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Abstract: This paper examines public–Catholic gap in STEM opportunity to learn in the US using
Mahalanobis-distance matching and adjacent categories models. Consistent with prior studies,
there are significant public–Catholic differences in math and science course sequence level and total
credits earned. However, we find that these gaps are largely accounted for by selection processes
among students of differing family background. Moreover, we find that the Catholic school advantage
in STEM opportunity to learn differs by subject; Catholic school students are more likely to enroll
in advanced math courses relative to middle-level courses, while their advantage in science is
concentrated in the middle of the course-taking hierarchy.
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1. Introduction

Examining differences in course taking across school sectors (i.e., public schools vs. Catholic
schools) in the US provides insight into how differential access to selective schools affects opportunity
to learn and may contribute to educational inequality. Bryk, Lee, and Holland’s classic book
on Catholic schooling provided evidence that US Catholic school students took more numerous
and more rigorous academic courses, compared with peers in public schools (Bryk et al. 1993;
see also the 1985 special issue of Sociology of Education on this topic). Motivated in part by this
sector disparity, beginning in the early 1990s, with a wave of standards-based reform policies,
public schools started to develop and adopt new standards for high school course taking. Several
studies examined the effectiveness of this series of policies on reducing the long-lasting school sector
gap (e.g., Carbonaro and Covay 2010) and on improving students’ overall course-taking outcomes
(e.g., Domina and Saldana 2012). Carbonaro and Covay (2010), for instance, argued that the private
school advantage in course taking still existed in the 2000s, albeit at very small levels after accounting
for student achievement differences across sector. Admission to private schools has become increasingly
constrained in recent decades, with fewer students from poor or near-poor households, as well as
one-parent households or households with only nonparental guardians, and those whose parents’
highest education level is equal to or less than a high school diploma enrolling in private schools
(Cahalan and National Center for Education Statistics 2006; Wang et al. 2019). Thus, family background
continues to interact with school-to-school differences in opportunity to learn to create educational
inequality. The release of the High School Longitudinal Study (HSLS): 09 Transcript data in 2015 offers
a new opportunity to re-examine the public–private gap in students’ STEM learning opportunities.
With the help of HSLS:09, we, herein, investigate recent sector differences in STEM opportunity to
learn using rigorous, fine-grained measures of course taking.
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Standards-based school reforms aim to increasingly improve academic standards, enforce
accountability, and pose higher graduation requirements for public school students. Evidence
from the National Science Foundation (NSF) documents the effects of this set of policy initiatives. As of
2012, over 25 states have adopted “completing algebra II” as a high school graduation requirement
for mathematics and “two years of science courses” for science (National Science Board (US) 2016).
Considering higher level courses, the number of students who took at least one AP course approximately
doubled from 2006 to 2016 (National Science Board (US) 2008, 2018; see also Chaney et al. (1997)
for discussion of graduation requirements). This evidence highlights two important dimensions of
students’ course taking, the number of academic courses taken, and the overall difficulty of coursework.
Incorporating this dual emphasis, in this study, we analyze sector differences in the number of math
and science courses taken in high school as well as course difficulty, measured by constructing a scale of
math and science course sequence levels from 9th to 12th grade (Kelly 2004, 2009; Riegle-Crumb 2006;
Stevenson et al. 1994).

To more clearly identify the effect of differences in academic press (Shouse 1996) across the school
sector, as opposed to responsiveness to the achievement level of the student body and other selection
mechanisms, we employ Mahalanobis-distance matching to examine sector differences in course
taking among similar students in the HSLS:09. Similar students are identified by selection factors
affecting the likelihood of attending Catholic school including family background variables, student
demographic information, home learning environments, and prior learning experiences. Furthermore,
we investigate the school sector gap at different levels of STEM course taking. Several studies argue
that the school sector gap in math achievement gains are not equivalent across the spectrum of math
skills (Carbonaro and Covay 2010; Hyde et al. 2008), with the Catholic school advantage concentrated
in advanced math skills. This suggests that the standards-based reform movement may have different
effects on the sector gap in higher-level courses than on overall course taking. Therefore, we examine the
effect of Catholic school attendance on course-taking across different levels of the STEM course-taking
hierarchy using adjacent categories models (Carbonaro and Covay 2010; Fullerton 2009).

Consequently, our research questions are as follow: (1) Are there public–Catholic differences
in STEM course sequence level and/or the total amount of coursework taken? (2) Does family
background and other non-school factors account for observed school sector differences in STEM
course-taking outcomes? (3) Do sector differences in STEM course-taking outcomes differ across the
course-taking hierarchy?

By exploring sector differences in STEM opportunity to learn using several specifications, our work
not only provides insights on the specific dimensions of persisting school sector differences, but also
points out the continuing need and potential to improve the rigor of course taking in public schools.

2. Background Literatures

2.1. High School STEM Learning: An Opportunity to Learn Perspective

Research on STEM education provides empirical evidence in understanding students’ pathway
from early STEM experiences through the STEM workforce. High school math and science learning is
critical in the development of students’ interests in STEM disciplines and entrance into STEM majors
(Wang 2013), as high school learning experiences may enable students to create perceptions of themselves
as STEM learners and to prepare themselves for post-secondary STEM learning (Mickelson et al. 2016;
Riegle-Crumb and King 2010). One way to examine high school STEM learning is through the
lens of math and science achievement (e.g., Crisp et al. 2009). However, in understanding the
disparity in STEM learning outcomes between advantaged populations and underserved populations,
achievement outcomes alone do not fully capture differences in schooling (e.g., Flores 2007; Martin 2009;
Vanneman et al. 2009). Flores (2007), for instance, argued that studies solely focusing on achievement
have rarely identified the root causes of achievement gaps. An alternative approach to examining
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disparities in learning outcomes is to focus on opportunity gaps, which highlight how structural and
institutional inequalities may lead to achievement disparities (Martin 2009).

In general, the opportunity to learn perspective emphasizes the opportunity that students have
been provided through schooling (Wilhelm et al. 2017). As one of the earliest studies on this topic,
Sørenson and Hallinan (1977) conceptualized opportunity to learn (OTL) as an interactive mechanism,
where characteristics of schooling and teaching moderate the role of ability and effort. In theory,
this could mean that greater OTL exacerbates inequality, but explicitly compensatory processes
are also in place in contemporary schools (Northrop 2017; Rowan et al. 2009), and the intensity of
school relative to learning out-of-school is an important determinant of inequality (Downey and
Condron 2016). More basically, the concept of opportunity to learn helps explain school-to-school
differences in achievement growth (Montt 2011; Martin 2009). Within this framework, dimensions of
schooling that affect learning include teacher characteristics and instructional quality (e.g., Kelly 2010;
Kelly and Majerus 2011; Northrop and Kelly 2018; Minor et al. 2015); the degree of exposure to rigorous
educational content (e.g., Hansen and Strietholt 2018; Northrop et al. 2019); and even basic physical
resources and availability of learning materials and technology (e.g., Krashen et al. 2012).

Although there have been efforts to construct integrative measures of OTL (e.g., Bottia et al. 2018;
Montt 2011), much research focuses on discrete educational processes and constructs that might be
readily manipulated (Bottia et al. 2018). In this paper, we limit our instantiation of STEM opportunity
to learn (OTL) to students’ exposure to rigorous math and science courses in high school. We also
acknowledge that there are inherent differences between the degree of actual exposure to STEM courses
and the underlying accessibility of STEM courses, as the selection and completion of high school math
and science courses can be affected by both course availability (Tytler et al. 2008) and selection and
placement mechanisms. Overall, the goal of this paper is to understand how entering a given school
sector enables/constrains students’ richer experiences in STEM course taking.

2.2. Curricular Differentiation, and OTL across Countries

Curricular differentiation is a rational approach to tailoring instruction to better match students’
learning needs but may ultimately generate greater educational inequality especially at the secondary
level (Gamoran and Mare 1989; Kelly 2019). Historically, the US school system stratified students into
different levels of curriculum content based on their learning capacities and types of occupational
preparation, which resulted in highly differentiated learning opportunities (Sørenson 1970; Spring 1976).
Internationally, grouping students within a school based on level of ability and preparation is not the
only means of exposing students to different course-taking experiences. Curricular differentiation can
also occur across school type or geographic location (Montt 2011). For instance, Van Houtte and her
colleagues studied within-school tracking (multilateral schools) and between-school tracking (categorial
schools) in the Flemish (Belgium) school system and found that greater differences were associated
with within-school tracking, in terms of students’ study involvement (Van Houtte and Stevens 2009)
and self-esteem (Van Houtte et al. 2012). Hanushek and Wößmann (2006) also reported that sorting
students based on test scores in the early years of schooling increased inequality with little effect on
overall national scores.

2.3. Course-Taking, School Sector Gaps, and Standards-Based Reform

Since the 1980s, the debate over sector effects on students’ opportunity to learn have been informed
by multiple large-scale longitudinal data collections in the US. Early studies reported that, compared
to their public-school peers, Catholic school students took more academic courses, experienced
higher achievement gains, and reported receiving higher quality instruction (Bryk et al. 1993;
Coleman et al. 1982; Gamoran 1996; Hoffer 1997). For instance, in 1982, Catholic school students,
on average, took approximately one additional year of academic math courses than public school
students (Bryk et al. 1993). Catholic schools encourage students to take more academic courses by (1)
assigning students into the academic track, (2) providing more academic and fewer elective courses,



Soc. Sci. 2020, 9, 137 4 of 24

and (3) posing high graduation requirements (Bryk et al. 1993). In contrast, course enrollment in public
schools of that era was described as akin to a “shopping mall” experience where students enrolled in
courses based on their own inclinations with little oversight (Powell et al. 1985).

McDill et al. (1986) refer to this institutional-level emphasis on academic climate as academic
press, meaning “a normative emphasis on academic excellence and conformity to specified academic
standards.” Lee and Smith (1999) identified both internal and external factors that motivated a school to
improve its academic press, including teachers’ expectations for student performance within schools, as
well as externally imposed standards. As McDill et al. (1986) noted, the underlying rationale for higher
standards included the argument that nationwide standards were not competitive when compared to
educational systems internationally. Beginning in the 1990s, with a wave of standards-based school
reform policies, policy groups started to develop higher curricular standards for instruction and learning
(Department of Education (US) and Standards National Council on Education, and Testing 1992). As
conceptualized in the opportunity to learn literature, improving instructional quality and exposing
students to rigorous learning content are core tenants of standards-based reform (e.g., Minor et al. 2015;
Montt 2011). Further, much of the standards-based reform movement adopted an explicit focus on
reducing school-to-school differences in opportunity to learn (Minor et al. 2015).

In the wake of substantial standards-based school reform efforts, there is no doubt that public
school students experience greater opportunity to learn, especially in terms of basic course-taking
patterns and achievement growth (Domina and Saldana 2012; National Science Board (US) 2008, 2016,
2018). Domina and Saldana (2012) found that, over a two-decade period of change, the average
high school graduate took approximately five more academic credits. Furthermore, US high school
graduates took more advanced math credits from 1982 to 2004 as well. By 2004, approximately 43% of
high school graduates earned credits in trigonometry or higher math courses whereas only 19% of
high school graduates in the class of 1982 completed trigonometry or higher math courses (changes for
public school students only are similar). However, improvements in the absolute mean level of course
taking (i.e., a “rising tide” of course taking) do not necessarily mean that a decline in relative inequality
between specific student groups will occur, even if all groups have experienced some improvement.
For example, Domina et al. (2016) argue that during this period, socially advantaged groups created
more advanced academic pathways, such as taking both Algebra and Geometry during eighth grade,
to maintain their academic advantage.

Yet, given the generally widespread improvements in opportunity to learn for public school
students occurring as a result of increased course-taking standards, we might expect to find a decline
in the traditional Catholic school achievement advantage. Carbonaro (2003, 2006) reported that by
the 1990s, public school students enjoyed similar achievement gains compared to their counterparts
in private schools at the kindergarten and elementary level. However, in their more recent research
using the Education Longitudinal Study (ELS), Carbonaro and Covay (2010) found that, at the high
school level, private school students still took more academic math courses and thus enjoyed greater
math achievement gains. Indeed, in the ELS data, the sector gaps in achievement growth that remain
after accounting for selection processes are largely accounted for by differences in course-taking
(Carbonaro and Covay 2010).

3. Methodology

3.1. Data

In this study, we use the High School Longitudinal Study of 2009 (HSLS:09) data from the US
National Center of Educational Statistics (NCES). HSLS: 09 is a nationally representative longitudinal
study of over 20,000 9th grade students from over 900 schools across the country beginning in
2009, with two waves of follow-up study in 2012 and 2016 (and a few minor updates in-between
major follow-ups). The survey instruments include information from a student questionnaire,
parent questionnaire, teacher questionnaire, and a school administrator questionnaire, with a specific
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focus on students’ STEM learning. HSLS:09 also features transcript data, which allow for full exploration
of students’ course taking. Transcript data were collected in 2013–2014 and include course-taking
records for each course that every student took during their high school study—there are over 1 million
raw transcript records in HSLS. Approximately 70% of the transcript records are valid, containing
course name, year/semester, credits and grade earned, and other identification information.

3.2. Dependent Variables

Two sets of dependent variables were developed to provide an overall picture of students’
course taking: Math and science course sequence levels, and the total credits earned. To capture
students’ cumulative mathematics course taking, we assigned each student a unique Mathematic
Course Sequence (MCS) code indicating the difficulty level of the combination of courses taken by
the end of 12th grade. The MCS codes start with 1–less than algebra I and end with 9–calculus or
higher, often based on identification of joint courses (e.g., Level 3 is Algebra I and Geometry). Students
with higher MCS values have deeper and richer mathematic learning experiences than students with
lower values. The full cumulative Mathematics Course Taking codes are shown in Table 1 (see also
Appendix A for a full description of the coding process).

Table 1. Cumulative Mathematic Course Sequence (MCS) Codes.

Mathematic Course Sequence (MCS) Content

1 Less than Algebra I
2 Algebra I or Geometry, but not both
3 Algebra I and Geometry
4 Algebra I or Geometry, with at least one transition course
5 Algebra II
6 Algebra II with at least one math elective course
7 Algebra III or Trigonometry, but not both
8 Algebra III and Trigonometry
9 Calculus or higher

Different in some respects from math courses, science courses vary in their disciplinary content
(e.g., biology, chemistry, and physics, often referred to as the “big-three” in the popular press).
Therefore, in addition to codes for sequential course difficulty/level (e.g., Biology I vs. Biology II),
the Science Course Sequence (SCS) coding includes simple counts of disciplinary categories taken.
The full cumulative Science Course Taking codes are shown in Table 2 (see also Appendix B for a full
description of the coding process).

Table 2. Cumulative Science Course Sequence (SCS) Codes.

Science Course Sequence (SCS) Content

1 No big-three course (Physics, Chemistry, Biology)
2 One big-three course
3 Two big-threes without higher-level course
4 Three big-three without higher-level course
5 Two or three big-threes with at least one higher-level course

Finally, the total number of mathematics and science course credits taken are also calculated.
We investigate total credits earned rather than number of courses taken, because some courses are
divided across multiple semesters/years, and not all courses are credit bearing.

3.3. Analytic Strategy

As a result of increased course-taking standards, we may expect to observe a decline in the
advantage of Catholic school attendance in terms of OTL. In this article, we employ two analytical
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methods to examine the effect of Catholic school attendance on course taking in the era of standard-based
reform. First, we use Mahalanobis-distance kernel matching to study sector effects on course taking
in the context of selection bias (we use kmatch in Stata, see Jann (2017) for technical details and
King and Nielsen (2019) for further discussion). Mahalanobis-distance matching is a general form
of multivariate distance matching with the idea of creating a multivariate space of covariates X
and matching based on the distance metric between observations (Diamond and Sekhon 2013).
The multivariate distance between two observations, i and j has the form,

MD
(
Xi, X j

)
=

√(
Xi −X j

)T
S−1

(
Xi −X j

)
where S is the scaling matrix of X and XT is the transpose matrix of X. As King and Nielsen (2019)
argued, multivariate distance matching is more efficient, has less model dependence, and can improve
balance relative to traditional covariate adjustment or propensity score matching. To find potential
matches based on multivariate distance and determine the matching weights, we use a Kernel matching
algorithm, which provides a non-parametric estimation of outcomes using Kernel weights. The Kernel
weight is defined as (Frölich 2004),

W(i, j) =
K(∅)∑

K(∅)

where K() is the Kernel function, and ∅ is the matching quality function, given by:

∅ =
MD j −MDi

hn

where hn is the bandwidth of matching. Bandwidth selection was informed by checking the quality
of covariate balance and was set to 1.2 after comparing different matching results. Selection factors
affecting the likelihood of attending Catholic school include family background variables, student
demographic information, home learning environments, and prior learning experiences. Description
of all student-level covariates is provided in Table 3. It is worthwhile to note that, as Altonji et al. (2005)
suggest, we include middle school sector (private or public) as an important factor to address selection
bias. Middle school sector is not directly measured in HSLS:09. Fortunately, the NCES School ID for
8th grade school attended is available and can be matched to School IDs in either the Common Core
Data (CCD, a national database for all public elementary and secondary schools) or the Private School
Universe Survey (PSS, a national representative survey on private elementary and secondary schools).

Table 3. Descriptive statistics for student-level covariates.

Sector Means (SE)

Student-Level Covariates Catholic (n = 1851) Public (n = 12,671) Raw Difference

Took Algebra I before 9th grade (1 for yes) 0.30 (0.011) 0.27 (0.0038) 0.033 (0.011) **
Math Std. score at the start of 9th grade 54.71 (0.20) 50.67 (0.087) 4.04 (0.24) ***

Family SES 0.55 (0.017) −0.045 (0.0064) 0.60 (0.018) ***
Middle school sector (1 for Private) 0.75 (0.0010) 0.022 (0.0012) 0.073 (0.005) ***

Frequency of reading science book before HS 2.22 (0.036) 2.19 (0.013) 0.030 (0.038)
Hispanic 0.15 (0.0083) 0.17 (0.0032) −016 (0.009) ~

Gender (1 for male) 0.50 (0.012) 0.49 (0.0043) 0.016 (0.012)
Black 0.11 (0.014) 0.058 (0.0085) 0.053 (0.023) *
Asian 0.095 (0.014) 0.016 (0.0083) 0.079 (0.23) ***

Frequency of taking other courses with mother before HS 0.42 (0.036) 0.19 (0.016) 0.23 (0.046) ***
Frequency of participating math/science activity before HS 0.64 (0.026) 0.72 (0.011) −0.082 (0.031) **

8th grade most advanced science course 2.35 (0.030) 2.07 (0.015) 0.28 (0.040) ***
8th grade most advanced math course 3.34 (0.032) 2.91 (0.017) 0.43 (0.046) ***

Frequency of using computer for learning before HS 2.23 (0.038) 2.16 (0.015) 0.069 (0.042) ~

Frequency of taking math courses with mother before HS 0.21 (0.041) 0.031 (0.017) 0.18 (0.048) ***
Frequency of taking science courses with mother before HS 0.43 (0.035) 0.24 (0.015) 0.19 (0.041) ***

~ p < 0.10. * p < 0.05. ** p < 0.01. *** p < 0.001.
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Then, using the extracted matched sample, we further control for school-level covariates
(e.g., geographic regions, instructional resources, and racial composition) using regression methods
(Stuart 2010). We use ordered logit regression models to estimate the effect of Catholic school attendance
on student course-taking outcomes after controlling for school-level mediating effects. The logistic
regressions take the form of:

logit[P(Yi ≤ t)] = β0 + β1(Catholic) + γXi + ε

where t = 1, 2, . . . , M, and M is maximum value of the corresponding course sequence, β1 is the effect
of Catholic schools, Xi is the vector of school level covariates, and standard errors are clustered by
school ID. Table 4 provides a description of all school-level covariates.

Table 4. Descriptive statistics for school-level covariates.

Sector Means (SE)

Public (n = 12,671) a Catholic (n = 1851) Raw Difference

Require high-level Science courses b 0.091 (0.0025) 0.47 (0.012) 0.38 (0.0079) ***
Full-time teacher ratio 0.96 (0.00058) 0.88 (0.0032) −0.081 (0.0020) ***

Mean math achievement 50.56 (0.040) 54.75 (0.096) 4.19 (0.11) ***
Mean SES −0.050 (0.0031) 0.55 (0.067) 0.60 (0.0087) ***

Require high-level Math courses b 0.11 (0.0027) 0.51 (0.012) 0.40 (0.0084) ***
Offer advanced Physics courses b 0.44 (0.0043) 0.53 (0.012) 0.090 (0.012) ***

Offer advanced Chemistry courses b 0.59 (0.0043) 0.66 (0.011) 0.065 (0.012) ***
% of Hispanic students 13.90 (0.18) 9.69 (0.33) −4.20 (0.49) ***
Offer Calculus courses b 0.74 (0.0038) 0.85 (0.0082) 0.11 (0.011) ***

Offer advanced Biology courses b 0.65 (0.0041) 0.70 (0.011) 0.043 (0.012) ***
% of Black students 13.23 (0.16) 8.92 (0.30) −4.31 (0.43) ***
% of Asian students 3.23 (0.061) 4.93 (0.25) 1.70 (0.19) ***

% free lunch students 38.15 (0.20) 5.29 (0.34) −32.86 (0.55) ***
Urbanicity

Suburb 0.36 (0.0042) 30 (0.011) −0.57 (0.012) ***
Town 0.13 (0.0029) 0.14 (0.0081) 0.014 (0.0083) ~

Rural 0.28 (0.0039) 0.019 (0.0031) −0.26 (0.010) ***
Block schedule 0.45 (0.0043) 0.19 (0.0091) −0.26 (0.012) ***

Region
Midwest 0.24 (0.0037) 0.31 (0.011) 0.068 (0.011) ***

South 0.41 (0.0043) 0.33 (0.011) −0.082 (0.012) ***
West 0.20 (0.0034) 0.091 (0.0066) 0.10 (0.0095) ***

a Stand errors are in parenthesis. b 1 for offering or requiring corresponding courses. ~ p < 0.10. * p < 0.05. ** p < 0.01.
*** p < 0.001.

As an alternative to the main matching-based modeling strategy, we also employ more traditional
covariate adjustment in a series of ordered logistic multilevel models. These models share a similar
functional form,

Level 1 : logit
[
P
(
Yi j ≤ t

)]
= β0 j +

∑16
k=1 βkjXi j + γi j γi j ∼ N

(
0, σ2

)
Level 2 : β0 j = γ00 + γ01Catholic j +

∑14
m=2 γ0mS j + µ0 j µ0 j ∼ N(0, τ00)

β1 j = γ10 , . . . , βmj = γm0 , . . . , β16 j = γ160

where t = 1, 2, . . . , M, and M is maximum value of the corresponding course sequence, Xi j are
student-level covariates for student i in school j, γ01 is the effect of Catholic schools, and S j are
school-level covariates for school j. To compare ordered logistic regression coefficients across models,
we explored both the KHB method (Kohler et al. 2011; see also Karlson et al. 2012) and linear probability
model calculations to address the issues of confounding and re-scaling that arises in logistic model
specifications. In the present data, when estimating the percentage reduction in the key sector effect
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due to mediation (i.e., the total effect of student background and other compositional variables in
this study), calculations using the KHB and linear probability specification produce similar results.
However, the KHB method was not developed specifically to address the scaling issue when comparing
coefficients between matched and covariate adjusted models with different samples. Therefore, in the
results section, we report results from linear probability model calculations.

As an extension of those models, we use adjacent categories models (see e.g., Fullerton 2009)
to examine the effect of Catholic school attendance on course taking across the STEM course-taking
hierarchy. We collapse the MCS and SCS course sequence codes into three tracking levels capturing
major differences in course taking. Details on constructing an ordinal measure of course taking using
information from the cumulative course sequence measure are shown in Table 5.

Table 5. Constructing measures of course taking using information from the cumulative sequence of
courses taken.

Math Course Sequence Level Collapsed Level of
Course Sequence b Science Course Sequence Level Collapsed Level of

Course Sequence

1 Less than Algebra I

Low

1 No big-three a course
Low2 Algebra I or Geometry, but not both 2 One big-three course

3 Algebra I and Geometry 3 Two big-threes without
higher-level course

Middle
4 Algebra I or Geometry, with at least

one transition course 4 Three big-three without
higher-level course

5 Algebra II
Middle

5
Two or three big-threes

with at least one
higher-level course

High

6 Algebra II with at least one math
elective course

7 Algebra III or Trigonometry,
but not both High

8 Algebra III and Trigonometry
9 Calculus or higher
a Big-three includes biology, chemistry, and physics. b Collapsed qualitative categories are used in adjacent
categories models.

Adjacent categories models share a similar functional form as the ordered logistic models but
estimate the effect of Catholic school attendance more narrowly within pairs of adjacent categories.

4. Results

4.1. Descriptive Statistics

To examine the public–Catholic difference in terms of students’ cumulative Mathematic Course
Sequence, Table 6 presents a basic contingency table showing differences in course taking across school
sectors both by cell frequency and cumulative frequency of a given level of course taking or higher.

The Chi-square (χ2) statistic provides a summary measure of association between sector and
course taking using the raw cell frequency counts. As shown in Table 6, students from Catholic schools
are more likely to take higher level math courses, χ2(0.99, 8) = 508.26, p < 0.001. For example, 74.2% of
Catholic school students had attained an MCS level of 7 or above (algebra III or higher), compared
to only 49.2% of public-school students. Likewise, students from Catholic schools are more likely to
avoid low-level course combinations (e.g., equal or less than algebra II) than students from public
schools (24.7% vs. 43.0% for category 5 or lower).



Soc. Sci. 2020, 9, 137 9 of 24

Table 6. Baseline difference in mathematic course sequence (MCS) between different school sectors and
Chi square test (n = 14,522).

Mathematic Course Sequence (MCS) Public School Catholic School

Frequency
(Expected

Frequency) a

Cumulative
Frequency of a Given

Level or Above
Frequency

Cumulative
Frequency of a Given

Level or Above

1 Less than Algebra I 181 (164.0) 12671 (100%) 7 (24.0) 1851 (100%
2 Algebra I or Geometry, but not both 1216 (1220.7) 12490 (98.6%) 183 (178.3) 1844 (99.6%)

3 Algebra I and Geometry 966 (876.9) 11274 (89.0%) 39 (128.1) 1661 (89.7%)
4 Algebra I or Geometry, with at least one

transition course 460 (418.8) 10308 (81.4%) 20 (61.2) 1622 (87.6%)

5 Algebra II 2627 (2474.5) 9848 (77.7%) 209 (361.5) 1602 (86.5%)
6 Algebra II with at least one math

elective course 990 (881.3) 7221 (57.0%) 20 (128.7) 1393 (75.3%)

7 Algebra III or Trigonometry, but not both 812 (821.1) 6231 (49.2%) 129 (119.9) 1373 (74.2%)
8 Algebra III and Trigonometry 2835 (3023.3) 5419 (42.8%) 630 (441.7) 1244 (67.2%)

9 Calculus or higher 2854 (2790.4) 2584 (20.4%) 614 (407.6) 614 (33.2%)
Total 12,671 1851

χ2(0.99, 8) = 508.26, p < 0.001. a Expected frequency under mathematical model of independence (part of the
Chi-Square calculation).

Table 7 presents analogous information for Science Course Sequences. As shown in Table 7,
students from Catholic schools are more likely to take higher level science courses, χ2(0.99, 4) = 418.31,
p < 0.001. For example, Catholic school students are more likely to experience all three important
science disciplines (i.e., Biology, Chemistry, and Physics) than students from public schools (69.7% vs.
45.7% for category 4 or lower).

Table 7. Baseline difference in Science Course Sequence (SCS) between different school sectors and Chi
square test (n = 14,522).

Mathematic Course Sequence (MCS) Public School Catholic School

Frequency
(Expected

Frequency) a

Cumulative
Frequency of a Given

Level or Above
Frequency

Cumulative
Frequency of a Given

Level or Above

1 No big-three course 333 (306.9) 12,671 (100%) 18 (44.9) 1851 (100%)
2 One big-three course 1954 (1782.0) 12,338 (97.4%) 82 (260.3) 1833 (99.0%)

3 Two big-threes without
higher-level course 4600 (4421.9) 10,384 (82.0%) 462 (645.9) 1751 (94.6%)

4 Three big-three without
higher-level course 4697 (5021.4) 5784 (45.7%) 1069 (733.6) 1290 (69.7%)

5 Two or three big-threes with at least one
higher-level course 1087 (1138.9) 1087 (8.6%) 220 (166.4) 220 (11.9%)

Total 12,671 1851

χ2(0.99, 4) = 418.31, p < 0.001. a Expected frequency under mathematical model of independence (part of the
Chi-Square calculation).

Overall, descriptive statistics for the dependent variables show a substantial baseline difference
in course taking across school sectors. Catholic school students, in general, experience a higher
difficulty level/rigor of course sequences in math and science. Public school students, on the other
hand, experience reduced opportunity to learn, especially in terms of basic course-taking patterns,
even with substantial standards-based school reform efforts.

4.2. Using Matching to Address Selection into Public and Catholic Schools

A total of 16 student-level covariates were used for matching to reduce selection bias. Selection
factors affecting the likelihood of attending Catholic school include demographic information,
prior achievement, features of the learning environment, and family SES. To evaluate the quality
of matching, we compared covariates for the raw sample and matched sample in terms of their
standardized mean difference and variance ratio. As shown in Table 8, all covariates used for matching
are well balanced. Figure 1 provides a visual summary of matching quality.
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Table 8. Balance check for matching (standard difference and variance ratio).

Balance Check for Standardized Mean Difference

Matching Covariates Raw Sample (n = 14,522) Matched Sample (n = 8199)

Treated Untreated Std. DIff Treated Untreated Std. Diff

Took Algebra I before 9th grade (1 for yes) 0.30 0.27 0.065 0.25 0.25 0.00
Math Std. score at the start of 9th grade 54.71 50.67 0.43 53.57 52.73 0.089

Family SES 0.55 −0.045 0.80 0.23 0.16 0.091
Middle school sector (1 for Private) 0.75 0.022 2.27 0.12 0.12 0.00

Frequency of reading science book before HS 2.22 2.19 0.023 2.25 2.27 −0.081
Hispanic 0.15 0.17 −0.057 0.097 0.097 0.00

Gender (1 for male) 1.50 1.49 0.026 1.50 1.50 0.00
Black 0.11 0.058 0.066 0.091 0.091 0.00
Asian 0.095 0.016 0.099 0.054 0.054 0.00

Frequency of taking other courses with mother
before HS 0.42 0.19 0.13 0.62 0.60 0.012

Frequency of participating math/science activity
before HS 0.64 0.72 −0.070 0.89 0.87 0.012

8th grade most advanced science course 2.35 2.07 0.19 2.23 2.24 −0.0096
8th grade most advanced math course 3.34 2.91 0.26 3.07 3.04 0.016

Frequency of using computer for learning before HS 2.23 2.16 0.038 2.36 2.33 0.021
Frequency of taking math courses with mother

before HS 0.21 0.031 0.098 0.52 0.49 0.017

Frequency of taking science courses with mother
before HS 0.43 0.24 0.12 0.60 0.58 0.015

Balance Check for Variance Ratio

Matching Covariates Raw Sample (n = 14,522) Matched Sample (n = 8199)

Treated Untreated Var. Ratio Treated Untreated Var. Ratio

Took Algebra I before 9th grade (1 for yes) 0.21 0.20 1.06 0.19 0.19 1.00
Math Std. score at the start of 9th grade 76.36 101.52 0.75 63.51 68.86 0.92

Family SES 0.55 0.55 1.01 0.41 0.44 0.93
Middle school sector (1 for Private) 0.19 0.022 8.55

Frequency of reading science book before HS 2.46 2.31 1.06 0.85 0.87 0.97
Hispanic 0.13 0.14 0.90 0.087 0.087 1.00

Gender (1 for male) 0.25 0.25 1.00 0.25 0.25 1.00
Black 0.39 0.96 0.41 0.11 0.10 1.00
Asian 0.38 0.92 0.41 0.073 0.073 1.01

Frequency of taking other courses with mother
before HS 2.43 3.50 0.69 0.39 0.39 0.99

Frequency of participating math/science activity
before HS 1.30 1.61 0.81 0.23 0.24 0.95

8th grade most advanced science course 1.75 2.78 0.63 0.42 0.43 0.98
8th grade most advanced math course 1.81 3.54 0.51 1.19 1.28 0.93

Frequency of using computer for learning before HS 2.78 2.80 0.99 1.03 1.05 0.98
Frequency of taking math courses with mother

before HS 3.13 3.79 0.83 0.38 0.38 1.00

Frequency of taking science courses with mother
before HS 2.19 2.78 0.79 0.35 0.36 0.99

4.3. Effect of Catholic School Attendance on Course-Taking Outcomes

Table 9 reports estimates of the Catholic school effect on course taking using both traditional
covariate adjustment methods, followed by matching estimators. The first row of Table 9 reports
the raw logistic difference in course taking; this represents the simple observed differences from
Table 1. In Row 2 we adjust for student- and school-level covariates. The third row of Table 9 reports
the average treatment effects (ATE) in the logistic metric after matching. The last row of Table 9 is
the estimated effect from an ordered logistic regression on the matched sample to further control
school-level covariates.

As shown in the first row of Table 9, on average, for Catholic school students, the baseline
odds of attaining a higher-level course sequence are approximately twice that of public school
students (e0.73 = 2.08 for math and e0.71 = 2.03 for science, Table 9, Row 1). For total credits, there
is approximately a one-quarter credit gap (0.24 from Table 9, Row 1) for math and a half credit gap
(0.49 from Table 9, Row 1) for science.
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Table 9. Summary of the effect of Catholic schools on STEM course-taking outcomes.

Math Course
Sequence

Science Course
Sequence Total Math Credits Total Science

Credits

1 Unadjusted difference 0.73 (0.11) *** 0.71 (0.12) *** 0.24 (0.035) *** 0.49 (0.034) ***
2 Regression adjusted difference −0.20 (0.16) −0.11 (0.21) −0.0041 (0.092) 0.020 (0.083)

Matched Sample
3 Unadjusted difference (ATE) 0.35 (0.081) *** 0.13 (0.034) ** 0.024 (0.076) 0.17 (0.059) **

4 Regression adjusted: Matched sample 0.11 (0.078) 0.17 (0.08) * 0.016 (0.057) −0.0025 (0.054)

Linear Model Calculation
5 Unadjusted difference 0.97 (0.059) *** 0.42 (0.022) ***

6 Regression adjusted for family background 0.31 (0.078) *** 0.22 (0.032) ***
7 Regression adjusted for family background and

school-level covariates 0.26 (0.089) ** 0.098 (0.036) **

~ p < 0.10. * p < 0.05. ** p < 0.01. *** p < 0.001.

Turning to the main results in Table 9, in the regression-adjusted matched sample (Table 9, Row 4),
the Catholic school effect for math and science course taking using the course sequence level is
much lower than the size of the baseline difference in Row 1. The odds of attaining a higher-level
course sequence for Catholic school students are now estimated as 1.12 times and 1.19 times that of
public school students for math and science course sequence, respectively, net of family background,
other student-level non-school factors, and school-level covariates (e0.12 = 1.12 for math and e0.17 = 1.19
for science, Table 9, Row 4). To show the extent to which the sector course-taking differences remains
unexplained, instead of comparing the coefficients from Table 9, Row 4 with Table 9, Row 1, we apply
linear probability model calculations, which are more appropriate for assessing mediation (Table 9,
Row 5 and Row 7). Linear probability model calculations shows that 73% of the sector effect on
math course sequence and 76% of the sector effect on science course sequences is explained by family
background, other student-level non-school factors, and school-level covariates, respectively, indicating
that roughly one-quarter of the observed school sector difference still remains unexplained. The results
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from Rows 2–4 collectively indicate that, although we observe some discrepancy across models,
some small sector differences in math and science course sequence level still remains, net of selection
bias and school-level covariates. However, the effect on total math credits and science credits is near
zero and not statistically significant (0.016 and −0.0025, respectively, Table 9, Row 4).

To further interrogate Research Question Two, we might also compare the average treatment
effect (Table 9, Row 3) with the unadjusted difference (Table 9, Row 1). School-level covariates remain
unadjusted in Row 3, so this comparison captures the extent to which family background and other
non-school factors, operating only as individual-level effects and not compositionally, explains the
sector course-taking difference. This may be useful as it is possible that the estimates in Row 4
over-adjust; that the adjustment for compositional effects inadvertently captures other school effects
more intrinsically associated with school organizational functioning. In the unadjusted matched
sample (Table 9, Row 3), the odds of attaining a higher-level course sequence for Catholic school
students are 1.42 times and 1.14 times that of public school students for math and science course
sequence, respectively, net of family background and other non-school factors (e0.35 = 1.42 for math
and e0.13 = 1.14 for science, Table 9, Row 3). Linear probability model calculations (Table 9, Row 5 and
Row 6) show that 68% of the sector effect on math course sequences and 47% of the sector effect on
science course sequences is explained by family background and other non-school factors, respectively,
indicating that roughly one-third to one-half of the observed Catholic school effect may be due to
differences in academic press across sector. Turning to total credits taken, the estimated effect of
Catholic school attendance on total science credits is approximately one-third of the raw difference
(0.17÷ 0.49 = 34.7%, Table 9, Row 3 and Row 1), while the effect on total math credits is near zero and
not statistically significant (0.024, Table 9, Row 3).

Collectively, these results converge further in subsequent adjacent categories models where we
are able to locate specific Catholic school course-taking advantages.

4.4. Adjacent Categories Model for Tracking

Table 10 reports estimates of the Catholic school effect in pairs of adjacent categories using model
specifications from Table 10, Row 2 and 4.

Table 10. Summary of the effect of Catholic schools on STEM course-taking outcomes within Adjacent
track levels.

Adjusted Difference with Logit
Multilevel Model

Adjusted Difference with Logit
Regression on Matched Sample

Math Course Sequence (Low vs. Middle) −0.04 (0.028) 0.14 (0.32)
Math (Middle vs. High) 0.77 (0.23) *** 0.31 (0.14) *

Science (Low vs. Middle) 0.47 (0.26) ~ 0.56 (0.24) *
Science (Middle vs. High) 0.036 (0.026) 0.027 (0.15)

~ p < 0.10. * p < 0.05. ** p < 0.01. *** p < 0.001.

As shown in Table 10, Catholic school attendance appears to have somewhat different effects on
students’ math and science course taking. Catholic school attendance shows no significant advantage
at the lower end of the math course-taking hierarchy. In contrast, at the upper end of the course-taking
spectrum (i.e., Algebra II and above), Catholic school students have higher odds of attaining an
advanced math sequence level. Considering the findings on science course taking in Table 10, Catholic
school students have a statistically significant advantage at the lower-end of the course-taking spectrum
but not at the upper-end. For example, Catholic school students have higher odds of taking at least
two of the big three courses (e.g., biology and chemistry) vs. only one, but do not have a statistically
significant advantage of taking a higher-level course beyond the big three (e.g., AP Chemistry).
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5. Discussion

The central contribution of this paper is to re-examine classic insights from empirical studies
(e.g., Bryk et al. 1993; Hallinan 1988) in the sociology of education that examine the social organization of
schools. Schools provide access to curriculum and knowledge, ultimately shaping students’ educational
attainment. Using recent nationally representative data and fine-grained measurement of student
course taking, we examined differential access to rigorous STEM course taking in public and Catholic
schools. Building on Bryk et al. (1993), Carbonaro and Covay (2010), Domina and Saldana (2012),
Kelly (2009), and others, we identify significant sector differences in math and science course sequence
level and total credits earned and conclude that these gaps are largely accounted for by selection
processes among students of differing family background. Moreover, we find that the remaining
Catholic school advantage in STEM opportunity to learn differs by subject.

Consistent with prior studies, we observe significant raw sector differences in course sequence
level and total credits earned in unadjusted models (Tables 6 and 7, and Table 9, Row 1). Although
standards-based school reform has provided public school students with greater access to STEM
courses (Domina and Saldana 2012), public students, on average, have not reached the overall difficulty
level/rigor of the course sequences or even number of courses taken by Catholic school students.

Table 9, Row 4 reports the most completely adjusted models using Mahalanobis-distance kernel
matching approach as well as adjustment for school composition covariates. We observe small sector
differences in math and science course sequence net of family background and other non-school factors
(0.11 and 0.17 from Table 9, Row 4) with roughly one-quarter of the observed difference remaining in
linear probability model calculations, but essentially zero difference in total credits earned (0.016 and
−0.0025, Table 9, Row 4). As an upper-bound alternative, Table 9, Row 3 reports that the analysis of
the average treatment effect based on matching alone indicates that family background and other
non-school factors account for approximately two-thirds of the observed differences in math course
sequences (Table 9, Row 1 vs. Row 3 in the linear probability specification) and most of the observed
differences in total math credits earned (Table 9, 0.24 from Row 1 and 0.024 from Row 3). For science
courses, family background and other non-school factors account for roughly half of the observed
differences in course sequences (Table 9, 0.71 from Row 1 and 0.13 from Row 3, with 47% as result of
linear probability model calculations) and total credits earned (Table 9, 0.49 form Row 1 and 0.17 from
Row 3), respectively. Any remaining Catholic school attendance advantage net of family background
and other non-school effects is roughly one-third to one-half of the original Catholic school effect
in these data. Overall, results from Mahalanobis-distance kernel matching approach indicates that
family background and other non-school factors continue to play critical roles in exposing students to
different opportunity to learn, but thereafter sector differences in course taking provide only a modest
cumulative advantage to enrolled students.

More precise adjacent categories model specifications are able to locate specific Catholic school
course-taking advantages. Catholic schools appear to have an advantage in lifting students to advanced
math sequences who otherwise might enroll in mid-level courses, and to middle science sequence
levels as opposed to low level science course-taking sequences (Table 10). Note that the mid-level math
sequence in Table 5 represents Algebra II or equally rigorous electives. Our finding is consistent with
the evidence that over 25 states have adopted “completing algebra II or equivalent courses” as a high
school graduating requirement for mathematics (National Science Board (US) 2016), as public schools
are not at any disadvantage in lifting students to mid-level sequence. This finding is also consistent
with the fact that that standards-based reform targets students with course-taking experiences that do
not support college enrollment. However, more recently, Minor et al. (2015) found that in responding
to Algebra-for-All policy efforts (see e.g., Domina et al. 2015), some private schools implemented
“double early access” to enable eighth grade students to complete both Algebra I and Geometry before
the beginning of high school. This adjustment of curriculum structure by private schools increased
inequality in learning opportunities across sector. It is also important to reiterate that Catholic school
students have advantages in taking advanced math courses. Therefore, we believe that public schools
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should make efforts to bolster early exposure to some critical “gateway” math courses before 10th
grade. Doing so will also benefit students with motivation and ability to have enough time to finish
advanced math courses and potentially reduce the inequality in learning opportunities across sectors
in the higher end of the course-taking hierarchy. Domina et al. (2019) also suggest that disadvantaged
students should be provided with better access to high-achieving peers and more opportunities for
skill building (see also Nomi and Raudenbush 2016).

For science course sequence levels, the Catholic school course-taking advantage is most obvious
in exposing students to courses in multiple science disciplines. However, unlike the findings on math
course sequence levels, Catholic schools do not appear to have any advantage in enrolling students in
high-level science courses. Perhaps more so than prior research, this study highlights that both Catholic
and public schools could better support students in taking high-level science courses. As described in
Appendix B, we define higher-level science courses as comprehensive study of a specific disciplinary
field with the pre- or co-requisite requirement of higher-level interdisciplinary knowledge (in most
cases, a Calculus-level math course). A basic finding from Table 7 is that only approximately 10%
of all students had experience with at least one higher-level science course. This is consistent with
Teitelbaum’s (2003) finding that increasing basic course-taking requirements (e.g., requiring three years
of science) does not necessarily “trickle up” into higher rates of advanced course taking. Therefore,
our findings also suggest that additional supports, regardless of the type of school, are needed for
students to pursue the rigorous STEM experiences.

Opportunity to learn continues to serve as a useful overall lens for examining private school
advantages. Referencing the remaining advantage (Table 9, Row 4), Catholic schools do appear
to provide students with greater exposure to rigorous academic courses, net of enrollment factors,
and school-level covariates. Although here we have focused on curriculum structure, it is important to
consider that variation in curriculum may itself be contingent not only on policy and the normative
climate and ethos of the school (here, academic press), but also basic resources. As some early studies
argued (e.g., Bryk et al. 1993), flexibility of budget and resource allocation may allow private schools to
alter curriculum structures more easily, and even in that era there was a growing mandate for better
STEM preparation.

This paper has several major limitations. First, consider the different patterns of Catholic
course-taking advantage in math and science course taking. In these data, we are unable to uncover
why the Catholic advantages are inherently different across disciplines. On the other hand, it is
important to keep in mind that math and science achievement are interrelated, such that course
taking in one-subject supports the other (Wang 2013). Thus, although located in different parts of
the course-taking hierarchy, both gaps constitute a generalized gap in STEM opportunity to learn.
Second, the present analysis contains only basic consideration of the timing of enrollment in critical
courses. For example, Algebra is referred to as a “gateway” or “gatekeeper” to later academic
performance and further enrollment in academic science courses, and we do include an indicator
of enrollment in Algebra in middle school (Gamoran and Hannigan 2000; Nomi 2012). Yet, future
research should more fully explore indicators of early exposure to critical math and science content.
Third, our use of statistical matching methods is most robust if observed variables fully account for
the difference in treatment and control individuals (Vandenberghe and Robin 2004). Here though,
variables used in matching as controls for prior learning experiences are all measured at a single time
point, the beginning of ninth grade, which suggests many of these are measured with some error or do
not fully account for prior school experiences that might affect readiness for advanced course taking.
Finally, course quality was not measured in this paper. The way we constructed course sequences uses
only information from the standard course codes, leaving the concern that, for example, the quality of
calculus instruction may vary across schools. Future studies may have direct observational measures of
instruction (e.g., Hill et al. 2008), measures of assignment quality (Joyce et al. 2018), or other measures
of instruction available.
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Overall, it is encouraging to find that, consistent with prior research, sector differences in
STEM course taking have narrowed in recent decades, and primarily reflect differences in the
achievement composition of students enrolling in public and Catholic schools. However, non-trivial
differences in STEM opportunity to learn remain across sector, and thus will continue to contribute to
educational inequality.
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Appendix A. Coding Process for Mathematic Course Sequence (MCS) Codes

The coding of Mathematic Course Sequence (MCS) codes starts with assigning 10-level individual
math course code to each course. As shown in Table A1, 1 represents math courses whose difficulty or
requirement were lower than algebra I. These could be some informal math course or introductory
courses for math in general. 2 represents algebra I or other courses with equal difficulty or requirement.
Any algebra I sequence course is coded as 2 as well (i.e., algebra I part 1 and part 2 are both coded with
2). 3 represents geometry or other equal courses. 4 represents courses that are harder than Algebra 1 or
equal courses but are not at the same level as Algebra 2. This code also includes courses that apply
knowledge from Algebra 1 or other equal courses but not knowledge from Algebra II or higher-level
courses. Courses coded with 4 are courses that transit from 1–3 to 5 or higher. 5 represents Algebra II or
other equal courses. 6 represents applied math elective courses that include any course that may apply
theories or knowledge from algebra II and/or geometry courses. Although these courses are based on
prior courses, courses that are only based on pre-algebra or algebra I are not included. The intention for
adding applied math elective code is to distinguish those students who finish algebra II and geometry
and turn to other courses that apply knowledge they have learned from students who stop after
finishing algebra II and geometry. 7 represents Algebra III and other higher-level algebra courses like
number theory. 8 represents trigonometry and mathematic analysis courses. 9 represents Calculus and
other equal courses that are based on pre-calculus, trigonometry, or algebra III. Finally, 10 represents
courses that are harder than calculus. These may include higher level calculus courses, applied calculus
courses that are based on calculus. There are 87 individual math courses, and 21 of them have no
observation in HSLS transcript file. See Table A2 for complete individual mathematic course codes.
The Mathematic Course Sequence (MCS) codes capture cumulative course-taking experiences and
start with 1–less than algebra I and end with 9–calculus or higher. Students with higher MCS values
have deeper and richer mathematic learning experiences than students with lower values. The full
cumulative Mathematics Course Taking codes are shown in Table 1 from main text.

Table A1. Ten-level individual math course code.

Individual Math Code Description

1 less than Algebra 1
2 Algebra 1
3 Geometry
4 Transition
5 Algebra 2
6 Applied math elective
7 Algebra 3 and equal
8 Trigonometry and equal
9 Calculus and equal

10 Higher than “Calculus”
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Table A2. Complete individual mathematic course codes (Frequency out of 21,860 students in transcript data).

Course Name SCED
Code Code Freq Course Name SCED

Code Code Freq

Informal Mathematics 02001 1 292 Mathematic Analysis/Analytic Geometry 1 02108 8 87
General Mathematics 02002 1 576 Elementary Functions 2 02109 8 341

Particular Topics in Foundation
Mathematics 02003 1 97 Pre-Calculus 02110 8 7062

Mathematics (early childhood education) 02028 no obs 3 0 Linear Algebra 4 02111 9 41
Mathematics (pre-kindergarten) 02029 no obs 0 Linear Programming 5 02112 9 40

Mathematics (kindergarten) 02030 no obs 0 Abstract Algebra 6 02113 9 87
Mathematics (grade 1) 02031 no obs 0 Calculus 02121 9 1250
Mathematics (grade 2) 02032 no obs 0 Multivariate Calculus 7 02122 10 39
Mathematics (grade 3) 02033 no obs 0 Differential Calculus 8 02123 10 28
Mathematics (grade 4) 02034 no obs 0 AP Calculus AB 9 02124 9 2070
Mathematics (grade 5) 02035 no obs 0 AP Calculus BC 10 02125 10 673
Mathematics (grade 6) 02036 no obs 0 Particular Topics in Calculus 11 02126 9 97
Mathematics (grade 7) 02037 no obs 0 IB Mathematical Studies12 02131 8 95
Mathematics (grade 8) 02038 no obs 0 IB Mathematics 13 02132 8 79
Mathematics—General 02039 no obs 0 IB Further Mathematics—HL 14 02134 8 122

Foundation Mathematics—
Independent Study 02047 1 5 IB Mathematics, Middle Years Program 15 02135 7 40

Foundation Mathematics—Other 02049 1 187 Finite Mathematics 02136 no
obs 0

Pre-Algebra 02051 1 1143 Mathematical Modeling 02137 no
obs 0

Algebra I 02052 2 15022 College Mathematics Preparation 02138 no
obs 0

Algebra I—Part 1 02053 2 1641 Particular Topics in Analytic Mathematics 02141 7 79
Algebra I—Part 2 02054 2 1472 Analytic Mathematics—Other 02149 7 284

Transition Algebra 16 02055 4 615 General Applied Mathematics 17 02151 4 544
Algebra II 02056 5 13570 Occupationally Applied Mathematics 18 02152 4 91
Algebra III 02057 7 818 Technical Mathematics 19 02153 6 278

Particular Topics in Algebra 20 02058 4 348 Business Mathematics 21 02154 6 407
Integrated Mathematics I 02062 no obs 0 Business Mathematics with Algebra 22 02155 6 151
Integrated Mathematics II 02063 no obs 0 Computer Mathematics with Algebra 23 02156 4 34
Integrated Mathematics III 02064 no obs 0 Consumer Mathematics 24 02157 1 577
Integrated Mathematics IV 02065 no obs 0 Probability and Statistics 02201 7 1425

Algebra—Other 25 02069 Dep. 1193 Inferential Probability and Statistics 02202 7 175
Informal Geometry 02071 1 594 AP Statistics 02203 9 1197

Geometry 02072 3 16903 Particular Topics in Probability and
Statistics 26 02204 6 58

Analytic Geometry 27 02073 6 96 Statistics 02205 no
obs 0

Principles of Algebra and Geometry 28 02074 6 704 Probability and Statistics—
Independent Study 02207 no

obs 0

Particular Topics in Geometry 29 02075 3 340 Probability and Statistics—Other 30 02209 Dep. 62
Geometry—Other 31 02079 3 231 History of Mathematics 02991 1 32
Number Theory 32 02101 7 4 Mathematics—Test Preparation 33 02993 6 549

Discrete Mathematics 34 02102 9 413 Mathematics Proficiency Development 35 02994 Dep. 514
Trigonometry 02103 8 1043 Mathematics—Aide 36 02995 Dep. 20

Mathematic Analysis 02104 8 513 Mathematics—Supplemental 37 02996 Dep. 454
Trigonometry/Mathematic Analysis 02105 8 278 Mathematics—Independent Study 38 02997 6 64

Trigonometry/Algebra 02106 8 2577 Mathematics—Workplace Experience 39 02998 5 12
Trigonometry/Analytic Geometry 02107 7 203 Mathematics—Other 02999 Dep. 2308

Undefined 02061 Dep. 1828

Foot Note: 1 Mathematic Analysis/Analytic Geometry prepares students eventually qualified in Calculus courses.
2 Elementary Functions prepares students eventually qualified in Calculus courses. 3 There is no observation on HSLS

Transcript Students Course File. 4,5 Linear algebra and linear programming require students to finish pre-calculus or

equal courses. 6 Abstract Algebra requires students to finish pre-calculus or equal courses. 7,8 Multivariate Calculus

and Differential Calculus include topics that are based on calculus. In the meanwhile, to justify this coding level,

I examined typical trajectories of students who took these two courses and found that students usually took Calculus

and/or AP Calculus AB before these two courses if Multivariate Calculus or Differential Calculus was not the only

calculus course they had ever taken. 9 Students usually took AP Calculus AB after Calculus if AP Calculus AB was

not the only calculus course they had ever taken. However, according to course descriptions, AP Calculus AB shared

the similar topics as Calculus including derivatives, differentiation, integration, the definite and indefinite integral,

and applications of calculus. 10 Students usually took AP Calculus BC after Calculus and/or AP Calculus AB. In the

meanwhile, in addition to topics covered by AP Calculus AB, AP Calculus BC covers parametric, polar, and vector

functions; applications of integrals; and polynomial approximations and series, including series of constants and

Taylor series. 11 To identify this coding level, I examined typical trajectory of students who took this course and

found that students usually took Particular Topics in Calculus independently (i.e., Particular Topics in Calculus

was usually the only calculus course students took if they chose to take Particular Topics in Calculus). I coded this
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course as equal as Calculus because, in some scenarios, Particular Topics in Calculus is the replacement course for

Calculus. 12,13 These two IB courses prepare students to take IB math studies at standard level. Courses includes

topics from algebra III, number theories, and trigonometry, but only introductory level calculus. 14 This IB course

prepare students to take IB math studies at higher level. Course topics include Calculus and other high-level topics.
15 Instead of preparing student to take IB exam, IB Mathematics, Middle Years Program is built on a framework of

five branches of mathematics: number, algebra, geometry and trigonometry, statistics and probability, and discrete

mathematics. The program encourages students to develop an understanding of mathematical reasoning and

processes, the ability to apply mathematics. Students usually took this course on 9th grade and 10th grade (84.7%

of students took Middle Year Program on 9th grade and/or 10th grade). As a contrast, students usually took IB

Mathematics or IB Mathematics studies on 11th or 12th grade (78.4% and 89.3% of students took these two IB

courses on 11th and/or 12th grade, respectively). Therefore, I coded Middle Year Program one level lower than IB

Mathematics or IB Mathematics. 16 Transition Algebra courses review and extend algebra and geometry concepts

for students who have already taken Algebra I and Geometry. Although, similar to Algebra II where students

usually took it on 10th and/or 11th grade (77.8%), students usually took Transition Algebra after 9th grade (88.5%),

Transition Algebra did not sufficiently apply knowledge harder than Algebra I series or Geometry. Therefore, I coded

Transition Algebra as “4- transition”. 17,18 General Applied Mathematics and Occupationally Applied Mathematics

applied knowledge from Algebra I and used these skills in specific fields. However, similar to Transition Algebra,

these two courses did not apply knowledge and skills from Algebra II or equal courses. Therefore, these two

courses should belong to 4. 19,21,22 Technical Mathematics, Business Mathematics, and Business Mathematics with

Algebra sufficiently applied basic principles from Algebra I, Algebra II and Geometry. I code these three courses as

“applied math elective” because, although they combine principles of Algebra and geometry, they do not adequately

provide solid theoretical background as pre-calculus does. 20 Particular Topics in Algebra built upon topics from

pre-Algebra and Algebra I and examine specific topics such as linear equations or rational numbers. More than half

of students usually took this course before 10th grade (56.8%). Compare to Algebra II where only less than 10% of

students took Algebra II before 10th grade (7.8%), I coded Particular Topics in Algebra as “4-between Algebra I and

Algebra II”. 23 Intended for students who have attained the objectives of Algebra I, Computer Mathematics with

Algebra courses include a study of computer systems and programming and use the computer to solve mathematics

problems. However, this course did not applied knowledge higher than Algebra I. 24 Consumer Mathematics only

applied knowledge from pre-Algebra such as arithmetic using rational numbers, measurement, ratio and proportion,

and basic statistics to consumer problems and situations. Therefore, I coded this course as pre-Algebra.d. 25 The

level of Algebra-other depended on individual courses that students had taken. For example, Algebra Lab for

ninth graders, or College Algebra and Intermediate Algebra for 12th graders both belonged to Algebra-Other. 26

Particular Topics in P&S usually covered topics such as elementary statistic and general statistic topics. Therefore, I

coded this course one level lower than Statistic. 27,28 These courses apply basic principles from algebra I, and algebra

II into studying of geometry. I code these two courses as “applied math elective” because, although they combine

principles of Algebra and geometry, they do not adequately provide solid theoretical background as pre-calculus

does. 29 Out of 678 students who took Particular Topics in Geometry, 490 students (72.2%) took this course as the

only geometry course along four-year high school as the replacement of general Geometry and/or advanced level

geometry courses. Therefore, I coded this course as a transition level course (4). 30 The category of P&S-Other

contained courses for different levels of students. For example, there were introductory statistic courses for 10th

grade, and advanced statistic, college statistic, and advanced mathematical decision making for 12th grade. 31 Unlike

Algebra-Other with diversified content for students in different grades, student usually took Geometry-Other before

11th grade (70.3%). As a contrast, 80.2% of students took Geometry before 11th grade. Out of 374 students who took

Geometry-Other, 246 students (65.8%) took this course as the only geometry course along their four-year high school

as the replacement of general Geometry and/or advanced level geometry courses. Therefore, I coded this course as a

transition level course (4). 32 This course reviews the properties and uses of integers and prime numbers which

prepare students with higher level course, Discrete Mathematics. Part of theories in this course may be covered in

Algebra III. 33 This course prepares students with test skills in PSAT, SAT and ACT. Topics include knowledge in

algebra I and II and geometry. 34 Discrete Mathematics is built upon Algebra III and Number theory which is a

higher-level course. 35–37 The level of these three courses are hard to be decided because the content of these courses
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depends on grade level. 38 Students usually took this independent study (70.1%) after 10th grade. The goal of this

course was to expand their expertise in a particular application, to explore a topic in greater detail, or to develop

more advanced skills based on courses they had taken on first two years. However, this independent study was

not necessarily the subsequent course of Algebra III and other higher-level courses. Therefore, I coded this course

as an elective math course. 39 Mathematics—Workplace Experience was not usually part of math sequence (i.e.,

students might take calculus at 11th grade and then take Mathematics—Workplace Experience at 12th grade for

other reasons). Therefore, although more than 60% of students took Mathematics—Workplace Experience after

10th grade, it is hard to decide the level of Mathematics—Workplace Experience based on trajectories. According

to course description, there was not a solid math inquiry associated with this course, Mathematics—Workplace

Experience set cooperatively by the student, teacher, and employer. Therefore, I coded this course as a transition

level course.

Appendix B. Coding Process for Science Course Sequence (SCS) Codes

Different from individual math course codes, there are inherent categories associated with science
courses, i.e., biology, chemistry, physics, or other science course. Therefore, compared to the difficulties
of courses, it is equally important to count how many different types of science courses students have
taken. For instance, students who has taken both physics and chemistry courses have more science
learning experience than students who only take chemistry courses. Therefore, we added another
individual code, apart from codes for difficulty level (code 2), to indicate the category of science courses
(code 1). The description of two individual science courses code is shown in Table A3. Similar with
individual math course code, I manually assign the two individual science course code to each science
course filed from School Courses for the Exchange of Data 5.0 (SCED 5.0). See Table A4 for complete
individual science codes.

To capture students’ cumulative science course-taking pattern, we assign each student with a
code according to their course-taking file. To consider the importance of both how many different
types of science courses and how deep students have taken during their high school, we combine the
two codes by counting how may “big-threes” (i.e., Biology, Chemistry, and Physics) the student has
taken and attaching “higher-level courses (higher than 3 on set 2 code) or not”. The final five-level
cumulative science course taking codes are shown in Table 2 in the main text.

Table A3. Individual science course codes.

Code 1

Science course category code Description

1 Biology Category
2 Chemistry Category
3 Physics Category
4 Other Category, any combination course

Code 2

Science course difficulty level code Description

1 Course provides basic concepts on specific field

2 Course is based on level 1 course, providing a more detailed
understanding on specific field, or introduction to a sub-field

3 Course provides an in-depth study on a specific sub-filed

4 Course provides a higher-level comprehensive study of
specific field

5 In addition to level 4, course requires higher-level
interdisciplinary knowledge to finish
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Table A4. Complete individual science course codes (Frequency out of 21,777 students in transcript data).

Course Name SCED Code Code 1 Code 2 Freq.

Earth Science 03001 4 1 4012
Geology 1 03002 4 2 209
Environmental Science 03003 4 1 2778
Astronomy 03004 4 1 559
Marine Science 03005 4 1 933
Meteorology 03006 4 1 80
Physical Geography 2 03007 4 2 69
Earth and Space Science 03008 4 1 1024
Particular Topics in Earth Science 03009 4 1 72
Earth/Space Science (prior-to-secondary) 03010 4 1 0
Physical Science (prior-to-secondary) 03011 4 1 0
Energy and the Environment 03012 4 1 0
Earth Science—Independent Study 03047 4 1 25
Earth Science—Workplace Experience 03048 4 1 2
Earth Science—Other 03049 4 1 316
Biology 03051 1 1 19,332
Biology—Advanced Studies 3 03052 1 2 969
Anatomy and Physiology 4 03053 1 2 3507
Anatomy 5 03054 1 3 301
Physiology 03055 1 3 184
AP Biology 6 03056 1 4 1551
IB Biology 7 03057 1 4 157
Botany 8 03058 1 2 170
Genetics 9 03059 1 2 163
Microbiology 10 03060 1 2 86
Zoology 11 03061 1 2 468
Conceptual Biology 03062 1 1 484
Particular Topics in Biology 03063 1 1 509
Regional Biology 03064 1 1 0
IB Sports, Exercise, and Health Science 12 03065 1 2 0
PLTW Principles of Biomedical Science 13 03066 1 3 0
PLTW Human Body Systems 14 03067 1 3 0
PLTW Medical Interventions 15 03068 1 3 0
Nutrition Science 03069 1 2 0
PLTW Biomedical Innovation 03070 1 3 0
Biology—Independent Study 03097 1 1 2
Biology—Workplace Experience 03098 1 1 1
Biology—Other 03099 1 1 330
Chemistry 03101 2 1 14,276
Chemistry—Advanced Studies 16 03102 2 2 652
Organic Chemistry 17 03103 2 3 87
Physical Chemistry 18 03104 2 5 50
Conceptual Chemistry 03105 2 1 266
AP Chemistry 19 03106 2 4 1039
IB Chemistry 20 03107 2 4 95
Particular Topics in Chemistry 03108 2 1 87
Chemistry—Independent Study 03147 2 1 10
Chemistry—Workplace Experience 03148 2 1 5
Chemistry—Other 03149 2 1 153
Physics 03151 3 1 6813
Physics—Advanced Studies 03152 3 2 249
Principles of Technology 03153 3 2 155
AP Physics C 21 03156 3 5 149
IB Physics 22 03157 3 5 81
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Table A4. Cont.

Course Name SCED Code Code 1 Code 2 Freq.

Life Science 03158 1 1 1
Physical Science 03159 3 1 7107
Conceptual Physics 03161 3 1 477
Particular Topics in Physics 03162 3 1 83
AP Physics C: Electricity and Magnetism 23 03163 3 5 58
AP Physics C: Mechanics 24 03164 3 5 89
AP Physics 1 25 03165 3 4 37
AP Physics 2 26 03166 3 4 3
Physics—Independent Study 03197 3 1 7
Physics—Workplace Experience 03198 3 1 0
Physics—Other 03199 3 1 94
Integrated Science 03201 4 1 2894
Unified Science 03202 4 1 574
Applied Biology/Chemistry 03203 4 1 103
Technological Inquiry 03204 4 1 4
Origins of Science 03205 4 1 24
IB Design Technology 27 03206 4 3 1
AP Environmental Science 28 03207 4 3 816
IB Environmental Systems and Societies 29 03208 4 3 35
Aerospace 03209 4 2 46
Science, Technology and Society 03210 4 1 51
Technical Science 03211 4 1 58
Scientific Research and Design 03212 4 1 154
IB Sciences, Middle Years Program 03213 4 1 42
Forensic Laboratory Science 03214 no obs 0
Science (early childhood education) 03228 no obs 0
Science (pre-kindergarten) 03229 no obs 0
Science (kindergarten) 03230 no obs 0
Science (grade 1) 03231 no obs 0
Science (grade 2) 03232 no obs 0
Science (grade 3) 03233 no obs 0
Science (grade 4) 03234 no obs 0
Science (grade 5) 03235 no obs 0
Science (grade 6) 03236 no obs 0
Science (grade 7) 03237 no obs 0
Science (grade 8) 03238 no obs 0
Science—General 03239 no obs 0
Life and Physical Sciences—Proficiency
Development 03994 4 1 33

Life and Physical Sciences—Aide 03995 4 1 29
Life and Physical Sciences—Supplemental 03996 4 1 13
Life and Physical Sciences—Independent Study 03997 4 1 33
Life and Physical Sciences—Workplace
Experience 03998 4 1 10

Life and Physical Sciences—Other 03999 4 1 1006

Foot Note: 1 Geology courses provide an in-depth study of the forces that formed and continue to affect the earth’s

surface. 2 Knowledge for Physical Geography is based on Earth science and Marine science that examine the

physical environment place on human development. 3 This course usually taken after a comprehensive initial

study of biology, Biology—Advanced Studies courses cover biological systems in more detail. 4 This course usually

taken after a comprehensive initial study of biology, Anatomy and Physiology courses present the human body

and biological systems in more detail. 5 Anatomy courses present an in-depth study of the human body and

biological system. Students usually took this course after anatomy and physiology. 6 Adhering to the curricula

recommended by the College Board and designed to parallel college-level introductory biology courses, AP Biology

courses emphasize four general concepts: evolution; cellular processes (energy and communication); genetics and
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information transfer; and interactions of biological systems. 7 IB Biology courses prepare students to take the

International Baccalaureate Biology exams at either the standard or higher level. 8,9,10,11 These four courses provide

students with a understanding of general concepts of specific sub-field. 12 Although this is an IB course, this course

provides students with standard level of understanding of this sub-field. 13,14,15 These three PLTW courses provide

students with in-depth understanding of specific sub-field based on the knowledge from physiology and genetics.
16 This course usually taken after a comprehensive initial study of chemistry, Chemistry—Advanced Studies courses

cover chemical properties and interactions in more detail. 17 Organic Chemistry courses involve the study of organic

molecules and functional groups. Usually taken after advanced studies. 18 This is an interdisciplinary course.

Usually taken after completing a calculus course, Physical Chemistry courses cover chemical kinetics, quantum

mechanics, molecular structure, molecular spectroscopy, and statistical mechanics. 19 This AP course requires high

school chemistry and algebra II. 20 This IB course provides students with higher level of understanding in Chemistry.
21 AP Physics C in a combination course of Physics C: Electricity and Magnetism and Physics C: Mechanics and

requires calculus to resolve problems. 22 IB Physics requires calculus. 23.24. See note 21. 25,26 Unlike AP C, these two

AP courses are algebra-based physics, can’t be coded as higher-level interdisciplinary course. 27,28,29 Although these

three AP/IB courses provide comprehensive study of specific field, they don’t provide a higher-level understanding

of sub-field as AP chemistry or physics does.
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