welding defect influence factor, ¢ represents the
stability factor, and A is the gross cross-sectional area of the member.

For the calculation of the stability factor ¢, Chinese codes assume that the component
has an initial overall geometric imperfection with a half-wave sinusoidal shape. Based
on the edge yield criterion, the stability load-bearing capacity is calculated using the
following formula:

AEO

14—
W - 5)

P
A

] = fo2 4)
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where ¢( represents the initial overall geometric defect amplitude, W denotes the gross
section modulus of the member, Pr indicates the Euler critical load, and P is the stable load-
bearing capacity. Introducing the equivalent defect coefficient ¢g = Aey/W, Equation (4)

can be rewritten as follows:
P

A

€0

T+ —5~| = fo2 ()
(1- 152>1

for the stability load-bearing capacity P in Equation (5), dividing by Afy, and let-

ting ¢ = P/Afp, yields the expression for the stability factor ¢, which is the

Perry-Roberson formula.

<p=)-H(stiz)—\/<1+80+RZ)2—412 6)

where A represents the relative slenderness ratio of the component, calculated according to

= [fo2
/\_VTE 7)

The equivalent imperfection factor &g in Equation (5) is calculated as follows:

the following formula:

_ ey

€= = (A —Ao) (8)

for 7075-T6 aluminum alloy materials, the analytical results yield parameters « is taken as
0.08 and Ay is taken as 0.17 [4].

3.2. Eurocode 9

According to relevant specifications in EN 1999 (Eurocode 9: Design of aluminum
structures) [6], the design buckling resistance of a compression member N}, r; should be
taken as:

Ny rd = kX Aettfo/ YM1 9

In this equation, x is the reduction factor for the relevant buckling mode that can be
calculated in Equation (10); x is a factor to allow for the weakening effects of welding; A
is the effective area allowing for local buckling for class 4 cross-sections, and A = A for
class 1, 2, and 3 cross-sections.

For axial compression in members, the value of x for the appropriate value of A should
be determined from the relevant buckling curve according to

1 <10 (10)

X:Wﬁd{_

where ¢ = 0.5(1+a(A —Ag) +A2), A = 4/ A%Cfr”, a is an imperfection factor, Ag is the limit
of the horizontal plateau, N, is the elastic critical force for the relevant buckling mode
based on the gross cross-sectional properties.

3.3. Aluminum Association AA ADM-2020

In the Aluminum Association Design Manual (AA ADM-2020) [21], the nominal
member buckling strength P, is
PTZC = FcAg (11)
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where Ag is gross cross-sectional area; F; is stress corresponding to flexural strength and
can be calculated by Equation (12):

Be—Fyy

Fcy A< De — A
Fe =3 (Bo—DcA)(085+015(&)) Bl <a < (12)
0.8?\72'[2E ,)\ Z Cc

In this equation, B, is the buckling constant intercept for member buckling; C, is the
buckling constant intersection for member buckling; D, is the buckling constant slope for
member buckling; F., is the compressive yield strength; E is the modulus of elasticity; A is
the slenderness; and A is the slenderness at the intersection of the equations for yielding
and inelastic buckling.

4. Calculation Method Based on the Continuous Strength Method

The Continuous Strength Method (CSM) is a design approach that takes into account
the material strain-hardening effects and is based on deformation. This method has two
main characteristics: (1) fundamental curve, which describes the strain levels that a sec-
tion can withstand at different local slenderness ratios, demonstrating the continuous
relationship between the section’s deformation capacity and slenderness ratio; (2) strain-
hardening material model. Su et al. [13] proposed a fundamental curve and a bilinear
constitutive model suitable for aluminum alloy rectangular tubes. This study will adopt the
fundamental curve and bilinear constitutive model from reference [13] for further research.

4.1. Base Curve

In the Continuous Strength Method, the section limit strain ecgy, is used to evaluate
the ultimate deformation capacity of the section, and the expression is as follows [13,14]:

€CSM 0.25/7\%6,€C5M/8y < min(lS,A1€u/Sy) ,)_Lp <

0.6
_ - - (13)
€y (1-0222/2,%)(1/A,%) JAp > 0.68

where ¢y, is the strain at material yield, ¢, represents the strain at the maximum stress of the
material, and A, denotes the slenderness ratio of the section. In the Continuous Strength
Method (CSM), the slenderness ratio )_tp is defined as the square root of the ratio of the
yield stress f, to the section’s elastic buckling stress o¢;:

A, =2 (14)

In the formula, the elastic buckling stress of the section ¢, can be calculated using the
approximate formula proposed by Seif [32] or by employing the finite strip software CUFSM
developed by Johns Hopkins University [33].

4.2. Bilinear Constitutive Model

After determining the ultimate strain ecgp at the section from the fundamental curve,
it is substituted into the material’s constitutive model to obtain the section’s strength
fcsm under the Continuous Strength Method. Since the stress-strain relationship of alu-
minum alloy materials is nonlinear, making the calculations relatively complex, the con-
stitutive model is simplified to a linear strain-hardening elastoplastic model with the
following expression:
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Eecsm &< gy

(15)
fo2 +Eg(e—gy) ey <e< Adey

fesm =
where E is the elastic modulus of the aluminum alloy, and the coefficient A; is determined
by the material’s strain-hardening capacity, used to control the upper limit of the material’s
strain-hardening degree. For aluminum alloy materials, A, = 0.5. Egj, represents the the
strain-hardening modulus of the material, reflecting strain-hardening ability of the material.
For different materials, it can be calculated by the following formula:

 fu—fo2
Eg = pr—— (16)

where f, is the ultimate strength of the material.

4.3. Stability Coefficient

According to the calculation theory of the Continuous Strength Method, since the
section strength fcgps of the aluminum alloy component already accounts for the effect
of local buckling, it is necessary to determine the stability factor ¢cspr of the component
from the perspective of the Continuous Strength Method when calculating the load-bearing
capacity of the aluminum alloy rectangular tube component. For the calculation of pcgu,
the Perry-Roberson formula is still used:

— — 2 —
Pcsm = (1+ecsm + Agsy) — \/(1 +ecsm +Aggy)” — 45y (17)

)‘%SM
where Acsy is the relative slenderness ratio of the component according to the Continuous
Strength Method, referred to as the CSM relative slenderness ratio; ecgy represents the
equivalent imperfection factor of the component according to the CSM, referred to as the
CSM equivalent imperfection factor.

By replacing fcsy and Acsy with fo2 and A in Equation (7), the CSM relative slender-

ness ratio is obtained as follows:
)_\CSM — f CSM (18)
\/ OE

Let ecsps represent the initial overall geometric imperfection amplitude of the compo-
nent under the Continuous Strength Method, referred to as the CSM initial imperfection
amplitude. By substituting ecsy, fosm, and ecspr for €, fo2, and ep in Equations (4) and (5),
the following results are obtained:

P A

a 1"'#5% = fcsm (19)
i W(*PTE)_

P

1 1+LMP = fcsm (20)
i W(l—PTE)_

Assume that the CSM equivalent imperfection factor can be calculated in the form
of Equation (8), but there is an undetermined parameter acsy;. By replacing acsy, Acsm,
and ecsp with a, A and e in Equation (8), the calculation formula for the CSM equivalent
imperfection factor is obtained as follows:
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Ae, - _
EcsM = VCVSM = acsm(Acsm — Ao) (21)

In the equation, Acsy can be calculated using Equation (18), while Ag is a known parameter,
which for aluminum alloys is taken as 0.17 [4]. To calculate the undetermined parameter
acsy, Equations (8) and (21) are solved simultaneously, yielding the following formula:

wesy = a SM S 20 (22)

let B = ecsp/eo, then Equation (22) is

A=A
Xcsm “/3 )_\CSM — /-\0 (23)
In Equation (23), the parameter « is taken as 0.08. All parameters except for § are de-
termined. Therefore, once the parameter § is determined, acsps can be calculated using
Equation (23), then ecsp (the CSM equivalent imperfection factor) can be calculated using
Equation (21), and finally, the stability factor ¢csp under the Continuous Strength Method
can be calculated using Equation (17).

4.4. Calculation of Parameter

The parameter § is the ratio of the CSM initial imperfection amplitude ecgys to the
initial overall geometric imperfection amplitude e¢g. This means that when 8 > 1, from
the perspective of the Continuous Strength Method, the component is allowed to have
an initial overall geometric imperfection amplitude larger than ep; conversely, if § < 1,
it indicates that the initial overall geometric imperfection amplitude of the component
should be less than or equal to ¢g. When > 1, ecspyr > eg, and by substituting ecsy into
Equation (16) to calculate fcgyy, it results in fegpyr > fo2. This indicates that, from the
perspective of the CSM, the section stress of the component should be greater than fp,. On
the other hand, if § < 1, the section stress should be less than or equal to fy,. Therefore,
the parameter B can be referred to as the strength development index in the Continuous
Strength Method. Since B is an indicator related to strength development capacity, its
value, under the condition that the material’s ultimate strength f, is not exceeded, should
be related to both the overall and local stability of the component. The overall and local
stability of the component is, in turn, associated with the “thickness” of the component and
its section. In the Continuous Strength Method, the overall “thickness” of the component
and the “thickness” of the section can be measured by the CSM relative slenderness ratio
Acsy and the section slenderness ratio 7\;,, respectively. Therefore, it is assumed that the
parameter f3 is a function of Acgy and Ay, ie.,

B = f(Acsm Ap) (24)

To investigate the relationship between  and Acsys, /_\p, based on the validated finite
element (FE) model in Section 2.4, a parametric expansion was conducted by developing
215 FE models for analysis. These models include 15 different section specifications and
15 different relative slenderness ratios, with the section types covering the four categories
defined by the European standards [6]. Specific details can be found in Table 5. To verify the
accuracy of the finite element models, 9 section types were selected for axial compression
capacity tests, and the test results are presented in Table 4.

The ultimate load-bearing capacity results of the 215 finite element models were
substituted into Equations (4) and (19), respectively, to calculate the corresponding values
of e, and ecgys for each finite element model and, subsequently, the corresponding g for
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each model. Using Acsy as the x-axis, /_\p as the y-axis, and f as the z-axis, the three-
dimensional scatter plots of the strength development index f for the finite element models
were plotted for the two cases: 7\,, < 0.68 and /_\p > 0.68. These plots are shown in
Figures 12 and 13.

Table 5. Specific Information of the Finite Element Model.

Section Slimness Relative
Section Category Section Dimensions Ratio 1 Slenderness Ratio
p of the Member A
80 x 80 x 10 0.28
Type 1 70 x 70 x 8 0.31
60 x 60 x 6 0.36
60 x 40 x 5 0.39
Type 2 50 x 40 x 4 0.42
60 x 60 x 5 0.43
50 x 50 x 4 0.45 0.6,08,1.0,
80 x 60 x 5 0.54 1.2,14,1.6,
1.8,2.0,2.2
T 3 X '’ ’ 7
ype 50 x 40 x 3 0.57 242628,
50 x 50 x 3 0.61 3.0,3.2,34
80 x 40 x 4 0.65
80 x 60 x 4 0.68
Type 100 x 100 x 5 0.74
76 x 44 x 3 0.84
80 x 60 x 3 0.92
120 x 60 x 4 0.99

From Figures 12 and 13, it can be seen that in the three-dimensional space defined by
the parameters ACsM, 7\p, and §, all the three-dimensional scatter points are distributed
in a certain pattern. This indicates that there is a correlation between the parameter j
and the parameters Acsy and /_\p, which validates the reasonableness of the hypothesis in
Equation (20). Additionally, from Figures 12 and 13, it can be observed that the distribution
pattern of the scatter points is different in the two cases. Therefore, based on the different
scatter point distributions, the nonlinear fitting function in the data analysis software Origin
should be used to determine the quantitative relationship between  and Acgp, Ap.

@ Finite element result

Figure 12. Scatter distribution of finite element results when X,, < 0.68.
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0.
< @ Finite element result
Figure 13. scatter distribution of finite element results when A, > 0.68.
When A, < 0.68, the relationship between g and Ap, Acgy is as follows:
B=098—214Acsm o +0.024, 1% 1+ 0.79Acg T A1 (25)

The fitting result of Equation (25) is shown in Figure 14. The correlation coefficient R
for the fit using Equation (25) is 0.989, indicating a good fitting quality. Additionally,
from Equation (25) and Figure 14, it can be seen that as A, approaches 0, § tends to
infinity. This result seems to suggest that, from the perspective of the Continuous Strength
Method, the strength of the component can grow infinitely as A, approaches 0. However,
in practical engineering, the strength of a component obviously cannot increase indefinitely.
Furthermore, the load-bearing capacity calculation method for components based on the
CSM proposed in this paper is intended to more accurately predict the axial load-bearing
capacity of components. Therefore, 8 cannot tend to infinity and should have an upper
limit. In summary, Equation (25) is only applicable for 0.28 < A, < 0.68. For the case where
0 < A, < 0.28, further research is needed to determine the upper limit of B.

° @ Finite element result
Fitted surface

Figure 14. schematic of fitting results when 7\,, < 0.68.

When A, > 0.68, the relationship between g and Ap, Acsy is as follows:
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_ B Acsm — 0.22 B B —)_tp + 0.96
B =—275+29exp [ exp (0.37 ) ] 18.59 exp [ exp <0.39

—A —0. —Ap+0.96
+20exp [— exp</\cs'é\g7022) —exp <%:§9>] (26)

the fitting result of Equation (26) is shown in Figure 15. The fit using Equation (25) has a
correlation coefficient R? of 0.989, indicating that the fit is also of good quality.

@ Finite element result
Fitted surface

7 Te

Figure 15. Schematic of fitting results when /_\p > (0.68.

4.5. Computational Workflow

The process for calculating the axial load-bearing capacity of a 7075-T6 aluminum alloy
rectangular tube based on the Continuous Strength Method is as follows and Figure 16 is
the calculation flowchart

1.  Refer to the calculation formula of Continuous Strength Method in reference [13],
calculating the section slenderness ratio of structural members A, and the component
section strength fcsar;

2. Substitute the calculated fcsys into Equation (18) to compute the component’s CSM
relative slenderness ratio Acs;

3.  Calculate the component’s relative slenderness ratio A using Equation (7);

4. Depending on whether A, < 0.68 or A, > 0.68, use either Equation (26) or Equation (27)
to compute the strength development index . It should be noted that Equation (25)
also requires A, > 0.28;

5. Using the results of Acspy, A and B, calculate the CSM stability factor ¢csy using
Equations (17), (21), and (23);

6.  Substitute pcgps into the following equation to compute the ultimate bearing capacity
result opye.

Opre = ®csmfcsm (27)
The current calculation method is presented based on the analysis of ultimate load-

bearing capacity data for 7075-T6 aluminum alloy rectangular tube components with
section slenderness ratios A, ranging from 0.28 to 0.99.
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1.Refer to reference (Su,M.; Young, B.;
Gardner, L., 2016) calculate Ap and /¢y

2.Substitute /gy into Equation y [fesm
(18) to compute Acgy- e T
3.Refer to Equation (7) to
calculate 4.

4.Compute S by applying distinct equations contingent on
the magnitude of Ap that calculated 1n step 1.

i, /2
oE

1028 </p<068 T ifip> 068
e Acsm — 0.22 —X, +0.96
- p=—275+29exp {7 cxp( —1859exp [~ exp
B = 098 — 2148 csn 5 + 0.027, 1% 1 0792 cgp P19 R 07 - 0
- ’ 4 20exp | —exp( hesm =022 (—Ay +096
S PP 0.37 P\ 039
.

~ —

\\\ - Pcsm = 35-1% {(1 ecsn + A2sn) =V (1 +ecsm+Agy) ’47\%‘5&1]
5.Substitute Ay, 4 and §, calculated through Accom - -
the aforementioned four steps, into Equations ecsm =~ = acsm(Aesw — Ao)
(17), (21), and (23) to compute Pcgy- —
—— csm = &P At
Acsm — Ao

6. Based on 0,,,;~¢cgmfosws  the
predicted stress result can be obtained.

Figure 16. Calculation flowchart [13].

5. Comparison of Calculation Methods

Reference [34] revised the ¢ — A curve of Chinese standards based on the axial load-
bearing capacity test results of 9 7075-T6 aluminum alloy rectangular tube components.
The revised ¢ — A curve can be used for the load-bearing capacity calculation of 7075-T6
aluminum alloy rectangular tubes. The axial compression ultimate load-bearing capacities
of the nine rectangular tube components were theoretically calculated using both the
Continuous Strength Method and the Chinese standard calculation method. The theoretical
values based on the Continuous Strength Method are denoted as 0yyec, while those based on
the revised Chinese standard method are denoted as 0yyer. The predictions by Eurocode 9 [6]
are denoted as 0pee, and by AA-ADM 2020 [21] as 0preq- The ratio of these theoretical values
to the measured load-bearing capacity results is used as an indicator of the deviation. The
results are shown in Table 6.

Table 6. Comparison of Experimental Results with Computational Results from Two Methods.

Number of ot

Oprec Oprec Oprer Oprer Opree Opree Oprea Oprea

the Specimen  /MPa /MPa /oy /MPa /oy /MPa /oy /MPa /oy
40-40-5-30 388.1 282.71 0.73 372.2 0.96 239.75 0.62 252.45 0.65
40-40-5-45 319.6  253.60 0.79 267.11 0.84 194.29 0.61 192.87 0.60
40-40-5-60 1923  169.77 0.88 169.89 0.88 135.06 0.70 117.45 0.61
60-40-3-30 4426  349.08 0.79 195.30 0.44 286.02 0.65 227.06 0.51
60-40-3-45 262.2  303.00 1.16 156.61 0.6 311.56 1.19 168.23 0.64
60-40-3-60 1929  183.32 0.95 96.99 0.5 194.20 1.01 94.63 0.49
80-60-3-30 2979  284.65 0.96 246.18 0.83 326.89 1.10 384.05 1.29
80-60-3-45 230.1  266.98 1.16 182.79 0.79 202.36 0.88 220.52 0.96
80-60-3-60 172.5  180.67 1.05 114.58 0.66 135.26 0.78 134.90 0.78
Average — —_— 0.94 —_— 0.72 — 0.84 —_— 0.73
Variance —_— —_— 0.02 —_— 0.03 —_— 0.04 —_— 0.06

From Table 6, it can be seen that the average value of 0. /0t is higher than that of
others and is closer to 1. The differences in variance among the four results are very small,
indicating that the degree of deviation and dispersion are similar for the four methods.
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However, the results based on the Continuous Strength Method are closer to the actual
measured values. Therefore, the calculation method proposed in this paper based on the
Continuous Strength Method is considered to be reasonably valid.

However, for components 60-40-3-45, 80-60-3-45, and 80-60-3-60, this method overesti-
mates the load-bearing capacity. The reason is that the cross-sections of these components
belong to type four of sections defined in Eurocode 9 [6], where the strength is controlled
by local buckling of the plates. The Continuous Strength Method may overestimate the
strength of these sections, leading to an overestimated load-bearing capacity. After exclud-
ing these three specimens, the average values of 0prec/0t , Oprer /0t , Opree/ 0t and Opreq / 0t
are 0.85, 0.74, 0.84, and 0.73, respectively, with variances of 0.0089, 0.047, 0.039, and 0.075.
It can be seen that the results based on the Continuous Strength Method are closer to the
experimental results, with smaller dispersion.

6. Conclusions

Based on the axial load-bearing capacity test results of 9 7075-T6 aluminum alloy
rectangular tube components and the calculation results of 215 finite element models,
and using the basic curves and constitutive model provided by Su, this paper proposes a
method for calculating the stability factor of aluminum alloy rectangular tube components
based on the Continuous Strength Method (CSM). The specific conclusions are as follows:

(1) In the component load-bearing capacity calculation method based on the Con-
tinuous Strength Method, the parameter 8 can be calculated using Equations (25) or (26)
based on the section slenderness ratio 7\p and the CSM relative slenderness ratio Acgyy.
However, this requires A, > 0.28. For cases where 0 < A}, < 0.28; further research is needed
to determine the upper limit of S.

(2) The component load-bearing capacity calculation method based on the Continuous
Strength Method proposed in this paper can more accurately predict the axial load-bearing
capacity of 7075-T6 aluminum alloy rectangular tube components compared with the
modified Chinese standard method and the calculation methods in Eurocode 9 [6] and
AA ADM-2020 [21]. This provides a reference for the further promotion and application
of the Continuous Strength Method. However, for components with section types falling
under the fourth category of sections, the proposed method may overestimate the load-
bearing capacity, further investigation is warranted to comprehensively address this issue.
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