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Abstract: The preliminary assessment of structural status in reinforced concrete (RC) using
visual indicators like surface cracks serves as the primary step in formulating maintenance
and reinforcement strategies. To enhance the efficiency of load identification and damage
assessment, this study proposes a novel method for determining external load levels on
RC beams using structural surface crack distribution images. First, crack distribution char-
acteristics are extracted using image segmentation techniques. Subsequently, mechanical
responses of the beam under different load levels are acquired through the finite element
method (FEM). Then, this study develops a novel correlation index model by analyzing the
relationships between crack distribution images and strain distribution images from the
FEM, enabling accurate identification of the load level that best matches the actual crack
distribution. Finally, a preliminary assessment of the damage state is conducted through
elastoplastic analysis of the RC beam under the optimal load level. Verification analysis
based on multiple experimental beam datasets under different load levels demonstrates that
the mean absolute percentage error of the method is 10.98%, and the damage assessment
results are in good agreement with the crack distribution images.

Keywords: reinforced concrete beam; load evaluation; damage analysis; crack distribution;
image segmentations

1. Introduction

Surface cracks in structures are external manifestations of damage caused by loading,
and indicators such as crack length, width, and spatial distribution are crucial for assessing
the damage state of the structure. Accurately detecting the characteristics of surface cracks
is fundamental for structural safety evaluation and health monitoring. Furthermore, using
surface crack images of beams for rapid and quantitative load level assessment can aid in
determining the degree of damage and guiding subsequent maintenance strategies.

During the process of acquiring crack images at engineering or experimental sites,
inspection personnel can quickly capture crack photos using devices such as cameras or
smartphones. With the development of artificial intelligence and machine vision technolo-
gies, image segmentation techniques based on deep learning [1-4] have become mainstream
methods for structural crack detection and feature extraction. With accurate information on
structural cracks obtained, researchers have analyzed the relationship between structural
crack features and load levels.

For concrete beams subjected to standard loads, the fact that cracks on the beam surface
extend as the load level increases suggests a clear correspondence between load levels
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and crack development [5]. To objectively assess the load level of a structural component,
some studies have focused on the relationship between observable crack features and
load levels. For example, Zhang et al. [6] investigated the regression relationship between
crack height, width, and load level through bending failure experiments on test beams.
Similarly, Li et al. [7] conducted experiments by applying different loads onto the mid-span
of concrete beams and fitted the functional relationship between crack width and load level
using experimental data.

Due to the limitations of traditional measurement techniques, early studies primar-
ily focused on manually selected key features such as crack height and width, and the
regression analysis was used to predict the load level of the structure. With the progress
in machine vision and image processing technologies, the capability to quickly obtain
detailed full-field crack information on structural surfaces (including crack morphology,
location, orientation, and so on) has delivered more precise and comprehensive data for
load assessment and structural health monitoring.

Analysis of surface damage information can further infer the potential load level that
a structure may be subjected to. Xu et al. [8] utilized a multi-layer backpropagation (BP)
neural network model to establish a mapping relationship between the maximum load in
the load history and four-dimensional features (boundary constraints, system parameters,
cracks, and deformation) with structural responses under incremental loading. The results
reveal that the model exhibits prediction errors on both the training and testing sets, with
average absolute percentage errors of 16.46 % and 19.56 %. Davoudi et al. [9-11], based
on the experimental results from RC beams and slabs under monotonic loads, extracted
crack image features using image processing techniques and successfully established the
relationship between crack features and load levels through machine learning methods.
Among load-level estimations for all specimens together, the best normalized root mean
square error (NRMSE) value observed was 17% [9]. Zhang et al. [12] made a correlation
analysis between surface cracks of structures and external loads using machine vision and
numerical simulation, and the mean absolute percentage error (MAPE) for load estimation
based solely on a single measured structural crack image is 20.68%. However, the rela-
tionship between crack image features and load levels is difficult to describe with simple
regression models and, as a result, these studies employed machine learning models to
address this complexity. Nonetheless, machine learning models (especially deep learning
models) require large and accurate datasets, which are difficult to obtain due to the high
cost of experimental data. To address this issue, the use of finite element simulations to gen-
erate large datasets has become an effective way to compensate for the lack of experimental
data and establish the relationship between load levels and crack features.

Finite element simulations provide strain distributions and theoretical crack development
trends under different load levels, thus supplying sufficient mechanical information for load
identification. Although the strain maps derived from dispersed finite element calculations
may not precisely align with the actual crack maps, there is a significant correlation between
the two. Therefore, it is feasible to establish a rapid mapping relationship between structural
crack distribution and load levels by constructing a correlation model. Under the premise that
the crack distribution and direction are strongly correlated with the finite element mechanical
information, comparing the crack angles and distribution positions in the crack image with
finite element results can effectively evaluate the structural load state.

Based on machine vision technology and numerical simulation calculations, this
paper proposes a rapid load and damage evaluation method for RC beams, guided by an
image correlation indicator. The surface crack distribution map is obtained through image
segmentation techniques, and the strain distribution maps of the RC beam under different
load levels are derived using finite element analysis. Furthermore, by incorporating crack
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positions and orientations, a novel image correlation evaluation model is proposed to
quantitatively analyze the relationship between the crack distribution map and the strain
distribution map. By utilizing the correlation indicator at different load levels, the most
probable structural load information can be identified, enabling a detailed analysis of the
structural damage state under the corresponding load. The results of this rapid damage
state assessment will provide valuable technical support for structural maintenance and
reinforcement strategies.

2. Methodology
2.1. Basic Framework

The load estimation framework based on image processing is shown in Figure 1. First,
as shown in Figure 1a, image segmentation techniques were employed to obtain a binary
image of surface cracks and extract the skeleton of the cracks, providing precise crack
morphology information for subsequent analysis and processing. Second, as shown in
Figure 1b, in the load identification module, strain distributions under different load levels
for bending components were determined through finite element elastoplastic analysis.
Using the proposed correlation model, the correlation between crack distribution location,
crack direction, and the magnitude and direction of structural strain was comprehensively
compared, as shown in Figure 1c; the extreme values of correlation at different load
levels indicate the load level that best matches the current crack distribution, as shown in
Figure 1d. Finally, elastoplastic finite element analysis was applied to assess the structural
damage state under the optimal predicted load, as shown in Figure 1e.

2.2. Image Segmentation

A crack segmentation model was trained using U-Net with EfficientNet-B7 as the
backbone network to extract crack features. The labeled crack mask images served as the
ground truth to train the model to distinguish between background pixels and crack pixels.
A flowchart of image segmentation is shown in Figure 2.

The U-Net architecture consists of an encoder—decoder structure with skip connections
in a U-shape. The encoder progressively compresses the spatial information of the input im-
age through a series of convolutional and pooling operations, extracting high-level features.
The decoder progressively restores the spatial resolution of the image through upsampling
operations. Skip connections link feature maps from intermediate layers of the encoder
with corresponding upsampled feature maps from the decoder, preventing information
loss during the downsampling process. EfficientNet optimizes the network structure in
multiple dimensions using a compound scaling method, resulting in a smaller model with
higher efficiency and improved performance. Compared to other versions of EfficientNet,
EfficientNet-B7 achieves higher accuracy and stronger feature representation capability.

After performing semantic segmentation of cracks, a binary image containing only
crack information is generated. The Sigmoid function at the output layer maps each pixel
value to either 0 or 1, representing ‘no crack’ or ‘crack present’, respectively. Since crack
pixels occupy a small proportion of the entire image, Dice loss is used as the loss function
to improve the segmentation accuracy of small objects [13]. Additionally, to enhance the
handling of small objects and complex backgrounds, focal loss [14] is introduced. The total
loss can be expressed as

2TP 1 . N
Ltotal = Lpice + Lrocal =1 — TP+ FP+EN _ N;(yilogyi + (1 —yi)log(1—79:)) (1)
where TP represents true positive, and FP and FN represent false positive and false negative,
respectively. y; is the target value at the i-th input, §; is the predicted value at the i-th input,
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and N represents the number of labels.

a) Finite Element Analysis b) Image Segmentation
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Figure 1. Technical roadmaps of image-based load estimation.
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Figure 2. Flowchart of image segmentation.
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After obtaining the binary crack image, the crack skeleton can be further extracted.
Skeleton extraction methods are well established, with common algorithms including ZS
algorithm [15], LW [16], WT [17], and deep learning-based skeleton extraction methods [18].

2.3. Load Evaluation Model Based on Crack Image

When the load level of a finite element model approaches the real load, the strain
distribution exhibits a strong correlation with the actual crack distribution. Therefore,
when the actual load is unknown, the load on the beam can be inferred by comparing the
finite element strain distributions at different load levels with the crack distribution and
identifying the best-matching strain pattern.

2.3.1. Finite Element-Based Structural Strain Distribution Calculation

The structural strain field of an RC beam under different load levels can be obtained
through numerical simulation methods, such as finite element analysis.

A typical finite element model of an RC beam is shown in Figure 3. The white solid
elements represent the concrete, the red rod elements represent the reinforcement, and the
blue arrows indicate the application points of the loads. Using functions of the ultimate
load from Concrete Structure Design Code GB 55008-2021 [19], finite element elastoplastic
analysis is performed to obtain the stress and strain states at the surface nodes of the
structure under different load levels.
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Figure 3. The finite element model of the RC beam.

According to strength theory, the location and direction of cracks are closely related to
the magnitude and direction of the primary principal strain in the structure. To simplify
the analysis, the strain field obtained from finite element analysis is further classified into
high-strain and low-strain regions. Based on the concrete failure criteria, nodes within the
high-strain region are classified according to the following standards: the first principal
strain €1 exceeds the concrete’s ultimate tensile strain &, or the third principal strain &3
exceeds the concrete’s ultimate compressive strain ¢,. According to Concrete Structure
Design Code GB 55008-2021 [19], the values of ¢, = 0.0001 and ¢, = 0.0033 are used.

For ease of correlating the crack image with the strain calculation results, the structural
surface strain field is converted to a strain field with physical positions consistent with
the pixel locations in the crack image using linear interpolation. A binary image of the
high-strain region, which includes the first principal strain direction information, is shown
in Figure 4. In this image, the gray region represents the high-strain area, the black
region represents the low-strain area, and the white arrows represent the first principal
strain directions.
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Figure 4. Strain and direction distribution information diagram obtained by finite element analysis.

2.3.2. Image-Based Correlation Evaluation Model

The physical quantities represented by the crack distribution image and the strain
distribution image obtained from finite element calculations are different and cannot be
directly compared. However, the formation and propagation of cracks in an RC beam
are closely related to the magnitudes and directions of strains. Therefore, establishing an
accurate correlation model between these two types of information is crucial for predicting
the load based on crack distribution.

According to strength theory, the magnitude of the first principal strain is an important
indicator for determining whether cracks will form in a concrete structure. The proba-
bility of crack formation is highly positively correlated with the magnitude of the first
principal strain at a given location. Furthermore, when simplifying the concrete material
as an isotropic, homogeneous material, cracks typically propagate along a direction per-
pendicular to the first principal strain. Therefore, the correlation between the mechanical
information distribution and the structural crack distribution will be quantified from two
aspects: (1) the correlation between the position of crack points and the magnitude of the
first principal strain, and (2) the correlation between the crack direction and the perpendic-
ular direction of the first principal strain. Mathematical models are established for each of
these two types of correlations.

To describe the correlation between the position of crack points and the magnitude of
the first principal strain, the pixels in different strain regions are first classified. For crack
point A and high-strain region B, non-crack points and low-strain regions are represented
as A and B, respectively. Therefore, crack points located in the high-strain region can be
represented as A N B, while crack points in the low-strain region can be represented as
AN B, as shown in Figure 5. N, denotes the total number of pixels in the image, Nj, is the
number of crack pixels in the high-strain region, and N; is the number of crack pixels in
the low-strain region. Nj, is the number of all pixels in the high-strain region, and N,
is the number of all pixels in the low-strain region. The correction factor f; = N /Ny,
is defined as the proportion of the cracked area in the high-strain region relative to the
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total area. Similarly, 8, = N;/Nj, represents the proportion of the cracked area in the
low-strain region.

Since this correlation model selects the maximum value of the correlation results, crack
points located in the high-strain region, which align with the theoretical expectation, will
have their impact improved. For crack points located in the low-strain region, where the
theoretical and actual conditions differ, the influence of these points needs to be reduced.
Therefore, the correlation index s; ;) for different pixel points is expressed as shown in
Equation (2).

S = B, (xiy) €A ﬂﬁ 2
& *132, (xl-,y]-) € ANB

Strain distribution

Composite image

Crack distribution image

[5]

Figure 5. Coordinate mapping process.

To measure the correlation between the crack direction and the perpendicular direction
of the first principal strain, it is first necessary to calculate the crack inclination angle
at each point along the crack skeleton. A square analysis window is defined for each
crack point along the skeleton of the crack image, and in this study, the window size
is 20 x 20 pixels. Then, the spatial coordinates of all the crack points within this square
window are linearly fitted, and the inclination angle of the fitted line is taken as the
inclination angle (6c); ; € [0,180°) at that crack point, where i and j represent the row and
column of the crack point in the crack image, respectively, and (9 f> .. €[0,180°). Further,

i,j
the first principal strain direction at that crack point is determined from the finite element
calculation results, denoted as (9 f) . €]0,180°). Thus, the absolute value of the minimum
i,j
angle difference ’AQZ-,]-‘ between the crack inclination angle and the perpendicular direction
of the first principal strain at each crack point can be expressed as

A6 = min((6c);; — ((ef)i,j — 90 >,|180 — (6);; + ((ef)ilj —90°)) @)

After considering both the magnitude and direction as the two key factors, the cor-

relation index S between the actual crack distribution image and the structural strain
distribution image is defined as

5 il X SI(\;,;);L(]C\(])IS(AQZ‘,]')) @
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where m and 1 represent the numbers of rows and columns of the pixel matrix, respectively.
To simplify the calculation and improve the efficiency of load identification, a finite-
dimensional set of load levels I is considered in this paper:

I={F=kP,/N}, k=1,...,N (5)

where N is taken as 10. In general, the predicted load differentiation of 0.1 P, can meet the
requirements for preliminary diagnosis of engineering structures.

The maximum correlation load levels F; can be indicated by the correlation index
between strain distribution and crack distribution under different load levels:

F = argrgklg(sk) (6)

where Sy is the correlation index between the strain distribution diagram and the crack
distribution diagram under the k-th load level.

3. Experiment and Analysis
3.1. Data Sources

The data are derived from two sources: (1) destructive tests of six different RC beams
reported in previously published research [20-24], which includes crack distribution char-
acteristics under different load levels, material strengths, reinforcement ratios, and loading
modes; and (2) simply supported beam four-point bending tests conducted in a mechanical
laboratory. The literature and experimental data together constitute seven analysis cases,
with two experiments conducted under three-point bending and five under four-point
bending. In the seven selected analysis cases, experimental results under different load
levels were recorded and used to construct 25 experimental conditions. The specific mate-
rial and structural parameters of each experimental beam are shown in Table 1, including
the cross-sectional width b, height &, total span /, reinforcement ratio p, concrete elastic
modulus E,, steel elastic modulus Es, concrete compressive strength fc, steel yield strength
fy, and ultimate load P,,. Table 2 shows the reinforcement details for each RC beam.

Table 1. Information of individual simply supported beam conditions.

Beam
Number

Recorded
Load

I b h [y f. E. Es 1, y
(mm) (mm) (mm) (%) (MPa) (GPa) (GPa) (MPa) (kN)

Test

0.6 Py
0.8 P,
1.0 P,

1400 120 200 1.28 11.9 28 200 360 78.37

S1-2 [20]

0.8 P,

3280 284 300 1.0 494 33.03 210.5 632.3 224

B-1[23]

1.0 P,

3500 200 400 0.7 43.8 27.84 200 712.58 226

S3-1[22]

0.50 P,
0.57 P,
0.71 P,
0.80 P,
091 P,

2000 150 250 1.06 34.2 31.64 200 525 82.94

S4-1[22]

0.51 P,
0.62 P,
0.72 P,
0.81 P,
09 P,

2000 150 250 1.41 34.2 31.64 200 525 1114
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Table 1. Cont.
Beam Recorded 1 b h P f. E,. E; fy P,
Number Load (mm) (mm) (mm) (%) (MPa) (GPa) (GPa) (MPa) (kN)
05P,
0.6 P,
D60 [21] 0.7 P, 4200 250 664 0.74 55 50 50 1100 169.6
0.85 P,
0.95 P,
0.58 P,
0.74 P,
PLS300 [24] 0.84 P, 1800 175 300 0.65 448 36.3 185 457.7 95
0.95 P,
1.0 P,
Table 2. Cross-sectional reinforcement arrangements of bending beam specimens.
Test S1-2 B1 Beam S3-1 Beam S4-1 PLS300 D60
L T %@M o8 N 28
S|l tos@too g 8@100 51@6@100 gﬂﬂ_}ée@mo g L g8@100
L 014 12 12
o o o oJ-p14 = 18 50 750! :17-5:—~Q18 ::::—@18

The experimental data collected from different loading stages provide the basis for
validating the load and image coupling method. Figure 6 illustrates the experimental setup
for the four-point bending test beams. The structural dimensions and loading configuration
of the test beams are shown in Figure 7. The surface damage information of the beams
at different load levels was recorded by photographing the beams. Image segmentation
and feature extraction methods were then used to generate crack maps. The crack skeleton
distributions of the test beam at different load levels of 0.6 P,, 0.8 P,,, and 1.0 P, are
shown in Figure 8. When the load reached 0.6 P,, the test beam exhibited noticeable
cracking. As the load increased, the number of cracks gradually increased, the length of the
cracks extended outward, and the crack inclination angles gradually reflected the bending
characteristics of the beam. The number of crack pixels in the crack distribution map
also gradually increased. These continuously changing crack features provide important
evaluation criteria for the load estimation.

Figure 6. Test setup.
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Figure 7. Loading pattern for the test beam.

(a) At 0.6 P,

(b) At 0.8 P,

(c) At 1.0 P,

Figure 8. Crack distribution diagrams of the test beam under three load levels.

3.2. Load Identification Results
3.2.1. Analysis of the Impact of Positional and Angular Information on Load Identification
Results

The crack height and angle from the crack information were both used as reference
indicators for load assessment through the correlation model. To evaluate the significance
of crack position and crack angle information, calculations were performed separately for
two scenarios: considering only location information and comprehensively considering
both location and angle information. The differences between these two approaches are
compared to evaluate the impacts of angle on load assessment accuracy, as illustrated
in Figure 9.

0.007
=@==().6Pu 0.8Pu 1.0Pu

0.006 of
0.005

0.004

0.003

Correlation index

0.002 | @ & & & & @ @ ®

0.001

0.9Pu Pu

0.6Pu 0.7Pu 0.8Pu

Load levels

0.3Pu 0.4Pu 0.5Pu
(a) Load identification results considering only position information

Figure 9. Cont.
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(b) Load identification results considering both position and angle information

Figure 9. Comparison of load identification results with and without angle information for the
teat beam.

In Figure 9, the X-axis represents ten load levels in the finite element analysis, and the
Y-axis represents the correlation coefficient results. The three curves represent the crack
images under three different load cases. The crack images are matched with the ten finite
element analysis results, and the load with the highest correlation coefficient is selected
as the optimal load estimate for that image. The optimal load is marked with red dots in
the figure.

When only positional information is considered, the load identification results for
the crack map under different load levels are as follows: for 0.6 P,, the identified load
is 0.5 P,; for 0.8 P,, the identified load is 0.5 P,; and for 1.0 P,, the identified load is
0.7 P,, with an average error of 28.05%. When both positional and angular results are
considered together, the load identification results for the crack map are as follows: for
0.6 P,, the identified load is 0.5 P,,; for 0.8 P, the identified load is 0.8 P,;; and for 1.0 P, the
identified load is 0.9 P, with an average error of 8.89%. These results show that when both
positional and angular results are considered together, the accuracy of load identification is
significantly improved.

3.2.2. Analysis of the Impact of Incomplete Information on Load Identification Results

During the process of acquiring structural crack images, structural damage assessment
is frequently incomplete due to factors such as occlusion or other observational constraints.
To assess the impact of incomplete structural crack information on load identification results,
the test beam from Figure 10 is taken as an example, showing a distribution diagram of
cracks with varying levels of completeness in the test beam under 0.8 P,,. The three levels of
crack completeness are defined as follows: the left one-third of the beam, the left two-thirds
of the beam, and the complete beam. Based on the correlation model, load identification is
performed for all three cases.

(a) The left one-third of the beam

Figure 10. Cont.
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(b) The left two-thirds of the beam

(c) The complete beam

Figure 10. Distribution diagram of cracks with varying levels of completeness in the test beam under
aload of 0.8 P,,.

The load identification results for the three different levels of completeness are shown
in Figure 11. Through comparison, it can be observed that the correlation coefficient of
complete crack image information is generally smaller than that of incomplete crack image
information. This is because the better the completeness of the crack image, the more
information the crack contains, and the accumulation of information errors leads to a larger
average error. At the same time, since the correlation coefficient is negatively correlated
with the average error, the trend of the above results can thus be obtained.

.0048 . .
0.0048 =0—Complete beam Two-thirds beam One-third beam
[ ]
0.0043
< °
=
.£ 0.0038
=
8
=
00033 | —e —— o
S
0.0028
0.0023 Il L 1 1 Il Il 1 L J

03Pu 04Pu 05Pu  0.6Pu  0.7Pu 0.8Pu 0.9Pu Pu
Load Levels

Figure 11. Comparison of load identification results under different test beam completeness levels.

The results show that, based on crack image information at the three different levels
of completeness, the final load estimation for all cases is 0.8 P, which matches the actual
load level. From this, it can be concluded that the proposed load identification method is
highly robust to variations in the amount of crack information, and even one-third of the
beam’s information is sufficient to meet the load identification requirements.

3.2.3. Load Identification Analysis of Crack Image Sample Set

In this section, a load identification analysis is conducted for the 25 cases in the sample
set, and the calculation results are shown in Figure 12. It further presents the optimal load
estimation results for seven different types of reinforced concrete beams under 25 different
crack distributions. The estimation F for each beam is marked differently. Among the
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25 final load estimates obtained with the proposed method, 24 results (96% of the total) have
relative errors within 30%, and 14 of those have relative errors of less than 10%. Overall,
the mean absolute percentage error (MAPE) for the 25 results compared to the true values
is 10.98%. The calculation results indicate that the proposed method can achieve good
predictive accuracy. Additionally, the method does not require specific experimental data
for each structure. By fully utilizing numerical simulation techniques, this method can be
applied to various reinforced concrete beams, demonstrating its excellent generalizability.

140 .
— ideal trend

~120 +30% relative error
3
Q +40% relative error
<100 o S4-1
. v S3-1
g 80 s PLS300
s L]
E o D60
S = B-1
= . 51-2

40 « Test

20

30 40 50 60 70 80 90 100
True load level(%P,)

Figure 12. Optimal load estimations of seven beams under different real load levels.
The load identification errors for the following cases are calculated as shown in Table 3.

Table 3. The maximum-minimum errors of the load identifications.

Beam Numbers Max Error (%) Min Error (%)
Test 16.67 0
S1-2[19] 25 25
B-1[22] 0 0
S3-1 [21] 17.65 2.78
S4-1 [21] 25 1.96
D60 [20] 20.69 0
PLS300 [23] 33.33 5.26

Based on the error statistics from matching the crack locations and angles in the seven
RC beam experiments with the magnitude and inclination of the first principal strain
from the finite element analysis, the load magnitude was identified. The average error
for the load estimation of the 25 different crack images was 10.98%. A comparison of the
experimental results shows that the test outcomes can be accurately identified under both
three-point bending and four-point bending loading modes. Additionally, as the load
increases, the significant growth in crack information leads to more accurate identification
results for larger loads compared to smaller loads.

3.3. Structural Damage Estimation

When concrete material exceeds the elastic stage and enters the plastic damage stage,
the finite element method employs a damage factor d to describe the extent of damage.
When the damage factor d = 0, the material is in the elastic stage with no damage; when
d = 1, the material is completely destroyed. During the damage development stage, the
damage factor d ranges between 0 and 1.
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According to the energy principle, the formula for the damage factor is given
as follows:
i=1--" @)
E()S

where o is the stress; E is the initial elastic modulus; and ¢ is the strain.

After performing load estimation on the structure, sufficient prior information is
obtained. This provides a foundation for further analysis of the structural damage state.
The damage factor is then used to assess the stiffness loss of the structure during the
loading process.

Figure 13 presents a comparison of the crack distribution and damage factor in the
experimental beam subjected to four-point bending. By comparing the crack distribu-
tion and damage factor distributions under three load cases in Figure 13, it is observed
that the distribution of the damage factor shows a strong positive correlation with the
crack distribution.
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(a) Comparison of the crack distribution and damage factor under a load of 0.6 P,
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(b) Comparison of the crack distribution and damage factor under a load of 0.8 P,
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(c) Comparison of the crack distribution and damage factor under a load of 1.0 B,

Figure 13. Damage factor distributions of the test beam under different load levels.

As the load increases, the damage factor and cracks develop simultaneously. At a
load of 0.6 P, the developments of cracks and damage factors in the pure bending section
have essentially saturated. After that point, no significant increase is observed as the load
continues to rise. However, in the bending—shear section, the damage factor continues to
rise steadily until collapse occurs.

4. Conclusions

Structural damage assessment is a classic inverse problem, and load identification
provides essential prior conditions for damage evaluation. Evaluating structural loads
using image information is a feasible method. To accurately identify structural loads, this
paper analyzes the load identification based on 25 different loading conditions of seven
beams from the published literature. Based on the observations and discussions in the
previous sections, the conclusions are drawn as follows:
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e Load evaluation and damage analysis based on surface crack images can achieve
non-destructive, real-time, and efficient monitoring. By utilizing automated image
processing techniques, manual intervention is reduced, improving detection accuracy
and safety.

e By comparing the location and angle information between the crack images and the
finite element stress—strain field, a correlation model between the two is established.
The load level corresponding to the maximum correlation coefficient is selected as the
final identified load. The average error of load identification is only 10.98%, achieving
the goal of rapid and quantitative load assessment.

o  The load obtained from the crack image provides sufficient prior conditions for assess-
ing the structural damage state. Therefore, the structural damage state is evaluated
using structural damage factors.

o The load and damage identification method proposed in this paper exhibits strong
generality and is not dependent on specific structural forms.

In future work, the impact of cracks caused by corrosion of the structure will
be considered, and the crack width will also be considered to further optimize the
identification method.
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