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Abstract: The study of vibration isolation devices has become an emerging area of research
in view of the extensive damage to buildings caused by earthquakes. The ability to effec-
tively isolate seismic vibrations and maintain the stability of a building is thus addressed
in this paper, which evaluates the effect of horizontal ground excitation on the response
of a structure isolated by a coupled isolation system consisting of a non-linear damper
(QZS) and a friction pendulum system (FPS). A single-degree-of-freedom system was used
to model structures whose bases are subjected to seismic excitation in order to assess the
effectiveness of the QZS–FPS coupling in reducing the structural response. The results
obtained revealed significant improvements in structural performance when the QZS–FPS
system uses a damper of optimum stiffness. A 30% reduction in displacement was recorded
compared with QZS alone for two signals, one harmonic and the other stochastic. The
response of the QZS–FPS system with soft stiffness to a harmonic pulse reveals ampli-
tudes reaching around eight times those of the pulse at low frequencies and approaching
zero at high frequencies. In comparison, the rigid QZS–FPS coupling has amplitudes 0.9
and 3.5 times higher than those of the harmonic signal. Thus, the resonance amplitudes
observed for the QZS–FPS system are lower than those reported in other studies. This
analysis highlights the performance differences between the two types of stiffness in the
face of harmonic pulses, underlining the importance of the choice of stiffness in vibration
management applications. The stochastic results show that on both hard and soft soils, the
new QZS–FPS system causes structures to vibrate horizontally with maximum amplitudes
of the order of 0.003 m and 0.007 m respectively. So, QZS–FPS coupling can be more
effective than all other isolators for horizontal ground excitation. In addition, the study
demonstrated that the QZS–FPS combination can offer better control of building vibration
in terms of horizontal displacements.

Keywords: building structure; mechanical system; non-linear isolation; amplitude; damper;
seismic control

1. Introduction
In building structures and mechanical systems, non-linear vibration isolation is con-

sidered an effective method for protecting a structure and is becoming increasingly popu-
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lar [1–4]. A non-linear vibration isolation device alone or a hybrid device has the potential
to significantly reduce the fundamental frequency of the protected structure to minimize
the transmission of force or displacement even for low-frequency excitation cases, where
traditional vibration isolations are generally not very effective [5].

Passive control devices are systems that do not require an external power source. The
forces developed in these devices due to building movements are used by the devices them-
selves. These devices include basic isolation systems and tuned mass dampers (TMDs),
quasi-zero stiffness (QZS) systems, and friction pendulum systems (FPSs) [6,7]. Previous
research has demonstrated the importance of isolation bearings as they play a key role in
facilitating the transmission of forces from the superstructure to the substructure [3,8–10].
The QZS is a system generally used to damp vertical forces and its effectiveness has been
demonstrated on several occasions by researchers [10–15]. This quasi-zero stiffness system
has been studied by numerous authors, who have presented it either as a combination of
springs with positive and negative stiffness close to zero overall [16] or as a spring with
negative stiffness when the latter is almost zero [9,17]. Research on QZS dampers has been
conducted to reduce earthquake-induced building movements. Several studies have evalu-
ated the responses of QZS systems under both harmonic and random excitations [17,18].

The friction pendulum system (FPS) is frequently used in civil engineering structures
for isolation purposes. Due to its geometrical design, the FPS provides an effective fric-
tion isolation system by combining sliding motion with restoring force [19–23]. Some
studies have evaluated the seismic reliability of an FPS-isolated base structure by treating
isolator characteristics and principal earthquake characteristics as independent random
variables [24].

For greater efficiency, isolation systems have often been combined with NS–TMD [25],
NS–FPS [26], FPS–TMD, FPSIS [27], and QZS–inerter. In this study, we combine quasi-zero
stiffness and frictional pendulum systems (QZS–FPS). In this work, the QZS used is an iso-
lator that combines positive and negative stiffness to achieve near-zero stiffness. Combined
with the FPS, the aim is to create a system with low stiffness around the equilibrium point,
effectively isolating the more destructive low-frequency vibrations and dissipating energy
by binding residual displacements. Building on previous work carried out on the QZS
and FPS individually, this analytical and numerical study of the QZS–FPS combination
provides a non-linear isolator of the horizontal ground excitation, more effective than either
of them individually. The amplitude and time response curves were used respectively to
assess the stability and performance of the new system in the frequency domain and to
analyze the dynamic behavior of the isolated structures over time.

2. Equation of Motion
2.1. Equation of Motion for the Case of Quasi-Zero Stiffness

Figure 1 shows a QZS-isolated structure subjected to a horizontal external excitation

(
→..
u g) and whose response

→
u b is determined from Equation (1).

→
Pbase +

→
Rsol +

→
F armo +

→
T elon +

→
F z = mb

→
ab (1)

where:
→
Pbase : the weight of the base;
→
Rsol : the reaction of the ground due to the load of the building;
→
F armo: the inherent damping force of the base conferred on it by the various materials of
which it is made;
→
F z: the force of the non-linear elastic damper;
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→
T elon: the elongation force of the structure imparted by the steel;
→
ab: the acceleration felt at the base (foundation);
mb: the mass of the base above the isolation system;
γ: the damping ratio of the non-linear damper to that of the structure;
k: the ratio of the stiffness of the damper structure to that of the structure.
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By replacing each term in Equation (1) by its value, Equation (2) is obtained.

cb
.
ub + kzu3

b + cz
.
ub + kbub = −mb.

( ..
ub +

..
ug
)

(2)

Expanding Equation (2) gives Equation (3)

..
ub +

(
2εbωb

.
ub + 2εbωbγ

.
ub
)
+ kω2

bu3
b + ω2

bub = − ..
ug (3)

where:
εb =

cb
2mbωb

(4)

ωb =

√
kb
mb

(5)

γ =
cz

cb
(6)

k =
kz

kb
(7)

The dimensionless form of the equation of motion is obtained from the time scale
Equation (8)

τ = ωbt (8)

and taking the excitation signal, Equation (9)

..
ug = a0X0(τ) (9)

where a0 is the seismic intensity scale, which has the same dimension as the signal ac-
celeration, and X0(τ) is the time non-dimensional function describing the excitation
signal history.
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By integrating Equations (4)–(9), Equation (10) is obtained

..
φb + 2(1 + γ)εb

.
φb + φb + k

a2
0

ω4
b

φ3
b = X0(τ) (10)

where:

φb =
ω2

b
a0

ub (11)

For the scaled function X0(τ) harmonic, Equation (12)

X0(τ) = X0 sin(βτ +∅) (12)

and using the harmonic balance [28], the response of the structure will be expressed as
Equation (13)

φb = Xbsin( βτ) (13)

with β the scaled pulsation of the signal used in Equation (14)

−Xbβ2sin(βτ) + (2εb(1 + γ)Xbβcos(βτ)) +

(
k

a2
0

ω4
b
(Xb sin(βτ))3 + Xb sin(βτ)

)
= Xg sin(βτ +∅) (14)

However, from Equations (15) and (16)

sin(βτ)3 =
3
4

sin(βτ)− 1
4

cos(3(βτ)) (15)

sin( βτ +∅) = sin(βτ)cos(∅)− cos(βτ)sin(∅) (16)

And neglecting the terms in sin (3(βτ)) [18,29–34], Equation (14) becomes Equation (17).

−Xbβ2sin(βτ) + (2εb(1 + γ)Xbβcos(βτ) ) +

(
3
4

k
a2

0

ω4
b

X3
bsin(βτ) + Xb sin(βτ)

)
= Xg(sin(βτ)cos(∅)− cos(βτ)sin(∅)) (17)

From Equation (17), we can deduce Equations (18) and (19);

−Xbβ2 +
3
4

k
a2

0

ω4
b

X3
b + Xb = Xgcos(∅) (18)

2εb
(
1 + γ)Xbβ = Xgsin(∅) (19)

Squaring Equations (18) and (19) and adding them together gives Equation (20):

9
16

k2 a4
0

ω8
b

X6
b +

3
2

k(1 − β2)
a2

0

ω4
b

X4
b + ((1 − β2)

2
+ 4ε2

bβ2(1 + γ)2)X2
b − X2

g = 0 (20)

After posing Equation (21),
ε = εb (1 + γ) (21)

Equation (20) becomes Equation (22)

9
16

k2 a4
0

ω8
b

X6
b +

3
2

k(1 − β2)
a2

0

ω4
b

X4
b + ((1 − β2)2 + 4β2ε2 )X2

b − X2
g = 0 (22)
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2.2. Equation of Motion for the Case of Quasi-Zero Stiffness Coupled to the FPS

Figure 2 shows the structure isolated by the coupling of the QZS and the FPS. The
equation of motion governing the behavior of this structure under external excitation is
determined from Equation (23).

→
Pbase +

→
Rsol +

→
F armo +

→
T elon +

→
F z +

→
F b = mb

→
ab (23)

where:
→
Pbase : the weight of the base;
→
Rsol : the reaction of the ground due to the load of the building
→
F armo: the inherent damping force of the base conferred on it by the various materials from
which it is made;
→
F z: the force of the non-linear elastic damper;
→
F b: the force of the double FPS;
→
T elon: the elongation force of the structure conferred on it by the steel;
→
ab: the acceleration felt at the base (foundation);
mb: the mass of the base above the isolation system;
γ: the ratio of the damping coefficient of the non-linear damper to that of the structure;
k: the ratio of the stiffness of the damper to that of the structure;
µ
( .
ub
)
: the sliding friction coefficient;

kb: the stiffness constant of the structure;
kz: the stiffness constant of the non-linear damper;
fmax: the maximum value of the coefficient of friction.
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By replacing each term in Equation (23) with its value, Equation (24) is obtained.

..
ub +

1
mb

(cb
.
ub + kzu3

b + cz
.
ub) +

1
mb

.kbub + µ(
.
ub)gZ(t) = − ..

ug (24)

From Equation (24) we deduce Equation (25):

..
ub + (2εbωb

.
ub + 2εbωbγ

.
ub + kω2

bu3
b) + ω2

bub + µ
( .
ub
)

gZ(t) = − ..
ug (25)

where εb, ωb, γ, and k are defined by Equations (4)–(7).
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Writing Equations (26) and (27)

Z(t)= sign
( .
ub
)

(26)

µ
( .
ub
)
= fmax (27)

and using the principle of Equation (3), Equation (28) is obtained from Equation (25)
as follows:

..
φb + 2(1 + γ)εb

.
φb + φb + k

a2
0

ω4
b

φ3
b + g f maxsign(

.
φb) = X0(τ) (28)

Assuming harmonic seismic excitation, Equation (29)

X0(τ) = Xg sin(βτ +∅) (29)

the response of the structure, Equation (31) will be expressed as [28]:

φb = Xbsin( βτ) (30)

−Xbβ2sin(βτ) +(2εbωbXbβcos(βτ) + 2γωbXbβcos(βτ))

+(kω2
b(Xb sin(βτ))3 + ω2

b Xb sin(βτ)) + fmaxsign(Xbβcos(βτ))

= Xg sin(βτ + ∅)

(31)

According to Equation (32)

sgn(Xbβcos(βτ)) =
4
π

βcos(βτ) (32)

And neglecting the terms in sin (3(βτ)), Equation (31) becomes Equation (33)

−Xbβ2sin(βτ) + (2εbωbXbβcos(βτ) + 2εbωbγXbβcos(βτ)) +

(
3
4

kω2
bX3

bsin(βτ) + ω2
b Xb sin(βτ)

)
+

4
π

fmaxβcos(βτ) = Xg(sin(βτ)cos(∅) + cos(βτ)sin(∅))

(33)

From Equation (33) we obtain Equations (34) and (35):

(1 − β 2)Xb +
3
4

k
a2

0

ω4
b

X3
b = Xgcos(∅) (34)

2εb(1 + γ)Xbβ +
4
π

fmaxβ = Xgsin(∅) (35)

Squaring Equations (34) and (35) and adding them together gives Equation (36)

9
16

k2 a4
0

ω8
b

X6
b +

3
2

k(1 − β2)
a2

0

ω4
b

X4
b + ((1 − β2)

2
+ 4ε2β2)X2

b +
16
π

εXbβ2 f max +
16
π2 f 2

maxβ2 = X2
g (36)

where ε is given in Equation (21).

2.3. Case of Stochastic Excitation

In this case, the seismic loading (
..
ug) is represented as random sequences of white

Gaussian noise, adjusted by filtering and time modulation of varying intensity, in the
context of spectral density analysis. The filter characteristics determine the frequency
distribution of these random stresses and are adjusted to correspond to rigid, intermediate,
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or loose soil conditions, as appropriate. For this purpose, the Kanai–Tajimi filter modified
by Clough and Penzien (Equations (37) and (38)) is used to model the different soil types.

S ..
ug
(β) =

β4 + 4ε2
gω2

gβ2

(ω2
g − β2)2 + 4ε2

gω2
gβ2

β4

(ω2
f − β2)2 + 4ε2

f ω2
f ω2

Sw (37)

Sw =
0.141εg

ωg

√
1 + 4ε2

g

..
u2

g0 (38)

Sw represents the spectral level of white noise linked to the maximum acceleration of
the ground and

..
ug0 is the peak ground acceleration (PGA). εg, ωg, ε f , and ω f are the filter

parameters [35,36].
According to [37–39], we assume that the maximum value of the recorded ground

acceleration oscillates between 0.4 g and 0.6 g.

3. Results and Discussion
3.1. Amplitude–Frequency Response in the Case of a Harmonic Signal

Figure 3 shows the amplitude response of the non-isolated system isolated by the
QZS according to its various characteristics as a function of the scaled frequency for a total
system damping of 5%. In the case of a system isolated by a QZS with a softening stiffness
(k = −0.0249), the amplitude curves slope as the frequency increases; in other words,
the resonance frequency is inversely proportional to the amplitude of the oscillations.
In contrast, for the system isolated by a rigid QZS (k = 0.01000 and k = 0.6000), the
amplitude curves slope to the left, from which we deduce that the responses are weak at
high resonance frequencies.
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The amplitude–frequency responses of the system isolated by an FPS and by the QZS–
FPS coupling are shown in Figure 4 for ε = 0.025. The slope of the amplitude–frequency
response curves in Figure 4 shows the persistence of the QZS non-linearity despite the
QZS–FPS coupling. In addition, the maximum amplitudes of the responses of the structure
for the case of soft–stiff QZS coupling with the FPS are greater than those of the structure
isolated only with an FPS. This is quite the opposite of those where the structure is isolated
by a rigid QZS coupling and an FPS, which are the lowest as the stiffness increases.
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3.2. Amplitude Response for the Case of a Stochastic Signal

The various seismic signals were derived from Equation (17).

3.2.1. Case of Soft Ground

Figure 5 shows the time evolution of the seismic signal Xg, modeled according to the
Kanai–Tajimi spectrum modified by Clough and Penzien. The signal shows amplitude
variations between −4 m/s2 and 3 m/s2 over a period of 40 s. The oscillations observed
are characterized by acceleration and deceleration phases, which are essential for analyzing
the dynamic response of structures.
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The response of the structure to this signal is shown in Figure 6 for the different cases
of isolation (QZS and QZS–FPS coupling). For an uninsulated structure, the amplitudes
vary between −0.028 m and 0.026 m, while in the case of low stiffness isolation, the
amplitudes of the oscillations vary between −0.021 m and 0.019 m. The negative and
positive displacements show that the building oscillates around its equilibrium position.
Furthermore, the amplitudes of the oscillations in the case of rigid stiffness isolation vary
between −0.021 m and 0.019 m. In other words, the amplitudes of the oscillations in the
case of isolation with a soft stiffness are smaller than those of isolation with a rigid stiffness.

The response of the structure to the seismic signal in a soft ground environment is
shown in Figure 7. The amplitude of the oscillations for the case of a QZS coupling with
soft-stiffness FPS varies between −0.0052 m and 0.0071 m while that isolated by the friction
pendulum alone varies between −0.0094 m and 0.0065 m. Conversely, Figure 7b shows that
for a high-stiffness damper, the amplitude curve varies between −0.0056 m and 0.0069 m.
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3.2.2. Case of Hard Ground

Figure 8 shows the temporal evolution of the Xg seismic signal in a rigid soil environ-
ment.
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Figure 9 shows the time trace of the response of the structure. For the same seismic
signal, the amplitudes are constant to a few decimal places in the case of a rigid QZS,
whereas the amplitudes of the oscillations decrease in the case of a soft QZS.
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Figure 10 shows the response of the structure under different types of isolation. The
blue curve in Figure 10a shows the evolution of the dependent variable (for example,
performance or displacement) in a system where a softening with a coefficient k = −0.0249
is applied, in conjunction with FPS management, whereas the green curve shows the
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evolution of the same dependent variable in a system where only FPS management is
applied. As for Figure 10b, the interrupted curve represents the response of the structure
isolated by the QZS–FPS coupling with rigid stiffness k = 0.6 and the solid line represents
the QZS–FPS coupling with rigid stiffness k = 0.01. Figure 6 shows that the structure
isolated by the soft–stiff QZS–FPS coupling has a lower amplitude than that isolated by the
QZS and the stiff QZS–FPS coupling.
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3.3. Discussion
3.3.1. Case of a Harmonic Signal

Figures 3 and 4 show the amplitude–frequency response of a structure that was
initially uninsulated, then isolated by the QZS and by the QZS–FPS coupling at different
stiffnesses. The curves observed in Figure 4 show the importance of the non-linearity
of the QZS compared with that of the friction pendulum [16,35]. The response of the
soft–stiff QZS–FPS system to a harmonic pulse showed amplitudes of the order of eight
times that of the excitation pulse for low frequencies and amplitudes close to 0 for high
frequencies. In the case of the QZS–FPS system with rigid stiffness, the oscillations have
amplitudes of the order of 0.9 and 3.5 times those of the harmonic signal, but lower than
those of [40,41], showing that the FPS plays a major role not only in the performance but
also in the stabilization of the system and that the QZS–FPS system with soft stiffness does
not react very effectively to low-frequency harmonic signals, unlike that with rigid stiffness.

3.3.2. Case of a Stochastic Signal

The effectiveness of the proposed solution is illustrated by a decrease in oscillation
amplitudes of around 30% on soft and hard ground in Figures 7 and 10. In addition,
Figures 7 and 10 show that the QZS–FPS coupling with soft stiffness is the most effective
under different types of soil, probably due to the performance of the QZS with soft stiffness,
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as shown in Figure 6a and [4,42]. Moreover, on both hard and soft ground, the new QZS–
FPS system causes structures to vibrate horizontally with maximum amplitudes of the
order of 0.003 m and 0.007 m, respectively. Finally, when compared with pre-existing
hybrid dampers (Table 1), the QZS–FPS system outperformed NS–TMD, FPSIS, NS–FPS,
and FPS–TMD.

Table 1. Comparison of the performance of hybrid systems proposed by various authors.

Systems Improvements Reference

NS–TMD Improves the stability of a bridge previously equipped with FPS.
Reduces vibration with a maximum output amplitude of 0.081 m. [25]

FPSIS Reduces vibrations with a maximum amplitude of 0.8 m. [27]

NS–FPS
Presents an innovative solution to improve the seismic resilience of
above-ground buildings and underground infrastructures (ASUS) by
coupling negative stiffness and friction pendulum.

[26]

FPS–TMD Reduces vibration with a maximum amplitude of 0.1 m. [27]

4. Conclusions
Non-linear isolation devices are an emerging area of research and have, due to their

promising potential, attracted considerable attention in the scientific community. The aim
of this study was to evaluate the effect of horizontal ground excitation on the response
of a structure isolated by a coupled system consisting of a non-linear damper (QZS) and
a friction pendulum (FPS), using harmonic signal and stochastic signal. Analysis of the
response of the QZS–FPS system with soft and rigid stiffness reveals its remarkable ability
to absorb harmonic pulses. However, the QZS–FPS system with soft stiffness does not
respond very effectively to low-frequency harmonic signals, whereas the system with rigid
stiffness does. This distinction underlines the importance of choosing the type of stiffness
according to specific application requirements. The stochastic results show that on both
hard and soft soils, the proposed QZS–FPS system causes structures to vibrate horizontally
with maximum amplitudes of the order of 0.003 m and 0.007 m, respectively. So, the
QZS–FPS coupling can be more effective than all other isolators for horizontal ground
excitation. To improve on the existing work, another study with several degrees of freedom
could be envisaged.
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