
Academic Editor: Marco Di Ludovico

Received: 14 January 2025

Revised: 3 February 2025

Accepted: 8 February 2025

Published: 10 February 2025

Citation: Dong, X.; Liu, Y.; Dai, J.

Recognition of Concrete Surface

Cracks Based on Improved TransUNet.

Buildings 2025, 15, 541. https://

doi.org/10.3390/buildings15040541

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Recognition of Concrete Surface Cracks Based on
Improved TransUNet
Xuwei Dong 1, Yang Liu 1 and Jinpeng Dai 2,3,4,*

1 Key Laboratory of Opto-Electronic Technology and Intelligent Control, Ministry of Education, Lanzhou
Jiaotong University, Lanzhou 730070, China; dxw007@lzjtu.edu.cn (X.D.); 12221950@stu.lzjtu.edu.cn (Y.L.)

2 National and Provincial Joint Engineering Laboratory of Road & Bridge Disaster Prevention and Control,
Lanzhou Jiaotong University, Lanzhou 730070, China

3 State Key Laboratory of High Preformance in Civil Engineering Materials, Jiangsu Research Institute of
Building Science Co., Ltd., Nanjing 210008, China

4 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
* Correspondence: daijp@mail.lzjtu.cn

Abstract: Concrete surface crack detection is a critical problem in the health monitoring
and maintenance of engineering structures. The existence and development of cracks
may lead to the deterioration of structural performance, potentially causing serious safety
accidents. However, detecting cracks accurately remains challenging due to various factors
such as uneven lighting, noise interference, and complex backgrounds, which often lead
to incomplete or false detections. Traditional manual inspection methods are subjective,
inefficient, and costly, while existing deep learning-based approaches still have the problem
of insufficient precision and completeness. Therefore, this paper proposes a new crack
detection model based on an improved TransUNet: AG-TransUNet, an adaptive multi-head
self-attention mechanism, and a gated mechanism-based decoding module (GRU-T) is
introduced to improve the accuracy and completeness of crack detection. Experimental
results show that the AG-TransUNet outperforms the original TransUNet with a 4.05%
increase in precision, a 2.59% improvement in F1-score, and a 0.36% enhancement in IoU
on the CFD dataset. The AG-TransUNet achieves a 2.21% increase in precision, a 5.63%
improvement in F1-score, and a 9.07% enhancement in IoU on the concrete crack dataset. In
addition, in order to further quantitatively analyze the crack width, the orthogonal skeleton
method is used to calculate the maximum width of a single crack to provide a reference
for engineering maintenance. Experiments show that the maximum error between the real
values and detection results is about 5%. Therefore, the proposed method better meets the
needs of crack detection in practical engineering applications and provides a solution for
improving the efficiency of crack detection.

Keywords: concrete surface cracks; crack detection; semantic segmentation; attention
mechanism; crack width

1. Introduction
Surface cracks are one of the most common and significant forms of damage in

structural health monitoring. Their detection and evaluation are crucial for ensuring the
safety and durability of buildings and infrastructure [1]. Over time, structural materials
may crack due to various factors such as fatigue, environmental erosion, and load. If these
cracks are not identified and treated promptly, they may lead to severe safety hazards and
even catastrophic consequences [2]. Traditional manual detection methods are inefficient,
subjective, and lack accuracy, making them unable to meet the demands for efficient and
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precise crack detection in modern engineering. Accurately detecting the location, shape,
and width of cracks is, therefore, vital for ensuring structural safety.

In recent years, crack detection technology has evolved from traditional image pro-
cessing methods to deep learning-driven automated detection methods. Traditional image
processing techniques include edge detection, morphological operation, threshold seg-
mentation, template matching, and frequency domain analysis. While these methods
can identify crack edges and shapes to some extent, they often underperform in complex
backgrounds. For example, the canny edge detector is a classical algorithm widely used
for detecting crack edges by calculating image gradients [3]. Canny et al. [3] proposed an
improved edge detection algorithm, which optimized the canny algorithm through filtering
and threshold calculation to improve detection accuracy and robustness. Morphological
operation is often used to enhance crack features in images. Zhang et al. [4] detected
local dim areas containing potential defects from the original images using morphological
operation and designed a distance-based shape descriptor to describe numerical features
for defect detection. Otsu’s thresholding is an automatic threshold selection method that
is also widely used in crack detection [5]. Vivekananthan et al. [6] combined the Otsu
method with grayscale discrimination to improve the accuracy of crack detection. The
template matching-based method [7] detects cracks by comparing them with pre-designed
crack templates. Chen et al. [8] adopted a template-matching method based on color fea-
ture recognition to optimize automatic target extraction algorithms. Fourier and wavelet
transforms are commonly used tools for frequency domain analysis. Gharehbaghi et al. [9]
proposed a crack detection method combining wavelet-based feature extraction, feature
reduction, and a fast deep learning-based classifier. Crack texture features can be extracted
using methods like the gray-level co-occurrence matrix (GLCM). Arya et al. [10] proposed
an automatic crack detection method utilizing GLCM. Histogram equalization is commonly
used to enhance image contrast, thereby improving crack detection accuracy. Liu et al. [11]
proposed a histogram equalization algorithm that fuses the histogram equalization (HE)
and the contrast-limited adaptive histogram equalization methods to enhance background
similarity and crack saliency.

With the rapid development of deep learning, concrete surface crack detection meth-
ods based on convolutional neural networks (CNNs) have gradually become mainstream.
These methods significantly enhance the accuracy and robustness of crack detection by
automatically learning deep features within images. The U-Net model [12], known for its
successful application in medical image segmentation, is widely used for concrete surface
crack detection. Qiao et al. [13] employed an improved U-Net model to identify crack
widths in binary images of concrete cracks. Faster R-CNN [14] is another deep learning
model commonly used for object detection; Li et al. [15] used a faster R-CNN algorithm
based on VGG16 transfer learning to design a two-RTS system for drone hover precision
to detect bridge surface cracks. Mask R-CNN [16] can not only detect cracks but also
accurately segment crack areas. Liu et al. [17] developed an improved mask R-CNN to
automatically detect and segment small cracks in asphalt pavements at the pixel level. The
DeepLab model [18] captured multi-scale contextual information in images using atrous
convolution. Sun et al. [19] proposed a multi-scale attention module in the decoder of
DeepLabv3+, generating attention masks and dynamically allocating weights between
deep and shallow feature maps. The residual network (ResNet) [20] solved the problem
of gradient disappearance in deep networks by introducing residual connections. Fan
et al. [21] proposed a novel deep residual convolutional neural network called Parallel
ResNet and designed a pavement crack detection and recognition system. DenseNet [22]
improved feature reusability through dense connections between layers. López Droguett
et al. [23] proposed a DenseNet architecture that achieves better crack detection perfor-



Buildings 2025, 15, 541 3 of 16

mance than standard algorithms with only a small number of parameters. The VGG
model [24] had excellent performance in feature extraction due to its deep structure. Que
et al. [25] proposed an improved VGG model for crack classification. EfficientNet [26] used
a composite scaling strategy to improve performance while maintaining model efficiency.
Satheesh et al. [27] used EfficientNet for crack segmentation. The transformer model [28]
has been gradually applied to image-processing tasks due to its success in natural language
processing. Shamsabadi et al. [29] proposed a framework based on the vision transformer
for crack detection on asphalt and concrete surfaces. Generative adversarial networks
(GANs) [30] generate high-quality images through adversarial training. Sekar et al. [31]
introduced a conditional prediction crack GAN (CFC-GAN) model to detect pavement
crack images under various conditions.

In summary, the automation and intelligence of concrete crack detection can signif-
icantly reduce labor costs and save time while avoiding errors inherent in traditional
manual inspections. For large-scale engineering projects and infrastructure, such as bridges,
dams, and high-rise buildings, intelligent crack detection technology provides real-time
and accurate safety assessments. This, in turn, helps prevent potential risks and avoids
major accidents and economic losses caused by crack propagation. Among the intelligence
algorithms, TransUNet has demonstrated excellent performance in image segmentation
and has been applied to crack detection, but it still faces several critical challenges, such as
the limitation in generalization capability under complex backgrounds, the difficulty in
capturing fine-grained crack features, and the lack in effective feature fusion strategy be-
tween deep and shallow representations. These issues limit the applicability of TransUNet
in complex scenarios.

So, this study aims to develop an advanced model that improves the accuracy and
completeness of crack detection under complex environmental conditions. An improved
TransUNet-based model, AG-TransUNet, is proposed. The model introduces an adaptive
multi-head self-attention mechanism, which enables the model to dynamically adjust its
feature extraction based on the specific features of the input image, thereby enhancing
crack localization in diverse scenarios. Additionally, a gated mechanism-based decoding
module (GRU-T) is designed to effectively preserve essential image features and reduce
information loss during the upsampling process, leading to improved crack detection
precision. To further quantify crack severity, an orthogonal skeleton-based crack width
estimation method is proposed, enabling precise crack width measurement, which serves
as a crucial reference for structural safety assessment. The model provides a more robust
and accurate crack detection solution for engineering applications.

2. Related Principles
2.1. Overview of the TransUNet Algorithm

TransUNet [32] is a hybrid deep learning model combining a transformer and U-Net,
which was originally proposed for medical image segmentation tasks. This algorithm aims
to combine the global feature extraction capability of the transformer and the multi-scale
context information fusion capability of U-Net to improve the accuracy and robustness of
image segmentation.

As shown in Figure 1, TransUNet embeds the transformer module into the encoder
part of the U-Net, creating a novel segmentation network architecture. The encoder in
TransUNet uses convolutional operations to extract shallow features from the input image.
These extracted features are then fed into the transformer encoder for further processing.
The transformer encoder employs an attention mechanism to capture global features within
the image, outputting feature representations enriched with contextual information. After
processing through the transformer, the feature maps are passed to the U-Net decoder,
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which performs step-by-step upsampling and feature fusion to generate high-resolution
segmentation results.
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Figure 1. Structure of TransUNet.

The main advantage of TransUNet is its ability to utilize local and global feature
information simultaneously, which makes it highly effective when dealing with targets of
complex structures and irregular shapes.

2.2. Limitations of the TransUNet Algorithm

The existing TransUNet model has certain limitations when processing images with
high noise or complex backgrounds. These limitations mainly manifest in two areas. Firstly,
although the attention mechanism in TransUNet can capture the global features of an
image, its fixed attention head configuration lacks sufficient flexibility in processing images
with different feature patterns. This rigid allocation of attention heads may not adequately
adapt to the feature changes in various complex scenes. As a result, the model cannot
accurately focus on small targets such as cracks or ignore the interference information in
the background, making the segmentation effect unsatisfactory in some scenarios.

Secondly, in the decoding phase, TransUNet relies on simple convolution operations
for feature reconstruction. Although this approach can partially restore spatial resolution,
it does not fully exploit the rich feature information passed from the encoder to the decoder.
This limitation is particularly problematic when dealing with images that involve complex
structures and intricate details, potentially leading to information loss or blurring. This
information loss hinders the effective fusion of high-level semantic information with low-
level detail, potentially causing the model to produce inaccuracies in boundary delineation
and detail processing, ultimately affecting the segmentation accuracy and robustness. In
summary, the current TransUNet model’s inflexible attention mechanism and the simplistic
feature reconstruction process limit its performance in complex environments, particularly
when precise detection of fine structures like cracks is crucial.

3. Improvements to the TransUNet Algorithm
This paper, therefore, proposes an improved TransUNet crack segmentation algorithm

to enhance the model’s adaptability and segmentation accuracy in complex scenarios.
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Figure 2 shows the structure of the improved TransUNet algorithm. The enhancement
focuses on the attention mechanism within TransUNet, replacing the traditional fixed atten-
tion configuration with an adaptive multi-head self-attention mechanism. This adaptive
mechanism dynamically adjusts the number and distribution of attention heads based
on the characteristics of the input image. This adjustment enables the model to more
accurately capture key information related to cracks in diverse image scenes, reducing its
sensitivity to background noise and improving the reliability of the segmentation results.
In addition, to address the issue of information loss during the upsampling process, a gated
mechanism-based decoding module (GRU-T) is introduced into TransUNet’s decoder. As a
recurrent neural network unit, GRU-T utilizes its built-in gating mechanism to effectively
control the flow of information, retaining critical feature information while minimizing
redundancy and noise.
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3.1. Adaptive Multi-Head Self-Attention Mechanism

The adaptive multi-head self-attention mechanism is an enhanced attention mecha-
nism designed to improve adaptability across various image scenarios. Unlike the tradi-
tional multi-head self-attention mechanism, this adaptive approach dynamically adjusts the
number and weight distribution of attention heads, allowing the model to flexibly optimize
attention configurations based on the features of the input image. This capability enables
the model to capture key information more effectively, especially in complex backgrounds
or high-noise environments, thereby improving segmentation accuracy and reducing sensi-
tivity to irrelevant information. The adaptive multi-head self-attention mechanism extracts
high-dimensional features through convolutional layers and then dynamically adjusts the
number of attention heads based on the complexity of the input features and assigns the
most suitable weights to each attention head. The final output is a fused attention map
containing the crucial information. Figure 3 is the structure of the adaptive multi-head
self-attention mechanism.
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3.2. GRU-T

The gated recurrent unit (GRU) [33] is a variant of the recurrent neural network (RNN)
designed to solve the problem of gradient vanishing and exploding gradients in standard
RNNs. By introducing a gating mechanism, GRU enables the network to better capture
dependencies in long sequences while reducing computational complexity.

In TransUNet, the decoding process relies on simple convolution operations for feature
reconstruction. While this approach can partially restore spatial resolution, it fails to fully
exploit and utilize the rich feature information transmitted from the encoder to the decoder.
Especially when dealing with images involving complex structures and abundant details,
it may lead to loss or blurring of information. The GRU-T module is therefore introduced
to enhance the recovery of crack details during the upsampling process and improve
the completeness of crack segmentation. The structure of GRU-T is shown in Figure 4.
It leverages GRU to strengthen shallow and deep features and is then fused with the
downsampled features. This approach effectively preserves critical crack information.
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The structure of the GRU is shown in Figure 5. GRU uses two gating mechanisms
(reset gate and update gate) to flexibly control the flow of information. It can make effective
use of past information and quickly update the current hidden state as needed.

The principles of the GRU are as follows:
The update gate determines the extent to which historical information and current

information are used to update the current hidden state. At time t, the update gate is
as follows:

zt = σ(Wz · [ht−1, xt]) (1)
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where zt is the gated update signal, the size of zt determines the degree of memory of the
candidate hidden state, ht−1 is the historical hidden state, xt represents the input data at
time t, Wz is the weight matrix, and σ is the sigmoid function.
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The reset gate determines how much historical information is retained. The reset gate
at time t is as follows:

rt = σ(Wr · [ht−1, xt]) (2)

where rt is the reset signal; the larger the reset signal value, the more historical information
needs to be remembered, and Wr is the weight matrix.

Under the action of the update gate zt and reset gate rt, the candidate hidden state
and hidden output state ht at the current time can be updated as follows:

ht = (1 − zt) ∗ ht−1 + zt ∗
∼
ht (3)

Among them, the candidate hidden states are

∼
ht = tanh(W · [rt ∗ ht−1, xt]) (4)

In this equation, tanh is the hyperbolic tangent function, and the candidate hidden
state is responsible for fusing the information features of the input data and the historical
data. This operation is related to the reset signal rt obtained by the reset gate. ht represents
the final cell state at the current time, which includes two processes: forgetting and remem-
bering. The product of (1 − zt) and the hidden state ht−1 at the previous time represents
the forgetting process. The closer zt is to 1, the more information will be forgotten at the
previous time. The product of zt and the candidate hidden state represents the remember-
ing process, and the size of zt determines the memory degree of the candidate hidden state,
that is, how much of the previous hidden state is retained.

3.3. Orthogonal Skeleton Method

The orthogonal skeleton method is a technique for analyzing geometric features by
extracting the object’s skeleton and measuring its distance to the edges. It has strong
robustness to image noise and edge irregularities because the skeleton is typically located
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in the central region of the object, and it is less affected by edge noise. This method is
especially suitable for handling objects with complex shapes.

The method first preprocesses the image (denoising, grayscale conversion, and bina-
rization). Then, a thinning algorithm is employed to extract the skeleton of the object, which
represents the geometric center of the object. The orthogonal direction (perpendicular to
the skeleton) for each skeleton point is calculated, and the distance from the skeleton point
to the object’s edge is measured along this direction. These orthogonal distances are used
to analyze the geometric characteristics of the object, such as its width and shape, especially
for the accurate calculation of crack widths.

4. Experiments and Results
4.1. Dataset

In this study, two datasets are used for model training: the CFD dataset and the
concrete crack dataset. The CFD public dataset consists of 118 crack images with a resolution
of 480 × 320 pixels, containing noise such as water stains and shadows. The concrete crack
dataset is a self-made dataset obtained by capturing images of concrete surface cracks using
a camera. It contains 332 images with a resolution of 224 × 224 pixels, designed to test the
model’s performance in practical engineering applications.

Given that both datasets are relatively small and the proposed model requires input
images of 256 × 256 pixels, data augmentation techniques are applied. These techniques
include random cropping, brightness adjustment, contrast adjustment, and angle rotation.
As a result, the CFD dataset was expanded to 3658 images, and the concrete crack dataset
was expanded to 4700 images. Each dataset was randomly divided into a training set and a
test set in an 8:1 ratio. When training data are limited, the model may overly rely on the
small set of available samples, leading to poor performance on new, unseen data. Data
augmentation effectively increases the size and diversity of the training dataset, mitigating
the risk of overfitting during the training process.

4.2. Experimental Setup and Evaluation Metrics

The proposed model is developed in Python 3.10, with the open-source deep learning
framework PyTorch serving as the network framework. The training process is accelerated
by CUDA 11.8. The hardware environment for model testing includes an Intel® Xeon®

Platinum 8375C CPU @ 2.90 GHz and an NVIDIA RTX 4090 GPU with 24 GB of VRAM.
During training, the stochastic gradient descent (SGD) optimizer is used. The model

is trained for 100 epochs with a batch size of 16 and an initial learning rate of 0.01.
The evaluation metrics used in this study include the F1-score, precision (P), recall (R),

and intersection over union (IoU). The P and R are the basic metrics, while the F1-score
and IoU, which are derived from the P and R, are used as the final evaluation indicators.

Precision is the ratio of correctly predicted positive samples to the total number of
samples predicted as positive:

Precision =
TP

TP + FP
, (5)

Recall is calculated as the proportion of all actual targets that are correctly predicted:

Recall =
TP

TP + FN
, (6)

Here, TP is the number of correctly detected targets, FP is the number of incorrectly
detected targets, and FN is the number of missed targets among the actual correct targets.



Buildings 2025, 15, 541 9 of 16

The F1-score takes precision and recall into account, providing a more comprehensive
reflection of the overall performance of the network. It is calculated as the harmonic mean
of these two metrics, as shown in (7):

F1 = 2
Precision × Recall
Precision + Recall

, (7)

4.3. Experimental Results and Analysis
4.3.1. Comparison of Ablation Experiments

To verify the effectiveness of incorporating the adaptive multi-head self-attention
mechanism and the GRU-T module into the transformer’s encoder in the proposed algo-
rithm, an ablation experiment was conducted on the CFD dataset, comparing the modified
model with the original TransUNet under the same conditions. This study was divided
into four groups: Experiment 0 used the original TransUNet, Experiment 1 introduced the
adaptive multi-head self-attention mechanism into the original TransUNet, Experiment 2
improved the decoder of the original TransUNet by using the GRU-T module, and Experi-
ment 3 combined the improvements from Experiments 1 and 2 into the original TransUNet.

Table 1 presents the comparison of the ablation experiment results. Compared to
Experiment 0, Experiment 1 achieves an increase of 2.51% in F1-score and 2.84% in IoU,
demonstrating that the introduction of the adaptive multi-head self-attention mechanism
significantly enhances segmentation performance. However, the processing time increases
from 5899 s to 6513 s, indicating that while performance improves, the self-attention mech-
anism also adds computational complexity, especially with its higher computational cost.
When comparing Experiment 0 with Experiment 2, F1-score increases by 4.82%, and IoU im-
proves by 2.77%, validating the effectiveness of the GRU-T module. The module integrates
the temporal processing capabilities of gated recurrent units (GRU), enabling better fusion
of deep feature representations and shallow edge details. By reducing information loss dur-
ing the decoding process, the GRU-T module enhances segmentation accuracy, particularly
in detecting elongated and irregular cracks. Despite these improvements, the processing
time increases from 5899 s to 6309 s, indicating the additional computational burden is also
introduced by the GRU module. Compared to Experiment 0, Experiment 3 shows an 8.28%
improvement in F1-score and a 3.54% increase in IoU, showing that the combination of
both enhancements significantly improves crack segmentation performance. Despite the
introduction of both modules, the processing time decreases from 6513 s to 5667 s. The
results indicate that the combination of the adaptive multi-head self-attention mechanism
and the GRU-T module leads to optimization of the computation efficiency, reduction of
the redundant computations, and improvement of the processing speed. Furthermore, the
integration of the two mechanisms fully leverages the feature extraction capabilities of the
transformer encoder while optimizing the information reconstruction ability of the decoder,
making the crack detection model more stable and reliable.

Table 1. Comparison of ablation experiment results.

No. Attention
Mechanism GRU-T F1-Score/% IoU/% Time/s

0 80.36 73.52 5899
1

√
82.87 76.36 6513

2
√

85.18 76.29 6309
3

√ √
88.64 77.06 5667

By improving the attention mechanism in TransUNet to an adaptive multi-head self-
attention mechanism, the key information of cracks can be captured more effectively, and
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the robustness of the model across diverse scenarios is also enhanced. The eight-head
attention mechanism effectively balances global context modeling and local feature ex-
traction, capturing multi-scale dependencies while reducing false detections in complex
backgrounds. Although the introduction of the adaptive multi-head self-attention mecha-
nism increases computational overhead due to the complexity of feature extraction and
attention weight calculations, AG-TransUNet incorporates multiple optimization strategies
to ensure that the additional computational cost remains within a manageable range.

Compared to the standard attention mechanism in TransUNet, the adaptive self-
attention mechanism dynamically adjusts attention weight distributions, improving the
model’s ability to focus on crack-related features while reducing redundant information.
To prevent excessive computational costs, the number of attention heads is set to eight,
balancing global and local feature dependencies while avoiding exponential parameter
growth. Furthermore, efficient attention computation methods are employed to reduce re-
dundant calculations and optimize GPU memory utilization, ensuring a rational allocation
of computational resources. At the same time, the GRU-T decoding module, designed for
the upsampling stage, enables better integration of deep and shallow features, reducing
information loss during feature reconstruction and enhancing segmentation accuracy. A
two-layer GRU with 128 hidden units is employed, providing an optimal balance between
computational efficiency and feature refinement. The GRU-based sequential modeling
smooths crack boundaries and mitigates segmentation tasks, while the two-layer config-
uration outperforms single-layer designs without introducing unnecessary complexity.
Ablation experiments show that AG-TransUNet achieves optimal performance in terms of
F1-score and IoU. So, these architectural improvements significantly improve the model’s
ability to segment cracks on concrete surfaces with better accuracy and robustness.

4.3.2. Evaluation of Practical Application

1. CFD Dataset Experiment

To validate the performance of the improved algorithm in the segmentation model,
experiments were conducted on the CFD dataset. The quantitative results of this dataset
under different models are presented in Table 2. The table shows that AG-TransUNet
achieved a precision of 91.26%, an F1-score of 88.64%, and an IoU of 77.06%. Compared
with the original TransUNet model, the improvements were 4.05%, 2.59%, and 0.36%,
respectively. AG-TransUNet demonstrated superior performance in terms of precision,
F1-score, and IoU, resulting in better segmentation outcomes.

Table 2. Comparison of evaluation metrics for different models on the CFD dataset.

Model Precision/% Recall/% F1-Score/% IoU/%

SegFormer 70.32 74.05 72.19 77.63
U-Net 76.28 72.78 73.64 72.59
FCN 77.23 71.03 72.56 71.36

PSPNet 77.29 72.51 74.69 72.04
TransUNet 87.21 85.69 86.05 76.70

AG-TransUNet 91.26 87.87 88.64 77.06

To further illustrate the segmentation performance of the improved model, Figure 6
shows the segmentation results of three images from the test set using different models.
The comparison indicates that algorithms like U-Net perform poorly in crack segmenta-
tion, often resulting in missed detections. By contrast, AG-TransUNet provides a better
segmentation effect, with fewer cases of missed or false detections.
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2. Concrete Crack Dataset Experiment

To further and more comprehensively validate the effectiveness of the improved
model, experiments were also conducted on the concrete crack dataset. Table 3 presents
the quantitative analysis results of different models on this dataset. It can be found that
AG-TransUNet exhibits outstanding performance across all metrics, achieving a precision
of 86.48%, an F1-score of 87.11%, and an IoU of 78.05%. Compared with the original
TransUNet model, AG-TransUNet increased by 2.21%, 5.63%, and 9.07% in these three
metrics, respectively. These results showed that AG-TransUNet is significantly superior
to other segmentation models in terms of precision, F1-score, and IoU and achieved more
accurate crack segmentation.

Table 3. Comparison of evaluation metrics for different models on the concrete crack dataset.

Model Precision/% Recall/% F1-Score/% IoU/%

SegFormer 67.71 76.59 71.85 77.70
U-Net 65.89 65.44 64.29 60.41
FCN 58.80 68.32 63.57 58.34

PSPNet 53.47 63.28 55.19 40.39
TransUNet 84.27 78.30 81.48 68.98

AG-TransUNet 86.48 87.63 87.11 78.05

To visually demonstrate the segmentation performance of the improved model, three
representative images from the test set were selected and compared with different models,
as shown in Figure 7. The comparison revealed that some traditional models exhibit notice-
able shortcomings in crack segmentation, often resulting in missed detections. By contrast,
AG-TransUNet was significantly superior to other models in segmentation accuracy, and
cases of missing and false detection were few, fully proving its excellent performance in
crack detection.
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4.3.3. Orthogonal Skeleton Method and Crack Width

In crack evaluation and detection, the precise measurement of crack width is a crucial
step in assessing structural safety and durability. Crack width not only affects the load-
bearing capacity of the structure but also reflects the extent of structural damage. Accurately
detecting crack width is, therefore, essential for the early identification of potential issues
and the implementation of appropriate maintenance measures. To address this problem,
after accurately segmenting the cracks using the AG-TransUNet algorithm, this study
employs the orthogonal skeleton method to calculate the crack width accurately. Figure 8
shows the central line of the crack extracted by the orthogonal skeleton method.
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To further validate the accuracy of the proposed model in crack width calculation, this
study selected 10 concrete surface cracks from the concrete crack dataset as experimental
subjects. These cracks cover a variety of typical shapes and sizes and have a certain
representativeness. At the same time, to ensure the accuracy of the measurement and the
consistency of the results, a uniform shooting height is used for all crack images to ensure
that the distance between the camera and the crack surface is consistent. This height helps
to avoid image distortion or scale error caused by different shooting angles or distances,
thus improving the accuracy of crack width calculation. Table 4 shows the calculation
results and errors of different crack widths.

As shown in Table 4, the proposed model demonstrates high accuracy and consistency
in calculating crack width. The experimental results show that the model can accurately
measure crack width under the influence of complex fracture morphology, verifying its
application potential in practical engineering.
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Table 4. Analysis of crack width calculation results.

Crack No. Calculated
Width/mm

Actual
Width/mm Error/mm Relative

Error/%

1 3.44 3.26 0.18 5.52
2 6.26 5.97 0.29 4.86
3 4.98 4.72 0.26 5.51
4 4.95 5.00 0.05 1.00
5 4.65 4.87 0.21 4.31
6 13.08 12.95 0.13 1.00
7 12.71 13.06 0.35 2.67
8 16.35 17.21 0.86 4.99
9 22.89 21.75 1.14 5.24

10 23.52 22.69 0.83 3.65

However, compared with the actual crack width, the error sources of the model are
primarily attributed to image quality, crack edge complexity, and the inherent limitations
of the model itself. Low-resolution images, uneven lighting, and noise interference may
degrade the segmentation accuracy, leading to errors. Additionally, irregular or blurred
crack edges, the presence of intersecting cracks, and abrupt width variations could also
introduce errors in skeleton extraction and width estimation. Limitations of the model
itself, such as the approximations in skeleton extraction and potential distortions in feature
reconstruction, may also lead to minor errors. As shown in Table 4, the relative error varies
with different cracks, ranging from 1.00% to 5.52%. Cracks with well-defined edges and
stable widths (e.g., Crack No. 4 and Crack No. 6) have minimal error (1.00%), while cracks
with irregular borders or width fluctuations (e.g., Crack No. 1 and Crack No. 9) show
higher relative error (5.52% and 5.24%, respectively).

5. Conclusions
Concrete surface crack detection is a critical research topic in structural safety, particu-

larly in the safety assessment of roads, bridges, and buildings. Traditional crack detection
methods typically rely on manual inspection, which is not only time-consuming and labor-
intensive but also inefficient. Consequently, the use of deep learning algorithms to automate
crack detection has become a hot point of the current study. TransUNet, a segmentation
algorithm that combines the transformer and U-Net, has shown significant advantages
in crack detection. However, when dealing with the complexity and diversity of images
in a specific environment, the generalization capability of TransUNet can be limited. For
instance, in the presence of other textures, stains, or shadows on concrete surfaces, Tran-
sUNet may be prone to interference, resulting in a noticeable decline in crack detection
accuracy. To address these problems, this paper proposes an improved TransUNet-based
crack segmentation algorithm to overcome the shortcomings of traditional TransUNet in
concrete crack detection. The main conclusions are as follows:

(1) By introducing the adaptive multi-head self-attention mechanism, this study sig-
nificantly enhances the model’s flexibility and accuracy in crack detection. This
mechanism dynamically adjusts the number and distribution of attention heads based
on the features of the input image, allowing the model to autonomously optimize
the allocation of attention resources when processing images of varying complexity.
This enables the precise capture of key crack information. The mechanism is particu-
larly effective in high-noise environments and complex backgrounds, substantially
reducing the probability of false positives and missed detections, thereby providing
support for the accuracy and robustness of crack detection.
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(2) To further improve crack segmentation performance, this study designs and im-
plements a novel decoding module, GRU-T. This module combines the temporal
sequence processing capability of the GRU with the image processing functions
of a traditional decoder, enabling a more effective fusion of deep feature informa-
tion with shallow detail information. The GRU-T module is particularly suited for
handling crack images in complex backgrounds because it can capture fine crack
features and preserve edge details, thereby enhancing segmentation accuracy. Addi-
tionally, the module shows good performance in processing elongated and narrow
cracks, reducing edge discontinuities, and mitigating the impact of noise on the
segmentation results.

(3) This paper proposes a crack width calculation method based on the orthogonal
skeleton line method to address the limitations of traditional methods in measurement
accuracy. By extracting the skeleton line of the crack and calculating the width along
the orthogonal direction, this method can accurately measure the actual crack width,
making it particularly suitable for cracks with complex shapes and blurred edges.
Experimental results demonstrate that the application of the orthogonal skeleton line
method on the dataset used in this study achieves good measurement accuracy. The
method provides a reliable and efficient solution for crack width measurement in
structural health monitoring.

(4) The improved model proposed in this paper demonstrates superior performance
in crack detection and crack width calculation. Experiments on different datasets
fully validate that the model has efficient detection ability. On the CFD dataset, AG-
TransUNet outperforms the original TransUNet with a 4.05% increase in precision, a
2.59% improvement in F1-score, and a 0.36% enhancement in IoU. On the concrete
crack dataset, AG-TransUNet achieves a 2.21% increase in precision, a 5.63% improve-
ment in F1-score, and a 9.07% enhancement in IoU. Additionally, the crack width
calculation method based on the orthogonal skeleton approach achieves an average
error of 3.88%.

(5) Although AG-TransUNet shows better segmentation accuracy and robustness, it still
has some limitations. The model’s performance is affected by image quality, variations
in crack morphology, and environmental conditions, which may affect its general-
ization in different scenarios. Future research will focus on further optimizing the
design of the adaptive multi-head self-attention mechanism and the GRU-T module,
particularly to enhance the model’s segmentation accuracy in complex environments
and reduce the error of crack width calculation.
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