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Abstract

Traditional vernacular architecture is an important component of historical and cultural
heritage, and the accurate identification of its construction period is of great significance
for architectural heritage conservation, historical research, and urban–rural planning. How-
ever, traditional methods for period identification are labor-intensive, potentially damaging
to buildings, and lack sufficient accuracy. To address these issues, this study proposes
a deep learning-based method for classifying the construction periods of traditional ver-
nacular architecture. A dataset of traditional vernacular architecture images from the
Longzhong region of Gansu Province was constructed, covering four periods: before
1911, 1912–1949, 1950–1980, and from 1981 to the present, with a total of 1181 images.
Through comparative analysis of three mainstream models—ResNet50, EfficientNet-b4,
and Vision Transformer—we found that EfficientNet demonstrated optimal performance
in the classification task, achieving Accuracy, Precision, Recall, and F1-scores of 85.1%,
81.6%, 81.0%, and 81.1%, respectively. These metrics surpassed ResNet50 by 1.4%, 1.3%,
0.5%, and 1.2%, and outperformed Vision Transformer by 8.1%, 9.1%, 9.5%, and 9.1%,
respectively. To further improve feature extraction and classification accuracy, we propose
the “local–global feature joint learning network architecture” (DualBranchEfficientNet).
This dual-branch design, comprising a global feature branch and a local feature branch,
effectively integrates global structure with local details and significantly enhances classifi-
cation performance. The proposed architecture achieved Accuracy, Precision, Recall, and
F1-scores of 89.6%, 87.7%, 86.0%, and 86.7%, respectively, with DualBranchEfficientNet
exhibiting a 2.0% higher Accuracy than DualBranchResNet. To address sample imbal-
ance, a hybrid triplet loss function (Focal Loss + Triplet Loss) was introduced, and its
effectiveness in identifying minority class samples was validated through ablation experi-
ments. Experimental results show that the DualBranchEfficientNet model with the hybrid
triplet loss outperforms traditional models across all evaluation metrics, particularly in
the data-scarce 1950–1980 period, where Recall increased by 7.3% and F1-score by 4.1%.
Finally, interpretability analysis via Grad-CAM heat maps demonstrates that the Dual-
BranchEfficientNet model incorporating hybrid triplet loss accurately pinpoints the key
discriminative regions of traditional dwellings across different eras, and its focus closely
aligns with those identified by conventional methods. This study provides an efficient,
accurate, and scalable deep learning solution for the period identification of traditional
vernacular architecture.
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1. Introduction
As humanity’s fundamental living carrier, vernacular dwellings embody rich his-

torical and cultural information; they are material witnesses that reflect social change,
technological evolution, and shifting aesthetics [1,2]. Over millennia, traditional dwellings
have developed an integrated system that combines technical norms with artistic creation.
Their construction techniques, spatial forms, and decorative features crystallize the social
structures, cultural concepts, and ecological wisdom of specific historical periods [3]. Such
“living heritage” possesses not only the material value of the buildings themselves, but
also serves as a spiritual anchor for regional cultural identity. Yet, amid rapid urbanization,
the spread of modern building technologies has marginalized traditional crafting skills,
triggering severe problems such as architectural homogenization and the rupture of craft
transmission [4–6]. In particular, the dating of traditional dwellings—the foundational step
in heritage protection and research—directly affects the interpretation of historical informa-
tion, the selection of restoration techniques, and the formulation of planning decisions.

Although determining the construction period of traditional vernacular dwellings
is of multiple value—encompassing historical research, craft transmission, and planning
management—it remains constrained by severe methodological limitations.

Historical research and cultural heritage: accurate dating helps reconstruct the social
structure, household forms, and lifestyles of specific periods. Architectural heritage pro-
tection and technology: In cultural heritage conservation, the period label can be matched
to contemporary techniques and materials. For example, the label can call up a typical
material library of the corresponding period (such as late-Qing blue bricks or Republican
cement mosaics) to provide a basis for restoration material selection and prevent chrono-
logical dissonance. Urban and rural planning: Understanding the architectural features of
different periods avoids conflicts between new construction and the historical environment.
For example, overlaying the period layer onto the national spatial-planning “one map”
automatically generates a three-tier zoning of “historical-character core protection zone—
coordination zone—modern zone”; governments can then prioritize the repair of high-risk,
low-scarcity precincts and postpone intervention in high-density, well-preserved areas, thus
reducing wholesale demolition and reconstruction. The list of scarce-era buildings output
by the model can also be directly incorporated into the traditional dwelling restoration
subsidy catalogue, increasing subsidy amounts.

However, existing identification methods exhibit significant shortcomings: documen-
tary methods rely on scarce written records; typological analyses are constrained by the
subjectivity of expert experience; and techniques such as 14C dating are costly and damage
samples [7,8]. These limitations severely hinder large-scale vernacular-dwelling surveys
and conservation efforts. In recent years, although deep learning has demonstrated strong
potential in architectural-feature recognition [9,10], the international community has begun
to explore its application in architectural heritage for tasks such as component extrac-
tion [11], defect diagnosis [12], style identification [13] and period dating [14], thus offering
new research perspectives for dating traditional dwellings. Nevertheless, three deficiencies
remain in studies on Chinese vernacular dwellings: (1) the absence of multi-scale analytical
methods that integrate global morphology with local detail features; (2) insufficient consid-
eration of the impact of imbalanced temporal-class distributions on model performance;
and (3) the difficulty of directly applying existing international findings [11–14] to the char-
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acteristics of China’s timber-frame vernacular system. Therefore, developing an accurate
and practical intelligent dating method for vernacular dwellings is both a technological
imperative in the digital humanities era and an urgent need to solve key issues such as
“chronological dissonance” in conservation practice. Thus, researching a deep learning
model for classifying and visually analyzing traditional vernacular dwellings has an im-
portant value for historical research and cultural transmission, cultural-relic protection and
restoration, urban and rural planning and heritage management, architectural science and
technological history, and cultural tourism and public education.

This study presents a novel deep learning-based model for chronological classification
of traditional vernacular architecture. The key contributions are as follows:

• Through the survey of traditional residential buildings in the Longzhong region of
Gansu Province, we classified and summarized the construction era of each dwelling,
establishing an image dataset of traditional residential buildings from different eras in
the Longzhong region of Gansu Province;

• Through comparison of Accuracy, Precision, Recall, and F1-score metrics, we selected
models more suitable for our classification task from the three models—EfficientNet,
ResNet50, and Vision Transformer—namely, the EfficientNet and ResNet50 models;

• To verify the advantage of our proposed “Local-Global Feature Joint Learning” model
in classification tasks, we evaluated the enhanced DualBranchEfficientNet and Dual-
BranchResNet50 models;

• To solve the sample imbalance problem, we introduced the mixed triplet loss model
based on the DualBranchEfficientNet and DualBranchResNet50 models and conducted
comparative ablation experiments.

• To verify the performance of the DualBranchEfficientNet model incorporating mixed
triplet loss, we conducted per-era evaluation of various metrics for it and simultane-
ously conducted a comparison of its confusion matrix.

• Using Grad-CAM to generate heat maps, we analyzed the features extracted by the
DualBranchEfficientNet model with hybrid triplet loss from traditional dwellings of
different eras. The results confirm that the model’s focus aligns closely with that of
traditional methods, further validating its credibility.

The structure for the remaining sections of the paper is outlined as follows: Section 2
reviews prior work on traditional dating methodologies, machine learning approaches for
architectural age prediction, multi-feature fusion techniques, and strategies for addressing
class imbalance. Section 3 details the construction of our dataset and presents the proposed
classification model—DualBranchEfficientNet integrated with a hybrid triplet loss function.
Section 4 describes the experimental setup, reports quantitative results, and provides
a comparative analysis. Finally, the paper concludes by presenting the findings and
summarizing the key insights obtained.

2. Review of Literature
We established the following standards for selecting previous research. For research

on architectural chronological classification, we selected representative studies employing
traditional methodologies. Regarding machine learning-based approaches, we focused
on recent advances (within the past five years) in predictive and classification models
for architectural dating. For multi-scale feature fusion research, we prioritized studies
from the last five years that utilized multi-scale techniques for feature recognition and
classification. Concerning class imbalance, we reviewed recent literature (within the past
three years) proposing algorithmic improvements to convolutional neural networks to
mitigate this issue.
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2.1. Research on Architectural Chronological Classification Using Traditional Methods
2.1.1. Documentary Evidence Dating Method

Documentary evidence constitutes a robust approach for dating historic architecture,
encompassing inscriptions on buildings, epigraphic materials, and textual records [12]. For
instance, the Nanchan Temple Hall in Wutai County, Shanxi Province, was verified as a
Tang Dynasty reconstruction based on an inscription on its western beam [15]. Similarly,
Toshōdai-ji Temple in Japan was confirmed to have been founded in 759 CE through records
in the Shoku Nihongi [16].

2.1.2. Architectural Typology Dating Method

Historic architecture in China exhibits distinct stylistic characteristics across dynas-
ties [17], primarily manifested in overall stylistic traits, bracket-set (dou-gong) configura-
tions, beam-frame structures, column-base designs, decorative patterns, roof slopes and
ridge ornaments, column proportions, and stairway forms. Feng Jiren conducted compar-
ative analyses of Tang, Five Dynasties, Song, Yuan, Ming, and Qing structures through
bracket-set and beam-frame typologies, establishing foundational reference frameworks
for subsequent chronological studies [12]. Bai Lixia et al. [18] identified the Yunnlin Temple
Mahavira Hall as Ming dynasty architecture based on its plan layout, bracket-sets, compo-
nent features, beam-frame structure, and roof slope. Fen et al. [19] investigated Ming-Qing
Datong vernacular dwellings using morphological characteristics including structural
forms, roofing materials, and fenestration. Gu et al. [20] applied Chinese wooden-structural
typological dating methods to analyze bracket-set features along the Gansu Silk Road,
proposing five chronological phases: Late Tang-Northern Song, Northern-Southern Song,
Ming Hongwu-Mid Jiajing, Late Jiajing-Kangxi, and Qianlong-Xuantong. Qiu et al. [21]
classified Fuzhou vernacular dwellings into mid/late Ming, early/mid/late Qing, and Re-
publican periods through systematic analysis of plinths, beam-frames, roof structures, and
gable walls. Xu [22] proposed the “principle of synchronicity of original structural forms
within a single building,” using the intersection of date ranges from multiple components
to lock in the construction date. Wang [23], by cross-verifying bracket-set typochronology
with documentary evidence, has essentially clarified the historical imprints left on the
dougong of the Ming Changling Shenggong Shengde Stele Pavilion during the Xuande
reign of the Ming dynasty, the mid-to-late Ming period, the Qianlong reign of the Qing
dynasty, and the Republic of China period.

2.1.3. Radiocarbon (14C) Dating Technique

Radiocarbon dating is a chronometric method that determines the age of organic ma-
terials by measuring the residual 14C content, which decays exponentially with a half-life
of 5730 years [24]. In wooden architectural components, the 14C concentration decreases
predictably after tree felling; quantifying the remaining 14C enables estimation of the
timber’s cutting date. When architectural typology or documentary evidence yields am-
biguous or conflicting chronological data—such as the case of Jiwang Temple Hall [25],
initially classified as Jin dynasty via typology but later dated to Yuan through inscriptions—
complementary techniques become essential. To resolve this discrepancy, Xu Yitao et al. [24]
collected 21 samples (including brackets, arches, beams, purlins, and columns) and applied
radiocarbon dating, conclusively determining the hall’s construction to the early Northern
Song period, no later than 1068 CE.

2.1.4. Dendrochronological Dating Method

Tree rings represent annual growth increments; within the same climatic zone, ring-
width patterns of conspecific trees exhibit high synchronicity during any given period,
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enabling the construction of a regional master chronology from appropriately selected
samples [11]. Developed in the early 20th century as a tool for archaeological dating
and paleoclimate reconstruction [26], dendrochronology captures high-resolution environ-
mental proxies that can be quantified through multiple metrics to achieve annual-level
dating precision [27]. Given that most historic Chinese architecture is timber-framed,
dendrochronology offers a robust solution: by extracting wooden elements from ancient
structures and cross-dating them against established reference sequences, the felling dates
of construction timbers can be accurately determined. For instance, Xu Yitao [28] integrated
dendrochronological calibration data to constrain the construction period of Huilong Tem-
ple Hall—establishing a terminus post quem in the early Northern Song, a terminus ante
quem no later than the Jin dynasty, and identifying the most probable interval as late
Northern Song to early Jin (early-to-mid 12th century CE).

2.2. Machine Learning Approaches for Architectural Chronological Classification

In recent years, propelled by rapid advances in deep learning-based image recognition
and classification, researchers have increasingly turned to neural-network architectures to
tackle the problem of building-age estimation.

Zeppelzauer et al. [29] obtained images of buildings from the 1960s to 2010s in Austria
through real estate appraisal reports and online images, and classified them into six periods.
They used the AlexNet [30] model to classify these images. On the test set excluding
renovated buildings, the accuracy was 61.35%. However, when renovated buildings were
included, the accuracy dropped to only 34.94%. Sun et al. [31] employed a DenseNet121 [32]
architecture to partition the Basisregistraties Adressen Gebouwen (BAG) dataset into nine
distinct periods: pre-1652, 1653–1705, 1706–1764, 1765–1845, 1846–1910, 1911–1943, 1944–1977,
1978–1994, and 1995–2020, achieving a classification accuracy of 81%. However, when
the same model—trained exclusively on Amsterdam buildings—was applied to Stock-
holm’s architectural stock, its accuracy sharply declined to 24%, demonstrating significant
domain-shift limitations. Lee et al. [31] analyzed Paris street-view imagery to classify
buildings into ten chronological periods, employing mid-level visual feature representation
and discriminative element discovery techniques. Their analysis revealed that numerous
identified patches effectively captured period-specific architectural elements characteris-
tic of their respective eras. Whereas prior studies approached architectural dating as a
classification task, Li et al. [33] investigated the problem from a regression perspective,
estimating building ages through continuous value prediction. Li et al. integrated a convo-
lutional neural network (CNN) with support vector regression (SVR) to predict building
ages across Victoria, Australia, achieving a mean absolute error (MAE) of 11 years and a
root-mean-square error (RMSE) of 12 years. Some scholars have combined TLS with UAV
photogrammetry to produce detailed 3D models of the historic Jeddah district; while the
method yields high accuracy, its high cost limits widespread adoption.

The above literature shows that AI applications in heritage architecture are currently
concentrated in Europe and Australia. The intelligent dating of China’s rural timber-and-
rammed-earth dwellings remains a blank area; moreover, existing studies mainly address
stone-built structures. Direct application to China’s timber-and-earthen dwellings could
therefore yield significant errors.

2.3. Multi-Scale Feature Fusion and Class-Imbalance Handling

Although machine learning-based architectural dating has made progress, current
accuracies remain sub-optimal, mainly because (1) temporal differences manifest at both
macro-structural and micro-decorative scales, and (2) the dataset is highly imbalanced
across time periods. Recent work addresses these issues through a joint “multi-scale
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feature fusion + class-imbalance mitigation” strategy to enhance fine-grained temporal
discrimination.

(a) Multi-scale feature fusion
Zhao et al. [34] introduced the Multi-Scale Subtraction Network (M2SNet), which

employs a differential module to capture inter-layer discrepancies, boosting segmentation
accuracy for lesions and fine structures; it outperforms prior methods on several medical
datasets. Zhao et al. [17] proposed CDDFuse, leveraging Restormer to extract shallow
cross-modal features and a dual-branch Transformer-CNN architecture to process global–
local information simultaneously. Combined with invertible neural networks (INNs) and
correlation-driven losses, CDDFuse achieves a 4.2% mIoU gain in semantic segmentation
and a 3.1% AP gain in object detection on infrared-visible fusion tasks. Li et al. [35]
constructed a hierarchical feature-fusion framework that first transforms and fuses multi-
scale representations from a feature pyramid, then selects the three most discriminative
region maps and merges them with global image features to determine subordinate classes.
Evaluated on CUB-200-2011 and Stanford Dogs, the method attains 85.7% and 83.5% fine-
grained classification accuracy, respectively. Qin et al. [36] presented MSViT, whose encoder
incorporates a Multi-Scale Feed-Forward Network (MSFFN) to jointly capture spatial and
channel-wise multi-scale features, complemented by a Cross-Scale Feature Fusion Decoder
(CFFD). On ImageNet, MSViT achieves 87.58% Top-1 accuracy, outperforming EdgeViT-XXS
by 2.27%, validating the effectiveness of multi-scale fusion in general image classification.

(b) Class-imbalance handling
Class imbalance denotes large disparities in sample sizes among classes, causing

models to bias toward the majority and neglect minorities. Solutions fall into data-level
and algorithmic-level approaches. Data-level methods include oversampling [37], under-
sampling [38], and data augmentation [39]. Zhang et al. [40] introduced Random Walk
Oversampling (RWO), generating synthetic samples that preserve the minority class mean
and variance. Barnan et al. [41] proposed probabilistic RACOG and wRACOG. Lin et al. [42]
apply K-means clustering to the majority class and select a subset whose size equals the mi-
nority count for undersampling. Zhang et al. [39] used rotation, translation, and mirroring
to augment 1620 apple images, effectively preventing overfitting.

Algorithmic solutions center on loss functions or generative models. Li et al. [43]
designed a cost-sensitive CNN for vehicle localization and classification in high-resolution
imagery. Lin et al. [44] introduced focal loss, whose modulation factor focuses learning
on hard minority samples, significantly improving accuracy. Dong et al. [45] appended a
class-rebalancing regularizer to cross-entropy, incrementally enlarging the margin of mi-
nority classes. Information augmentation leverages transfer learning [46,47] or GAN/VAE-
generated minority samples [48] to further alleviate imbalance.

Together, multi-scale feature fusion strengthens the characterization of cross-era macro-
and micro-differences, while class-imbalance handling prevents minority periods from
being overwhelmed, jointly providing a robust foundation for high-precision architec-
tural dating.

Table 1 summarizes the aforementioned prior work on deep-learning performance
enhancement.
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Table 1. Existing work on performance enhancement for deep learning.

Class References Method Core Mechanism Data Results/Goal

Multi-scale
feature fusion

Zhao et al.
[34]

Multi-Scale
Subtraction

Network
(M2SNet)

Extract cross-layer
difference features to

enhance lesion details.

Medical
imaging
datasets

Superior to the
existing methods

Zhao et al.
[17]

Restormer +
Transformer-CNN

dual-branch +
INN

Cross-modal
global–local fusion,

correlation driving loss

Infrared-
visible light

image

mIoU has increased
by 4.2%, and the
detection AP has
increased by 3.1%

Li et al.
[35]

Feature pyramid +
region selection

Multi-scale
transformation + top-3
region maps + global

features

CUB-200-
2011/Stanford

Dogs

The accuracy rate is
85.7%/83.5%

Qin et al.
[36] MSFFN + CFFD

Lightweight cross-scale
interaction and

integration
ImageNet

Top-1 was 87.58%,
which was 2.27%

higher than
EdgeViT-XXS

Class-
imbalance
handling

Zhang et al.
[40]

RWO (Random
Walk

Oversampling)

Random walk that
preserves the mean and

variance to generate
minority-class samples

General
unbalanced

data

Classification
accuracy improves

by 2.4%

Barnan
et al. [41]

RACOG and
wRACOG

Sample synthesis based
on probability
distribution

General
unbalanced

data

Classification
accuracy improves

by 2.4%

Lin et al.
[42]

K-means
clustering

undersampling

After clustering the
majority of classes,
subsets are drawn
according to the

number of minority
classes

General
unbalanced

data

Reduce most types
of noise

Zhang et al.
[39]

Random rotation +
translation +

mirroring

Geometric
transformation expands

the sample

1620 pictures
of apple
diseases

Prevent overfitting

Li et al.
[43]

Cost-sensitive
CNN

Weight/loss
reweighting

High-
resolution

vehicle
images

The mAP has
increased by 3%

Lin et al.
[44] Focal Loss

Focus on difficult
samples and reduce the

weight of easily
distinguishable samples

General
unbalanced

data

Improve the
accuracy of the

model classification
task

Dong et al.
[45]

Class-rebalancing
regularizer

Add a category
correction term to the

cross-entropy

General
unbalanced

data

Improve the
discriminability of
a small number of

samples

[46–48]
Transfer +

GAN/VAE
generation

Migrate or synthesize
minority class samples

General
unbalanced

data

Increase the
number of

small-class samples
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3. Materials and Methods
3.1. Data Collection
3.1.1. Introduction of Object Area

Gansu Province, situated in the upper reaches of the Yellow River, borders Xinjiang,
Shaanxi, Sichuan, Qinghai, Ningxia, Inner Mongolia, and Mongolia. It occupies a narrow
transitional zone at the convergence of the Inner Mongolian Plateau, the Loess Plateau, and
the Qinghai-Tibet Plateau [49]. Topography slopes from southwest to northeast, presenting
a complex mosaic of mountains, plateaus, plains, valleys, deserts, and gobi. The region falls
within the temperate monsoon climatic zone, exhibiting systematic northward transitions
through tropical monsoon, temperate monsoon, temperate continental, and plateau alpine
subtypes [50]. Annual precipitation ranges from 36 to 735 mm, giving rise to five distinct
physiographic subregions: the Hexi Corridor, the Longzhong Loess Plateau, the Longdong
Loess Plateau, the Gannan Plateau, and the Longnan Mountains [51].

Gansu’s diverse economies, cultures, topography, ethnicities, and religions have fos-
tered vernacular architecture marked by pronounced ethnic and regional identities [49,52].
Traditional dwellings are predominantly earthen, encompassing cave dwellings (yaodong),
rammed-earth courtyard compounds, plank houses, and earthen fortresses (tubaozi) [53–55].
Most extant structures date from the Qing dynasty, the Republican era, or the early People’s
Republic (up to 1980). However, these heritage assets face severe threats from natural
disasters, socio-political upheavals, urban expansion, and technological modernization,
rendering their preservation an urgent imperative.

As shown in Figure 1, the Central Gansu Loess Plateau region is situated in central
Gansu Province, bordering all four other geographical divisions of the province. Serving as
a convergence zone for diverse residential architectural cultures, this area simultaneously
features traditional dwellings that span a wider range of construction periods compared to
other regions. Therefore, we selected the Central Gansu Loess Plateau as our study area.

Figure 1. Geographic location of the Longzhong Loess Plateau in Gansu Province.
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3.1.2. Architectural Characteristics of Vernacular Dwellings in the Longzhong Loess Plateau

The Longzhong Loess Plateau encompasses Lanzhou City, Baiyin City, parts of Dingxi
City (including Anding, Tongwei, Weiyuan, Lintao, and Longxi Counties), and the Linxia
Hui Autonomous Prefecture [50]. Despite minor local variations, these areas share broadly
comparable physiographic and cultural settings, giving rise to a coherent vernacular
tradition dominated by cave dwellings (yaodong), fortified villages (baozhai), and rammed-
earth/brick-wood courtyard compounds. Construction systems, building materials, and
craft techniques are largely homogeneous, with courtyard walls typically formed by
rammed earth or adobe bricks and roofs pitched as either single- or double-sloped struc-
tures [52].

(1) Similarities

• Architectural Configuration

Prototypical Configuration of Siheyuan: Across all historical periods, the fundamental
layout consistently employs courtyard complexes (either quadrangular siheyuan or tri-
wing compounds), emphasizing central axial symmetry and hierarchical protocols. Within
this configuration, the principal residence (Zhengfang, central hall) maintains a position of
architectural dominance [52].

Defensive Design: Reflecting the historical prevalence of warfare in Central Gansu, res-
idential architecture across various periods consistently incorporates fortification features
such as high perimeter walls, narrow windows, and reinforced gatehouses [56].

• Material Selection

From the Qing Dynasty through the pre-1980 period, structures predominantly utilized
timber-earth or brick-wood construction systems. These relied on locally sourced materials—
including loess soil, gray bricks, and timber—with roofs typically designed in single-sloped
or gentle-pitched configurations to accommodate the arid climate [57].

• Plan Layout

The “Front Hall, Rear Chamber” Spatial Logic: Throughout historical periods, the
central hall (Tangwu) consistently functioned as the familial communal space for ances-
tral worship and collective decision-making, while wing-rooms (Xiangfang) served as
residential quarters [58].

• Decorative Motifs

The Continuity of Auspicious Culture: Brick and timber carvings predominantly
feature Confucian cultural signifiers such as “Three Auspicious Stars” (Fu-Lu-Shou) and
“Four Scholarly Pursuits” (Qin-Qi-Shu-Hua). Gatehouse inscriptions—like “Poetry and
Propriety Herald the Family” (Shi Li Chuan Jia)—visibly embody ancestral values [49,51].

(2) Differences

As shown in Table 2, the differences among traditional dwellings in the Longzhong
region of Gansu across different periods are summarized with respect to architectural
configuration, material selection, plan layout, structural features, and decorative motifs.
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Table 2. Selection of villages in the study area and the number of images in the training and
test datasets.

Before 1911 1912–1949 1950–1980 After 1981

Architectural
Configuration

Siheyuan exhibits
spatial grandeur,

quadrilateral
symmetry in layout,

and architectural
integration of ritual

elements [57]

Western-style
buildings have
emerged in the

city [56]

This is a stage that bridges
the past and the future. In
cities, brick-concrete flat
roofs are predominant,

while in rural areas,
single-slope

brick-concrete roofs
have emerged

The newly-built
residences draw on

the symbols of
traditional
quadrangle

courtyards, but the
interior spaces are
modernized [51]

Material
Selection

Mainly rammed
earth walls and

wooden structures
[57,59]

Brick-concrete
structures have

emerged but are not
widely used, and in

rural areas, civil
engineering structures

still dominate [56]

Brick-concrete structures
began to emerge in

rural areas

Brick-concrete
structures are

gradually replacing
traditional civil

engineering structure

Plan Layout

The principle of
“strict demarcation

between interior and
exterior domains” is

scrupulously
observed [60]

The central hall
(Tangwu) has

transitioned into a
living space, while its

ancestral worship
function has

progressively faded

Spatial functionality is
now primarily driven by
practical applicability, no

longer constrained by
traditional ritual protocols

There is not much
change compared to
the previous period

Structural
Features

The wooden
structure is

exquisitely crafted
and the roof slope is

relatively gentle

Simplified timber
framing; the initial
emergence of brick
load-bearing walls

Brick-concrete
construction proliferated
extensively while timber

framing systems
underwent gradual

obsolescence

Timber framing
systems reached

complete
obsolescence

Decorative
Motifs

The decoration is
elaborate and

magnificent, with the
brick carvings and

wood carvings
centered on

Confucian culture

Decorative schemes
underwent increasing
simplification while
Western ornamental
elements emerged in
localized applications

Craftsmanship in carving
techniques waned

significantly, with walls
predominantly finished in

plain lime plaster and
ornamental carvings on

fenestrations adopting an
increasingly

minimalist aesthetic

Windows and doors
are devoid of

ornamental carvings

3.2. Construction of a Traditional Vernacular Architecture Chronological Dataset

At present, no image dataset exists for traditional vernacular architecture of different
eras in the Longzhong Loess Plateau, Gansu. Therefore, we must construct our own image
dataset for this research. First, we collect images from field surveys of traditional dwellings
conducted by our team in Gansu; next, we select the required images from those collected
according to our needs; finally, to facilitate model training, we increase the number of
images four-fold using random rotation and noise addition.

3.2.1. Data Selection

First, because the data are readily available, facade features are sufficient, the tech-
nology is mature, and costs are low, this study employs 2D imagery instead of 3D or
point-cloud methods. Second, to ensure data validity and representativeness, we selected
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vernacular dwellings that meet the following criteria: located within national- or provincial-
level traditional villages, national- or provincial-level historical-cultural cities/towns; pos-
sessing intact main structures; still used for traditional production/living; and reflecting
period-specific characteristics. As shown in Table 3 and Figure 2, a total of 1181 images
were selected. Their construction dates were determined through a synthesis of three
sources: archival submissions, typological analysis, and oral testimony from occupants.
Owing to the scarcity of historical buildings, and after considering both diachronic and
synchronic factors, certain periods or regions exhibit severe sample imbalance or complete
absence. Consequently, our classification follows the historical-evaluation criteria used for
traditional villages and is divided into four time periods: pre-1911 (427 images), 1912–1949
(373 images), 1950–1980 (181 images), and 1981-present (200 images). We hereby confirm
that all data were photographed by our team during on-site field investigations conducted
between 2021 and 2024, and explicit permission was obtained from the homeowner(s) prior
to each photo session. As the study is still ongoing, the dataset will not be released publicly
at this time.

Table 3. Image count by era.

Pre-1911 1912–1949 1950–1980 1981-Present Total

Quantity 427 373 181 200 1181

  
Pre-1911 1912–1949 

  
1950–1980 1981-present 

Figure 2. Traditional dwelling samples from the Longzhong Loess Plateau by the historical period.

3.2.2. Data Preprocessing

For improved model training, we processed the selected images as follows: First, due
to varying image sizes, we resized all selected images to 256 × 256 pixels. Second, we
randomly split the selected images into training and testing sets at a 7:3 ratio. Finally,
we increased the dataset size four-fold using methods such as random rotation and noise
addition. Table 4 and Figure 3 show the number and distribution of images in the training
and testing sets for different time periods.
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Table 4. Training and test set counts by time period.

Era Training Set Count Test Set Count Total

Pre-1911 298 129 427
1912–1949 261 112 373
1951–1980 126 55 181

1981-present 140 60 200
Total 825 356 1181

Figure 3. Image counts by a 7:3 split ratio: total, training, and test sets.

3.3. Framework of the Model
3.3.1. Local–Global Feature Joint Learning Network Architecture

In architectural dating, macro-scale global features encompass overall structure, roof
form, and courtyard layout, while micro-scale local features include door/window carvings,
brick/tile details, and decorative motifs. Although global styles may appear similar across
eras (e.g., Qing and Republican periods both feature siheyuan), local elements such as
window-lattice patterns often exhibit stronger temporal signatures. Conventional single-
branch models struggle to simultaneously capture both scales: global-focused architectures
overlook critical details, local-centric models lack contextual awareness, and real-world
images frequently suffer from occlusion and viewpoint variations.

A dual-branch network is constructed on the foundation of DualBranchEfficientNet-b4,
with the architectural layout illustrated in Figure 4.
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Figure 4. Schematic diagram of dual-branch network built on DualBranchEfficientNet-b4.

DualBranchEfficientNet employs a shallow convolutional stream to capture fine-
grained details and a deep convolutional stream to model global context. Global branch
(EfficientNet backbone): Deep architecture with multiple downsampling steps (stride-2
convolutions or pooling) yields a final receptive field spanning the entire input, effectively
encoding overall architectural style and layout. Local branch (lightweight CNN): Shallow
structure with limited receptive fields preserves spatial detail, concentrating on local
regions such as doors, windows, and carvings. Prior to fusion, both feature sets undergo
standardization, followed by channel-wise concatenation to integrate macro- and micro-
level evidence.

3.3.2. Hybrid Triplet Loss Strategy

In architectural chronological classification, severe class imbalance—where certain pe-
riods are heavily under-represented—causes conventional loss functions to over-emphasize
majority classes while neglecting minority ones. Standard cross-entropy (CE) assigns
substantial loss even to easily classified samples, allowing these low-difficulty instances
to dominate gradient updates. Focal loss mitigates this imbalance by introducing a mod-
ulating factor that dynamically down-weighs the contribution of easy samples, thereby
concentrating gradient flow on hard-to-classify instances—particularly those from minor-
ity classes.

FL(pt) = −α(1 − pt)
γlog(pt) (1)

Among them:

pt=

{
p i f y = 1
1 − p otherwise

(2)

pt represents the probability that the model predicts a sample belongs to its true class.
At denotes the class weight factor, balancing positive and negative samples; γ denotes

the focus parameter, controlling the weight of easy and hard samples, with a value range
of [0, 5] that is positively correlated with the degree of class imbalance.

For the subtle differences between buildings of different eras, traditional cross-entropy
loss can only learn the absolute boundaries of classes, while triplet loss enforces learning
relative distance relationships. Global features may mask details, automatically focusing
on discriminative local features.
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Triplet loss is a loss function used in metric learning aimed at making samples of the
same class closer and those of different classes further apart in the embedding space by
comparing their distances. This helps the model learn more discriminative feature represen-
tations, indirectly assisting the model in better capturing the features of minority classes.

Each training sample consists of three elements:
(1) Anchor: The reference sample.
(2) Positive: A sample of the same class as the anchor.
(3) Negative: A sample of a different class from the anchor.
The formula for calculating triplet loss is as follows:

TL = max(d(A, P)− d(A, N) + margin, 0 (3)

Among them:
d(A,P): The feature distance between the anchor and the positive sample (typically

using Euclidean distance);
d(A,N): The feature distance between the anchor and the negative sample;
Margin: The preset margin of safety.
Optimization objective: Ensure that the distance between same-class samples is at

least margin units closer than the distance between different-class samples. Margin is a
hyperparameter, empirically found to be optimally set at 0.5 in this study.

Combining focal loss with triplet loss to form a hybrid loss strategy, especially suitable
for the chronological classification of Gansu architecture. This combination has a synergistic
effect in addressing class imbalance and feature discrimination issues. Specifically, focal
loss addresses class imbalance by increasing the focus on minority class samples (such as
Republican era buildings), optimizing at the prediction probability level to ensure that
minority classes are not overlooked. Triplet loss tackles the issue of insufficient feature
discrimination, enhancing the separability of features from different eras of architecture,
optimizing at the feature space level to ensure that feature clusters of different eras are
well separated. The combined use of these two methods comprehensively optimizes
classification performance, improving both accuracy and recall rates. The final loss function
is as follows:

Total Loss = FL + ε ∗ TL (4)

where FL stands for Focal Loss, TL for Triplet Loss, and ε (epsilon) is the weight adjustment
factor for the triplet loss; in this study, ε is taken to be 0.3.

4. Results and Discussion
In this section, we analyze and introduce the experimental data obtained from the

methods proposed in this paper, namely, the use of deep learning methods for chronological
classification of traditional dwellings in the Longzhong Loess Plateau region of Gansu.
First, our study of traditional dwellings in the Longzhong Loess Plateau region of Gansu
is divided by different eras, utilizing five different deep learning models: ResNet-50 [61],
EfficientNet [62], Vision Transformer [63], DualBranchResNet, and DualBranchEfficientNet,
to classify traditional dwellings from different eras. This allows us to determine the
differences in performance among various deep learning models for classifying traditional
dwellings from different eras in the Longzhong region of Gansu Province.

Secondly, to better address class imbalance and enhance the model’s ability to recognize
and extract image features, we employed a hybrid triplet loss strategy to conduct ablation
experiments on the model’s chronological classification task for architectural dating.

Lastly, to further verify the classification performance of the proposed model, we
compared the DualBranchEfficientNet model with the hybrid triplet loss function against
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the traditional cross-entropy model in terms of classification metrics and confusion matrices
across different eras.

4.1. Experimental Environment

To ensure the fairness and accuracy of the experiments, all input image data resolutions
were adjusted to 224 × 224 pixels, and the batch size was set to 64. All models underwent
training for 200 epochs. As shown in Table 5, the system used in this study is Ubuntu 20.04,
with Python 3.8 as the programming language and PyTorch 2.1.0 as the environment. The
graphics card is a NVIDIA RTX 4090D using CUDA 12.1, and the CPU is an Intel i9-14900k.
The AdamW optimizer was used, with the initial learning rate set to 1 × 10−2, and the final
learning rate set to 0.01 times the maximum learning rate. The learning rate was reduced
using a cosine annealing schedule.

Table 5. Experimental environment.

Environment Versions or Model Number

CPU Intel i9-14900k
GPU NVIDIA RTX 4090D, 24 GB memory
OS Ubuntu 20.04

CUDA 12.1
PyTorch 2.1.0
Python 3.8

4.2. Model Evaluation Metrics

In order to accurately and objectively evaluate the model’s performance on the classi-
fication task, a confusion matrix was first established to visually present the classification
results. Secondly, we adopted four metrics—Accuracy, Precision, Recall, and F1-score—as
criteria for judging the quality of classification, with each metric summarized as follows:

Confusion Matrix: It is the basis for evaluating the performance of classification
models, intuitively showing the relationship between the model’s predictions and the
actual labels in a tabular form, especially for binary classification problems. For binary
classification tasks, the confusion matrix is a 2 × 2 matrix, as shown in Table 6, where each
row represents the actual class and each column represents the predicted class.

Table 6. Confusion matrix.

Actual Positive (P) Actual Negative (N)

Predicted Positive (P) TP (True Positive) FP (False Positive)
Predicted Negative (N) FN (False Negative) TN (True Negative)

• TP (True Positive): Correctly predicted positive cases (correct identification);
• FP (False Positive): Negative cases incorrectly predicted as positive (Type I Error,

false alarm);
• FN (False Negative): Positive cases incorrectly predicted as negative (Type II Error,

missed detection);
• TN (True Negative): Correctly predicted negative cases (correct rejection).

Accuracy: It is the most intuitive classification model evaluation metric, measuring the
proportion of overall correct predictions and serving as a preliminary indicator of global
model performance. Its calculation formula is expressed as follows:

Accuracy =
TP

TP + FP + FN + TN
× 100%, (5)
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Precision: It is a critical evaluation metric for classification models, quantifying the
proportion of true positive predictions among all positive predictions (i.e., the accuracy of
positive predictions). It specifically emphasizes minimizing false alarms (False Positives,
FP) and is computed as follows:

Precision =
TP

TP + FN
×100%, (6)

Recall: Also known as sensitivity or true positive rate (TPR), it is a core performance
metric for classification models. It quantifies the model’s ability to identify all actual
positive instances, with its primary focus on minimizing missed detections (False Negative,
FN). It is computed as follows:

Recall =
TP

TP + FN
×100%, (7)

F1-score: It is one of the most critical composite metrics in classification model eval-
uation, defined as the harmonic mean of Precision and Recall. It is particularly suitable
for imbalanced datasets or scenarios requiring simultaneous minimization of both false
positive (FP) and false negative (FN). It is computed as follows:

F1-score = 2 × Precision × Recall
Precision + Recall

× 100% (8)

4.3. Baseline Model Evaluation and Selection

We conducted comparative experiments using three representative deep learning
classification models: ResNet50, EfficientNet-b4 (which has a comparable number of
parameters to ResNet50 and is hereafter referred to as EfficientNet in this paper), and
Vision Transformer—a Transformer-based architecture suitable for classification tasks.

The results are presented in Table 7. The EfficientNet model achieved Accuracy,
Precision, Recall, and F1-scores of 85.1%, 81.6%, 81.0%, and 81.1%, respectively. The
ResNet50 model performed slightly below EfficientNet across all metrics, with scores of
83.7%, 80.3%, 79.5%, and 79.9%. The Vision Transformer model yielded the lowest scores
among the three models at 77.0%, 72.5%, 71.5%, and 72.0%, respectively.

Table 7. Comparative experimental results of the baseline model.

Models Accuracy/% Recall/% Precision/% F1-Score/%

EfficientNet 85.1 81.6 81.0 81.1
ResNet50 83.7 (+1.4) 80.3 (+1.3) 79.5 (+0.5) 79.9 (+1.2)

Vision Transformer 77.0 (+8.1) 72.5 (+9.1) 71.5 (+9.5) 72.0 (+9.1)
Note: In Table 7, the plus or minus signs within the table parentheses indicate the difference of the value from
the value of the EfficientNet model. A negative value indicates it is less than the value of the EfficientNet model,
while a positive value indicates it is greater than the value of the EfficientNet model.

The results above indicate that Vision Transformer (ViT) delivered the weakest clas-
sification performance. This is primarily attributed to its core Transformer encoder ar-
chitecture, which relies on self-attention mechanisms, contrasting with the CNN-based
frameworks of EfficientNet and ResNet50. Regarding image input processing: EfficientNet
and ResNet50 utilize local convolutional operations, whereas ViT employs linear embed-
ding of image patches (lacking local inductive bias). Although ViT showcases powerful
global modeling capacity for image classification, it exhibits high dependency on large-
scale datasets—typically requiring over a million labeled samples to fully leverage its
self-attention advantages. Conversely, EfficientNet and ResNet50 demonstrate superior
performance on small-to-medium-sized datasets. These factors collectively explain the
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performance differences observed in the table. Our task involves classifying buildings from
different eras, where distinguishing features between adjacent periods are often subtle.
These differences primarily manifest in architectural details such as windows, roofs, eaves,
materials, and structural elements.

In summary, given the specific classification task characteristics and dataset constraints,
EfficientNet and ResNet50 models are better suited for the traditional residential building
classification task in the Longzhong region of Gansu Province.

4.4. Improved Model Evaluation

The architectural characteristics across different eras manifest not only in macro-
feature differences such as building structures, roof typologies, and courtyard layouts,
but more significantly in micro-level local feature distinctions including carved pat-
terns on doors/windows, brick/tile detailing, decorative motifs, building materials, and
door/window proportions. Therefore, to better extract era-specific architectural features
and enhance model classification accuracy, as established in Section 4.3, we selected Effi-
cientNet and ResNet50 as backbone networks. Upon these, we constructed a dual-branch
network, namely, the “Local-Global Feature Joint Learning Network Architecture.” Under
identical experimental conditions, we compared the backbone networks with the improved
network, with the results presented in Table 8.

Table 8. Comparative experimental results of the improved model.

Models Accuracy/% Recall/% Precision/% F1-Score/%

EfficientNet 85.1 (+4.5) 81.6 (+6.1) 81.0 (+5.0) 81.1 (+5.7)
DualBranchEfficientNet 89.6 87.7 86.0 86.7

ResNet50 83.7 (+3.9) 80.3 (+4.7) 79.5 (+5.0) 79.9 (+4.9)
DualBranchResNet 87.6 87.7 86.0 86.7

Note: In Table 8, the plus or minus signs in parentheses indicate the difference between the value of the improved
model and the corresponding value of the original model. A negative value indicates it is lower than the original
model’s value, while a positive value indicates it is higher than the original model’s value.

In Table 8, the DualBranchResNet model achieved an Accuracy of 87.6%, Precision
of 85.0%, Recall of 84.5%, and F1-score of 84.8%, which are 3.9%, 4.7%, 5.0%, and 4.9%
higher than those of the ResNet50 model, respectively; the DualBranchEfficientNet-b4
model achieved an Accuracy of 89.6%, Precision of 87.7%, Recall of 86.0%, and F1-score
of 86.7%, which are 4.5%, 6.1%, 5.0%, and 5.7% higher than those of the EfficientNet-b4
model, respectively; compared to the DualBranchResNet model, the DualBranchEfficient-
Net model achieved 2.0%, 2.7%, 1.6%, and 1.9% higher Accuracy, Precision, Recall, and
F1-score, respectively. This is because the improved dual-branch network model adopts
the “Local-Global Feature Joint Learning Network Architecture,” which for traditional resi-
dential buildings of different eras can extract not only macro-level differences in building
structures, roof forms, and spatial layouts, but also accurately capture micro-level local
features such as building materials, carved decorations, door/window styles, and building
materials. Simultaneously, as evidenced by the table, our proposed DualBranchEfficientNet
model achieved optimal performance across Accuracy, Precision, Recall, and F1-scores for
classifying traditional residential buildings in the Longzhong region of Gansu Province
across different eras.

4.5. Ablation Experiment

In the era classification task for traditional residential buildings in the Longzhong
region of Gansu Province, the collected data from different periods exhibited a class
imbalance problem, as shown in Table 3 and Figure 3. This imbalance primarily occurred
because our data collection originated from the purpose of cultural heritage preservation;
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thus, during the collection process, greater emphasis was placed on traditional residential
buildings from the pre-1911 era and the 1912–1949 period. For post-1949 buildings, due to
social transformations and economic development, representative traditional residential
structures are relatively scarce. Consequently, the data for the 1949–1980 and post-1981
periods became imbalanced compared to the pre-1911 and 1912–1949 periods. To address
this, we employed a mixed triplet loss strategy to mitigate the class imbalance issue.

First, to determine the triplet loss weight adjustment coefficient ε, we experimented
with different ε values; the classification results corresponding to each ε are presented
in Table 9.

Table 9. Experimental results for different ε values.

EEE Accuracy/% Recall/% Precision/% F1-Score/%

0 89.6 87.5 88.3 87.8
0.30 90.5 88.9 87.6 88.2
0.60 88.6 85.1 85.7 85.4
1.00 88.1 84.5 85.6 85.0
1.67 87.9 84.6 85.3 84.9
3.33 87.0 83.3 84.3 83.7

Based on the above pattern, focal loss contributes the most within the hybrid loss,
while triplet loss also provides a noticeable contribution; therefore, we set ε to 0.3.

To validate our proposed method for addressing class imbalance, we conducted
ablation studies on the DualBranchResNet and DualBranchEfficientNet models, with the
results shown in Table 10.

Table 10. Ablation experiment results.

Model ce Hybrid Loss Accuracy (%) Precision (%) Recall (%) F1-Score (%)

DualBranchResNet
√

87.6 85.0 84.5 84.8√
88.8 (+1.2) 87.0 (+2.0) 85.5 (+1.0) 86.2 (+1.4)

DualBranchEfficientNet
√

89.6 87.7 86.0 86.7√
90.5 (+0.9) 88.9 (+1.2) 87.6 (+1.6) 88.2 (+1.5)

Note: In Table 10, the plus or minus signs in parentheses indicate the difference between the value of the improved
model with mixed triplet loss and the corresponding value of the cross-entropy model. A negative value indicates
it is lower than the cross-entropy model’s value, while a positive value indicates it is higher than the cross-entropy
model’s value.

As shown in Table 10, compared to the traditional cross-entropy (ce) model, the
DualBranchResNet and DualBranchEfficientNet models with mixed triplet loss achieved
significant improvements in Accuracy and F1-score. The DualBranchResNet model with
mixed triplet loss attained Accuracy, Precision, Recall, and F1-scores of 88.8%, 87.0%, 85.5%,
and 86.2%, respectively, representing increases of 1.2%, 2.0%, 1.0%, and 1.4% over the
traditional cross-entropy (ce) model across these metrics. The DualBranchEfficientNet
model achieved metrics of 90.5%, 88.9%, 87.6%, and 88.2%, outperforming the traditional
cross-entropy (ce) model by 0.9%, 1.2%, 1.6%, and 1.5%, respectively. When comparing the
DualBranchResNet and DualBranchEfficientNet models both incorporating mixed triplet
loss, all four metrics of the DualBranchEfficientNet model are higher than those of the
DualBranchResNet model. Consequently, the DualBranchResNet model with mixed triplet
loss is better suited for our classification task.
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4.6. DualBranchEfficientNet Model Per-Class and Confusion Matrix Comparison
4.6.1. Per-Class Comparison

To validate the classification performance of the improved model across different eras,
as shown in Table 11, we conducted a comparative analysis of classification metrics between
the traditional cross-entropy model and the model incorporating mixed triplet loss.

Table 11. Per-class results.

ce Hybrid
Loss

Before 1911 (443) 1912–1949 (373) 1950–1980 (181) After 1981 (200)

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)
√

92.7 98.5 95.5 95.4 92.9 92.5 83.3 72.7 77.6 82.8 80.0 81.4√
91.4 98.5 94.5 95.4 92.0 93.6 81.5 80.0 81.7 87.3 80.0 83.5

As shown in Table 11, for the pre-1911 era, both methods achieved exceptionally
high performance, indicating that with sufficient data volume, models can stably learn
features. However, the model with mixed triplet loss exhibited a slight 1.3% decrease in
Precision, potentially due to diminished marginal optimization effects of triplet loss on
abundant samples.

For the 1912–1949 era, the F1-score increased from 92.5% to 93.6% with minor perfor-
mance fluctuations, suggesting stable classification for this period.

In the 1950–1980 era (with the fewest samples), Recall improved from 72.7% to 80.0%
for the mixed triplet loss model, demonstrating that triplet loss enhances discriminability
for minority classes through feature contrast when samples are scarce. However, Precision
decreased by 1.8% (83.3→81.5) for this model, necessitating a trade-off between Recall and
Precision (i.e., F1-score). The F1-score of the mixed triplet loss model was 4.1% higher than
that of the traditional cross-entropy model (77.6%→81.7%).

For the post-1981 era, the mixed triplet loss model outperformed the cross-entropy
model with a 4.5% Precision gain (82.8%→87.3%) and a 2.1% F1-score improvement
(0.814→0.835), indicating effective suppression of misclassification for modern buildings.

The above demonstrates that the mixed triplet loss model delivers optimal perfor-
mance compared to other classification models.

4.6.2. Confusion Matrix

To better understand the classification performance of the improved model across
different eras, as shown in Figure 5, we generated confusion matrices for both the traditional
cross-entropy model and the model incorporating mixed triplet loss, further validating the
improvement in handling class imbalance. The figure displays confusion matrices for both
models, revealing that for the pre-1911 and post-1981 eras, the number of correctly classified
images remained unchanged at 127 and 48 images, respectively. For the 1912–1949 era,
correctly classified images decreased from 104 to 103—a reduction in one image—which
does not reflect meaningful changes in model performance. Conversely, for the smallest
sample era (1950–1980), correctly classified images increased from 40 to 44, demonstrating
that the mixed triplet loss model moderately improves performance under class imbalance.

As shown in Figure 5b, the highest misclassification rate occurs between 1912 and
1949 dwellings and pre-1911 dwellings. This stems from several factors. First, early
Republican-period houses inherited almost all Qing era practices in floor plans, structures,
roof pitches, and timber systems, resulting in minimal macroscopic differences. Only
subtle distinctions—such as window-frame patterns, brick-carving motifs, column diam-
eters, bracket-set proportions, or ridge-beast counts—require high-resolution images to
be discerned, yet the model operating on 224 × 224 inputs often overlooks these fine
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cues, leading to errors. Second, although the two periods appear numerically balanced,
most surviving pre-1911 buildings were erected near the turn of the century, and many
underwent partial renovations after 1912 (e.g., replacing window sashes, adding canopies),
creating “temporally mixed” samples whose outward features closely resemble those of
1912–1919, further aggravating misclassification.

 
(a) (b) 

Figure 5. Confusion matrices of (a) traditional cross-entropy model; (b) mixed triplet loss model.

For 1950–1980 versus post-1981 dwellings, the hybrid triplet loss model raises accuracy,
yet a residual error remains. The 1950–1980 period already produced simplified quadran-
gles and brick-concrete bungalows; after 1981, numerous houses retained the same layout.
Moreover, cement, red brick, and machine-made tiles introduced in the late 1950–1980
period continued to be used after 1981, merely in brighter colors, causing texture and
color overlap in the extracted features. Additional renovations—tile cladding, aluminum
window replacements—post-1981 make 1950–1980 buildings visually closer to post-1981
ones, sustaining the error rate.

Conversely, dwellings from pre-1911 and 1912–1949 differ markedly from the 1950–
1980 and post-1981 cohorts in floor plans, materials, and overall morphology; consequently,
the model extracts distinctive features and achieves low misclassification.

In conclusion, through comparative analysis of Accuracy, Precision, Recall, F1-score,
and confusion matrices across different models, the DualBranchEfficientNet model incor-
porating mixed triplet loss outperforms other models in classifying traditional residential
buildings from different eras.

4.7. Grad-CAM Analysis

As stated above, although the model demonstrates outstanding performance in the
classification of vernacular building periods, the inherent opacity of deep learning means
that the model offers limited transparency during sample learning. Heat maps gener-
ated via Grad-CAM not only reveal the model’s ability to extract and learn architectural
features—thereby enhancing its robustness and reliability—but also bolster user trust in
the model’s decisions.
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Figure 6 presents the Grad-CAM heat maps generated by the DualBranchEfficientNet
model with hybrid triplet loss for traditional dwellings of different periods. The heat
maps use red-yellow-blue to indicate model weights from strong to weak. Across all
periods, architectural features are mainly concentrated on the eaves, walls, and windows,
which consistently appear as red high-response regions, showing that the model first relies
on overall contours to distinguish chronological levels. (1) For dwellings built before
1911, the local-branch heat maps focus on the eaves, with orange-yellow high weights
on dougong (bracket sets) and queti (sparrow braces), indicating that the model captures
the intricate wood carvings characteristic of the late Qing period. (2) In the 1912–1949
period, weights concentrate on the eaves and column diameters; due to social and economic
factors, dwellings of the Republican era simplified dougong and omitted queti. (3) During
1950–1980, the local-branch heat maps attend not only to the eaves, but also to the windows
and walls. In this period, the junction between the wall and the roof retains the chengliang
fang (purlin plate), yet the rest of the wall shifts from timber to brick-and-earth, the window
area decreases, the columns disappear, and the once-deep eaves vanish. (4) After 1981, the
red highlights move to the brick-wall exterior and glass windows.

Although the model demonstrates strong feature extraction and classification capa-
bilities, misclassification still occurs. To intuitively reveal the underlying causes of these
errors, we visualized typical misclassified samples using Grad-CAM.

  
before 1911 

  
1912–1949  

Figure 6. Cont.
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1950–1980 

  
After 1981  

Figure 6. Grad-CAM heat maps across different periods.

As shown in Figure 7a, the presence of colorful decorative bands under the eaves led
the model to mistakenly assign a 1912–1949 building to the pre-1911 period. In Figure 7b,
post-renovation tiling over the original timber façade caused the model to misclassify a
pre-1911 building as post-1981. Figure 7c illustrates that a neighboring post-1981 brick wall
on the right side of the image biased the model, resulting in a 1950–1980 building being
labeled as post-1981. Figure 7d shows that the long shooting distance misled the model
into classifying a post-1981 building as belonging to the 1950–1980 period.

The foregoing shows that, although deep learning models perform well on archi-
tectural classification and recognition tasks, they still exhibit clear limitations relative to
humans: (1) strong data dependence—requiring large training sets and being sensitive to
data distribution, with marked performance drops when confronted with unseen build-
ing types; (2) limited spatial understanding—sensitive to scale changes, so that the same
building photographed from different distances can yield different classifications; (3) poor
adaptability—variations in lighting, weather, or viewing angle significantly affect perfor-
mance; (4) difficulty in fine-grained discrimination—confusing buildings with similar styles
or local features (e.g., Baroque vs. Rococo) and over-attending to certain local cues, lead-
ing to misclassification of the entire style; (5) interpretability deficits—unable to provide
transparent rationales for learning and decisions; even with Grad-CAM and similar tools,
heat maps may highlight irrelevant features yet still produce correct labels; (6) inability
to distinguish originals from imitations—unable, for instance, to differentiate authentic
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ancient buildings from modern replicas. Therefore, AI systems should serve as “auxiliary
tools,” and any restoration or planning decision must ultimately rely on human verification.

(a) (b) 

(c) (d) 

Figure 7. Misclassified Grad-CAM heat maps. (a) Buildings constructed between 1912 and 1949 were
incorrectly identified as pre-1911. (b) Buildings constructed pre-1911 were incorrectly identified as
after 1981. (c) Buildings constructed between 1950 and 1980 were incorrectly identified as after 1981.
(d) Buildings constructed after 1981 were incorrectly identified as between 1950 and 1980.

5. Conclusions
To address challenges including feature extraction difficulties in era classification of tra-

ditional architecture, cumbersome traditional methods, and erratic classification outcomes,
we propose a DualBranchEfficientNet model incorporating mixed triplet loss for era classi-
fication of traditional residential buildings in the Longzhong region of Gansu Province.

First, due to the scarcity of datasets in the study area, we constructed a dataset of
traditional buildings from different eras in the Longzhong region of Gansu Province. This
dataset comprises 1181 photos of traditional residential buildings across eras: 427 from
the pre-1911 period, 373 from 1912–1949, 181 from 1951–1980, and 200 from the post-1981
period to present.

Second, we selected three representative deep learning classification models—
EfficientNet, ResNet50, and Vision Transformer—for comparative experiments. Experi-
mental results show that the EfficientNet model achieved Accuracy, Precision, Recall, and
F1-scores of 85.1%, 81.6%, 81.0%, and 81.1%, respectively, outperforming the ResNet50
model by 1.4%, 1.3%, 0.5%, and 1.2%, and surpassing the Vision Transformer model by 8.1%,
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9.1%, 9.5%, and 9.1% across these metrics. Through comparative evaluation, EfficientNet
and ResNet50 are better suited for our classification task than Vision Transformer.

Third, to enhance feature extraction capability and classification accuracy for tradi-
tional residential buildings across eras, we propose a “Local-Global Feature Joint Learning
Network Architecture” based on the selected EfficientNet and ResNet50 models, namely,
the DualBranchEfficientNet and DualBranchResNet models. Comparative results against
the EfficientNet and ResNet50 models show that the DualBranchResNet model achieved Ac-
curacy of 87.6%, Precision of 85.0%, Recall of 84.5%, and F1-score of 84.8%, outperforming
ResNet50 by 3.9%, 4.7%, 5.0%, and 4.9%, respectively; the DualBranchEfficientNet model
attained Accuracy of 89.6%, Precision of 87.7%, Recall of 86.0%, and F1-score of 86.7%,
surpassing EfficientNet by 4.5%, 6.1%, 5.0%, and 5.7%, respectively. Thus, our proposed
DualBranchEfficientNet model delivers optimal performance across Accuracy, Precision,
Recall, and F1-scores for classifying traditional residential buildings in the Longzhong
region of Gansu Province across different eras.

Fourth, to solve the sample imbalance problem, we improved the DualBranchEffi-
cientNet and DualBranchResNet models by introducing mixed triplet loss and conducted
comparative ablation experiments. Compared with the traditional cross-entropy model, the
DualBranchResNet and DualBranchEfficientNet models incorporating mixed triplet loss
achieved good results in Accuracy and F1-scores. Comparing the DualBranchResNet and
DualBranchEfficientNet models both incorporating mixed triplet loss, the DualBranchEffi-
cientNet model attained Accuracy, Precision, Recall, and F1-scores of 90.5%, 88.9%, 87.6%,
and 88.2%, respectively, outperforming the DualBranchResNet model by 1.7%, 1.9%, 2.1%,
and 2.0% across these metrics. It is concluded that our proposed DualBranchEfficientNet
model incorporating mixed triplet loss is better suited for our classification task.

Fifth, to better understand our proposed model, we compared the classification met-
rics per category and confusion matrices of the DualBranchEfficientNet model and the
DualBranchEfficientNet model incorporating mixed triplet loss. For the 1950–1980 era
with the fewest samples, Recall improved from 72.7% to 80.0% for the mixed triplet loss
model, and correctly classified images increased from 40 to 44. This reflects that the model
incorporating mixed triplet loss has achieved certain improvement in performance under
sample imbalance.

Finally, by analyzing the heat maps produced by the DualBranchEfficientNet model
with the hybrid triplet loss function, we confirmed that the extracted features of traditional
dwellings from different historical periods are consistent with those obtained by conven-
tional methods, further attesting to the model’s reliability. Moreover, examination of the
heat maps corresponding to misclassified instances demonstrated that the model exhibits
strong robustness against overfitting.

Through this study, the proposed DualBranchEfficientNet model incorporating mixed
triplet loss demonstrates good effect on feature extraction and classification of traditional
residential buildings across eras in the Longzhong region of Gansu Province. It can serve
as a new method for building era classification and identification, and when combined
with traditional methods, enables more accurate era recognition. Simultaneously, it may
provide reference for rural revitalization and rural landscape character control. Although
this study demonstrates strong results in the Longzhong region of Gansu Province, the
model’s generalizability to other regions has not yet been verified due to a lack of external
data; in the future, we plan to conduct cross-regional collaborations to expand validation
and assess its universality.

In the future, we will further investigate multi-scale fusion strategies that integrate
deep learning with multi-source data—such as hyperspectral imagery, LiDAR point clouds,
and historical archives—by incorporating attention mechanisms and spatio-temporal fea-
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ture coupling to enhance the accuracy and robustness of building-age classification. Concur-
rently, we plan to construct a standardized, cross-regional test set to evaluate the model’s
transferability and generalizability across buildings from diverse cultural contexts, ulti-
mately establishing an intelligent classification framework adaptable to varied heritage
scenarios and providing a scientific foundation for the digital preservation and monitoring
of architectural heritage.
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