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Abstract: Hepatitis B virus (HBV) infection remains a major public health threat in the Middle
East and North Africa (MENA). Phylogenetic analysis of HBV can be helpful to study the putative
transmission links and patterns of inter-country spread of the virus. The objectives of the current
study were to analyze the HBV genotype/sub-genotype (SGT) distribution, reverse transcriptase (RT),
and surface (S) gene mutations and to investigate the domestic transmission of HBV in the MENA.
All HBV molecular sequences collected in the MENA were retrieved from GenBank as of 30 April
2021. Determination of genotypes/SGT, RT, and S mutations were based on the Geno2pheno (hbv)
2.0 online tool. For the most prevalent HBV SGTs, maximum likelihood phylogenetic analysis was
conducted to identify the putative phylogenetic clusters, with approximate Shimodaira–Hasegawa-
like likelihood ratio test values ≥ 0.90, and genetic distance cut-off values ≤ 0.025 substitutions/site
as implemented in Cluster Picker. The total number of HBV sequences used for genotype/SGT
determination was 4352 that represented a total of 20 MENA countries, with a majority from Iran
(n = 2103, 48.3%), Saudi Arabia (n = 503, 11.6%), Tunisia (n = 395, 9.1%), and Turkey (n = 267, 6.1%).
Genotype D dominated infections in the MENA (86.6%), followed by genotype A (4.1%), with SGT
D1 as the most common in 14 MENA countries and SGT D7 dominance in the Maghreb. The highest
prevalence of antiviral drug resistance was observed against lamivudine (4.5%) and telbivudine
(4.3%). The proportion of domestic phylogenetic clustering was the highest for SGT D7 (61.9%),
followed by SGT D2 (28.2%) and genotype E (25.7%). The largest fraction of domestic clusters with
evidence of inter-country spread within the MENA was seen in SGT D7 (81.3%). Small networks
(containing 3-14 sequences) dominated among domestic phylogenetic clusters. Specific patterns of
HBV genetic diversity were seen in the MENA with SGT D1 dominance in the Levant, Iran, and
Turkey; SGT D7 dominance in the Maghreb; and extensive diversity in Saudi Arabia and Egypt. A
low prevalence of lamivudine, telbivudine, and entecavir drug resistance was observed in the region,
with almost an absence of resistance to tenofovir and adefovir. Variable proportions of phylogenetic
clustering indicated prominent domestic transmission of SGT D7 (particularly in the Maghreb) and
relatively high levels of virus mobility in SGT D1.

Keywords: infectious disease; phylogenetics; evolution; subgenotypes; Morocco; Oman; Sudan;
Somalia; UAE; Syria
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1. Introduction

Chronic hepatitis B (CHB) is one of the major global health care issues, with more than
a quarter-billion people chronically infected by hepatitis B virus (HBV), resulting in more
than 800,000 deaths as of 2015 [1,2]. Despite the availability of an effective HBV vaccine
and the accelerated advent of antiviral therapies to control CHB, HBV has been suggested
to cause almost half of all deaths globally from viral hepatitis, half of all deaths from
hepatocellular carcinoma (HCC), and a third of all mortalities from hepatic cirrhosis [3–5].

The substantial global burden of CHB and its complications mandates continuous and
comprehensive research involving its epidemiology, the spread of antiviral drug resistance,
and the emergence of vaccine-escape mutations in the virus [6–8]. This can help in refining
knowledge regarding HBV and CHB. Ultimately, this can aid in achieving the World Health
Organization (WHO) goal of eliminating hepatitis B as a public health threat (which entails
a 90% reduction in new chronic infections and a 65% reduction in mortality) [9,10].

The genome of HBV is a circular, partially double-stranded DNA with four overlap-
ping open reading frames (ORFs) and a length of approximately 3.2 kilobases (kb) [11].
These four ORFs encode the polymerase (P), surface (S), core (C), and X proteins [11]. This
virus is unique among human DNA viruses due to its reverse-transcriptase that lacks
a proofreading activity [12,13]. The consequence of such a replication mechanism is a
relatively higher evolutionary rate compared to other DNA viruses [14]. The extensive
genetic diversity of HBV, besides the rapid development of drug resistance and vaccine
escape mutations, are amongst the manifestations of such a rapid evolution [15].

On the other hand, the presence of overlapping ORFs in the viral genome constrains
the evolutionary rate of HBV since a synonymous mutation in one ORF can result in a
non-synonymous mutation in another ORF [16–18]. The relatively swift evolution of HBV
has resulted in its diversification into several genotypes (A–J), which are further classified
into multiple sub-genotypes (SGTs) assigned to Arabic numbers [17,19–22]. Genotype
assignment is based on pairwise inter-genotype genetic distance > 8.0%, while SGTs are
grouped together based on pairwise genetic distances of 4.0–8.0% [19]. The gold-standard
method for HBV genotyping is phylogenetic analysis, preferably of full-genomes; however,
analysis of the S gene region that overlaps with the P region can be sufficient for accurate
genotype determination [19].

The epidemiologic investigation of HBV infection reveals considerable variability in
terms of prevalence, genotype distribution, and transmission patterns. Based on rates of the
chronic carriage of hepatitis B surface antigen (HBsAg), countries can be classified as coun-
tries with hyperendemicity (HBsAg prevalence of > 8.0%), intermediate endemicity (HBsAg
prevalence of 2.0–8.0%), and low endemicity with HBsAg prevalence < 2.0% [23–25].

Five HBV genotypes cause 96% of CHB cases worldwide, with genotype C as the most
common (26%), followed by genotype D (22%), genotype E (18%), genotype A (17%), and
genotype B (14%) [26]. Genotype distribution varies in different regions, with genotype D
predominating in the Mediterranean region, while genotypes C and B are mostly reported
in South East Asia, China, and Japan, and genotype A is most commonly found in the
United States and Northern Europe [26,27].

The potential clinical value of HBV genotyping has gained much attention recently,
with examples including possible association with more severe disease among the patients
infected with genotype C compared to those with genotype B infection, and another
example pointing to a possible earlier occurrence of HCC among patients infected with
genotype D compared to those with genotype A infection [8,28–31]. In contrast, other
studies found no such link [32].

Transmission of HBV occurs mainly through the parenteral route, besides horizontal,
sexual, or vertical routes [33–35]. A few studies reported potential links between certain
HBV genotypes and possible routes of transmission: the preferred route for genotype A
was sexual transmission, while genotype D was mainly transmitted by blood transfusion
and transplantation [32].
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The Middle East and North Africa (MENA) represent a region with shared demo-
graphic, cultural, and economic attributes [36]. The study of virus transmission in the region
as a single unit can be invaluable in the epidemiologic investigation of virus spread [37–42].
The MENA region can be classified among the regions with intermediate to high endemic-
ity of CHB [41,43]. In addition, CHB was reported as an important cause of HCC in the
region [44]. Genotype D was found to dominate infections in the MENA region from vari-
ous countries in different time periods [45–53]. This appears as an expected distribution
considering that the MENA region is the putative epicenter for genotype D of the virus,
with widespread distribution of its SGTs in the region [54–56]. Despite the recent reports
indicating that the coverage of the HBV vaccine has increased to exceed 80% for the third
dose, the low birth dose coverage remains a challenge in the MENA region [57].

The objectives of the current study were: (1) To characterize the genetic diversity of
HBV in the MENA region; (2) To estimate the prevalence of the RT and S genes’ mutations
in the region; (3) To assess the proportions of phylogenetic clustering in the MENA region
as indicators of domestic transmission of the virus.

2. Materials and Methods
2.1. Study Design and Sequence Inclusion Criteria

Using the search tool in GenBank (the National Institutes of Health (NIH)) genetic
sequence database (www.ncbi.nlm.nih.gov/genbank/ accessed on 30 April 2021), a search
was conducted for all HBV sequences that were collected from the following countries/
territories of the MENA region: Algeria, Bahrain, Cyprus/Northern Cyprus, Egypt, Iran,
Iraq, Jordan, Kingdom of Saudi Arabia (KSA), Kuwait, Lebanon, Libya, Mauritania, Mo-
rocco, Oman, Palestine, Qatar, Somalia, Sudan, Syria, Tunisia, Turkey, United Arab Emirates
(UAE), and Yemen [58]. The search was completed on 30 April 2021, and the following se-
quence metadata were also retrieved (if available): year and country of sequence collection,
genotype/SGT data, and sequence length.

2.2. Determination of HBV Genotype Distribution, Antiviral Resistance and S Gene Mutations

In order to investigate the HBV genotype distribution in the MENA, the final dataset
was compiled using the following exclusion criteria: (1) Country of collection other than
MENA countries described in the section above; (2) Sequence length of less than 300 base
pairs (bp, based on the assumption that shorter sequences can yield inaccurate sub-
genotyping results); or (3) Sequences that did not span a part of the P/S ORFs. The
determination of HBV genotypes and SGTs, antiviral drug resistance, and S gene mutations
were conducted using the Geno2pheno (HBV) online tool and compared with GenBank
metadata [59]. Results for sub-genotyping were mostly concordant except for SGT D7,
with sequences assigned to SGT D4 in Geno2pheno (HBV) online tool. These sequences
were considered as SGT D7 based on original nomenclatures used by the original GenBank
submitters/authors.

2.3. Analysis of HBV Domestic Transmission in the MENA Region

In order to investigate the domestic transmission of the most prevalent HBV SGTs in
the MENA (SGTs with > 10 MENA sequences), the final datasets were compiled according
to the following inclusion criteria: (1) Molecular sequences covering the genomic region
that was selected for the final analysis, which spanned part of the P and S genes (positions
216–755 in relation to HBV reference genome with GenBank accession NC_003977); and (2)
Final SGT dataset with at least 10 MENA sequences. The final number of molecular HBV
sequences that were considered for phylogenetic clustering analysis was 2384.

Phylogenetic inference of possible transmission links among the MENA HBV se-
quences was performed using the maximum likelihood (ML) approach as implemented
in PhyML 3.0 [60]. A search for similar HBV GenBank sequences was performed using
the BLAST tool, looking for the ten most similar sequences, which were included for final
ML analysis together with the MENA sequences for each SGT [61]. The global sequences

www.ncbi.nlm.nih.gov/genbank/
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without known country of origin and those with stop codons were excluded from the final
analysis.

The criteria to identify phylogenetic clusters indicating putative epidemiologic link-
ages were: (1) Internal branch support values ≥ 0.90 using approximate Shimodaira–
Hasegawa-like likelihood ratio test (aLRT-SH); (2) An ad hoc mean intra-cluster genetic
distance of ≤ 2.5%; (3) More than or equal to 75.0% sequences collected within the MENA
countries/territories [62,63]. Selection of the genetic distance was in light of HIV phy-
logenetic cluster analysis basis together with one study investigating familial clustering
of HBV [64,65]. Transmission cluster analysis was performed using Cluster Picker 1.2
tool to identify the putative monophyletic clades in the MENA region [66]. Based on the
cluster size, each cluster was classified as dyads (two sequences), small networks (three-14
sequences), or large networks (≥15 sequences) [37,67,68].

2.4. Statistical Analysis

Analysis was conducted with IBM SPSS Statistics for Windows, Version 22.0. Armonk,
NY: IBM Corp. The possible associations between categorical variables were evaluated
using the chi-square (χ2) test. The statistical significance was considered for p < 0.010.

3. Results
3.1. Characteristics of the MENA HBV Molecular Dataset

The total number of sequences that spanned part of the P gene and were >300 base
pairs in length was 4352, which formed the basis for the final genotyping of HBV in the
MENA (Figure 1). Three-quarters of all sequences came from four MENA countries: Iran
(n = 2103, 48.3%), KSA (n = 503, 11.6%), Tunisia (n = 395, 9.1%), and Turkey (n = 267,
6.1%, Figure 2). The years of sequence collection ranged from 2000 to 2019, with a total of
1329 sequences that lacked the dates of collection.
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3.2. Genotype D Dominated HBV Infections in the MENA despite the Detection of an Extensive
Genetic Diversity

In the 20 MENA countries/territories with HBV sequences eligible for HBV genotype
analysis, genotype D was the most common in 19 countries. Somalia was the only country
with genotype A as the most common HBV genotype (Figure 3).
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Egypt, KSA, and Tunisia were the only MENA region countries where the eight HBV
genotypes (A–H) were detected.

Iran, Iraq, and Turkey, together with countries of the Levant region (Jordan, Lebanon,
Palestine, and Syria), were dominated by genotype D (Iran: 99.9%; Turkey: 92.9%; Iraq:
89.5%; Jordan, Lebanon, and Syria: 100.0%; and Palestine: 93.2%).

Countries of the Middle East displayed a significantly higher prevalence of genotype
D vs. all other genotypes grouped together compared to countries of MENA African
countries (3195/3484 (91.7%) vs. 572/868 (65.9%); p < 0.001, χ2 test, Figure 4).
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3.3. HBV Sub-Genotype Distribution in the MENA Region

For genotypes A–D, sub-genotyping results were available for 4340 sequences with
12 sequences identified to genotype level only (genotype A from Morocco, n = 1; genotype
D from Iran, n = 9; and genotype F from KSA, n = 2). Overall, the most common HBV SGT
observed in the MENA was D1 (n = 3021/4340, 69.6%), followed by D7 (n = 508, 11.7%), D2
(n = 156, 3.6%), A1 (n = 141, 3.2%), genotype E (n = 112, 2.6%), genotype G (n = 74, 1.7%),
and D3 (n = 73, 1.7%).

The most extensive genetic diversity of HBV was observed in KSA, where 16 different
genotypes/SGTs were found, followed by Egypt (15 different genotypes/SGTs), Tunisia
(12 different genotypes/SGTs), and Turkey (10 different genotypes/SGTs, Table 1). Jordan
was the only country with the exclusive presence of a single SGT (D1, Table 1).

Table 1. Hepatitis B virus genotype/sub-genotype detailed distribution per country/territory of the MENA region.

Country (Total Number
of HBV Sequences) 1

The Most Common HBV
Genotype/SGT 4 (n, %) Other SGTs

Algeria (4) D4 (n = 2, 50.0%) D2 (n = 1, 25.0%), G (n = 1, 25.0%)

Egypt (93) D1 (n = 34, 36.6%)

D2 (n = 12, 12.9%), G (n = 12, 12.9%), D3 (n = 8, 8.6%), E (n = 7, 7.5%),
B1 (n = 4, 4.3%), F1 (n = 3, 3.2%), F2 (n = 12, 12.9%), D7 (n = 2, 2.2%),
A2 (n = 2, 2.2%), H (n = 2, 2.2%), B2 (n = 1, 1.1%), B4 (n = 1, 1.1%), C1

(n = 1, 1.1%), C2 (n = 1, 1.1%)

Iraq (38) D1 (n = 30, 79.0%) E (n = 3, 7.9%), D3 (n = 2, 5.3%), D7 (n = 2, 5.3%), G (n = 1, 2.6%)

Iran (2094) D1 (n = 1958, 93.5%) D2 (n = 52, 2.5%), D7 (n = 41, 2.0%), D3 (n = 40, 1.9%), A1 (n = 2,
0.1%), A2 (n = 52, 2.5%)

Jordan (37) D1 (n = 37, 100.0%) -

Kuwait (37) D1 (n = 23, 62.2%) D2 (n = 6, 16.2%), A1 (n = 3, 8.1%), C2 (n = 2, 5.4%), A2 (n = 1, 2.7%), E
(n = 1, 2.7%), G (n = 1, 2.7%)
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Table 1. Cont.

Country (Total Number
of HBV Sequences) 1

The Most Common HBV
Genotype/SGT 4 (n, %) Other SGTs

Lebanon (43) D1 (n = 36, 83.7%) D2 (n = 7, 16.3%)

Libya (2) D1 and E (n = 1, 50.0%) -

Morocco (107) D7 (n = 46, 43.0%) D1 (n = 17, 15.9%), A2 (n = 14, 13.1%), G (n = 12, 11.2%), H (n = 10,
9.3%), E (n = 4, 3.7%), D2 (n = 3, 2.8%), F2 (n = 1, 0.9%)

Northern Cyprus (69) D1 (n = 49, 71.0%) E (n = 8, 11.6%), A1 (n = 5, 7.2%), D2 (n = 4, 5.8%), A2 (n = 2, 2.9%),
D3 (n = 1, 1.4%)

Oman (146) D1 (n = 79, 54.1%) D7 (n = 32, 21.9%), A1 (n = 30, 20.6%), D2 (n = 2, 1.4%), E (n = 1, 0.7%),
C1 (n = 1, 0.7%), C2 (n = 1, 0.7%)

Palestine (44) D1 (n = 39, 88.6%) A2 (n = 3, 6.8%), D2 (n = 1, 2.3%), D3 (n = 1, 2.3%)

KSA 2 (501) D1 (n = 155, 30.9%)

D7 (n = 147, 29.3%), B4 (n = 51, 10.2%), C2 (n = 36, 7.2%), C4 (n = 31,
6.2%), D2 (n = 19, 3.8%), G (n = 18, 3.6%), E (n = 16, 3.2%), C1 (n = 7,
1.4%), F2 (n = 6, 1.2%), D3 (n = 3, 0.6%), A1 (n = 3, 0.6%), B2 (n = 3,

0.6%), C3 (n = 3, 0.6%), H (n = 2, 0.4%), A2 (n = 1, 0.2%)

Sudan (168) E (n = 68, 40.5%)
D1 (n = 47, 28.0%), D2 (n = 21, 12.5%), D7 (n = 19, 11.3%), D3 (n = 6,

3.6%), D4 (n = 147, 29.3%), A1 (n = 4, 2.4%), B4 (n = 1, 0.6%), H (n = 1,
0.6%), A2 (n = 1, 0.6%)

Somalia (98) A1 (n = 72, 73.5%) D7 (n = 23, 23.5%), E (n = 1, 1.0%), D1 (n = 1, 1.0%), A2 (n = 1, 1.0%)

Syria (75) D1 (n = 71, 94.7%) D2 (n = 3, 4.0%), D3 (n = 1, 1.3%)

Tunisia (395) D7 (n = 176, 44.6%)
D1 (n = 149, 37.7%), F2 (n = 18, 4.6%), H (n = 17, 4.3%), G (n = 15,
3.8%), A2 (n = 8, 2.0%), D2 (n = 4, 1.0%), C2 (n = 3, 0.8%), E (n = 1,

0.3%), C4 (n = 1, 0.3%), B2 (n = 1, 0.3%)

Turkey (267) D1 (n = 222, 83.2%)
G (n = 14, 5.2%), D2 (n = 12, 4.5%), D3 (n = 11, 4.1%), D7 (n = 3, 1.1%),
C3 (n = 2, 0.5%), H (n = 1, 0.4%), A2 (n = 1, 0.4%), C2 (n = 1, 0.4%), E

(n = 1, 0.4%), B3 (n = 1, 0.4%)

UAE 3 (89) D1 (n = 58, 65.2%) A1 (n = 16, 18.0%), D7 (n = 9, 10.1%), D2 (n = 3, 3.4%), C2 (n = 2, 2.2%),
A2 (n = 1, 1.1%)

Yemen (33) D1 (n = 15, 45.5%) A1 (n = 6, 18.2%), D2 (n = 6, 18.2%), D7 (n = 6, 18.2%)
1 HBV: Hepatitis B virus; 2 KSA: Saudi Arabia; 3 UAE: United Arab Emirates; 4 SGT: Sub-genotype. MENA: Middle East and North Africa.

Sub-genotype D1 was the most common genetic variant of HBV in 14 out of the
20 MENA region countries/territories. Sub-genotype D7 was the most common in the
Maghreb countries (Morocco, Algeria, and Tunisia), while in Sudan, genotype E dominated,
and in Somalia, SGT A1 was the most common (Figure 5).

3.4. Antiviral Drug Resistance and S Gene Mutations in the MENA HBV Sequences

For antiviral drug resistance prediction, the MENA HBV sequences that were assigned
to the year of the collection were only used (n = 3023), excluding the sequences that
lacked such data (n = 1329). The estimates for each drug were used for susceptible vs.
resistant/partly resistant/limited susceptibility categories, while the rest were excluded
(unknown, compensatory). The overall prevalence of resistance to the five antiviral drugs
is shown in (Table 2).
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Table 2. The overall susceptibility/resistance to antiviral drugs among the MENA region HBV
sequences.

Antiviral Drug 1 Trait n 4 (%)

Lamivudine
S 2 2610 (95.5)
R 3 124 (4.5)

Adefovir
S 2919 (99.2)
R 23 (0.8)

Entecavir
S 2609 (96.2)
R 103 (3.8)

Tenofovir
S 2941 (99.8)
R 7 (0.2)

Telbivudine
S 2635 (95.7)
R 117 (4.3)

1 Sequences excluded from analysis were those with compensatory mutations (for lamivudine, n = 75; for entecavir
and telbivudine, n = 67); those with mutations of unknown value (for lamivudine, n = 214; for adefovir, n = 81; for
tenofovir, n = 75; for entecavir, n = 244; and telbivudine, n = 204); 2 S: Susceptible; 3 R: Resistant, which included
sequences assigned to the following categories (resistant/partly resistant/limited susceptibility); 4 n: Number.

No significant temporal changes in resistance among HBV MENA sequences were
observed; however, spatial differences were detected with a higher percentage of resistance
to lamivudine, entecavir, and telbivudine in the Middle East compared to North Africa
(Table 3). The complete list of mutations detected in each of the five HBV antiviral classes
is summarized in (Table 4).
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Table 3. Susceptibility/resistance to antiviral drugs among the MENA region HBV sequences divided by region and time of
collection.

Antiviral Drug Trait

Region

p Value 4

Time of Sequence Collection

p ValueMiddle East North Africa 2001–2010 2011–2019

n 3 (%) n (%) n (%) n (%)

Lamivudine
S 1 1956 (94.3) 654 (99.1)

<0.001
1712 (95.6) 898 (95.2)

0.666R 2 118 (5.7) 6 (0.9) 79 (4.4) 45 (4.8)

Adefovir
S 2268 (99.2) 651 (99.2)

0.948
1858 (99.1) 1061 (99.3)

0.557R 18 (0.8) 5 (0.8) 16 (0.9) 7 (0.7)

Entecavir
S 2136 (95.5) 473 (99.6)

<0.001
1636 (96.1) 973 (96.4)

0.630R 101 (4.5) 2 (0.4) 67 (3.9) 36 (3.6)

Tenofovir
S 2285 (99.8) 656 (99.5)

0.192
1869 (99.6) 1072 (100.0)

0.045R 4 (0.2) 3 (0.5) 7 (0.4) 0

Telbivudine
S 1978 (94.6) 657 (99.4)

<0.001
1724 (95.9) 911 (95.5)

0.628R 113 (5.4) 4 (0.6) 74 (4.1) 43 (4.5)
1 S: Susceptible; 2 R: Resistant; 3 n: Number; 4 p value: calculated using chi-square test. HBV: Hepatitis B virus; MENA: Middle East and
North Africa.

Table 4. Reverse transcriptase gene mutations among hepatitis B virus molecular sequences collected in the MENA region
conferring antiviral resistance.

Antiviral Drug Mutation n 1 (%)

Lamivudine

204I (n = 39); 180M,204I (n = 15); 180M,204V (n = 15); 173L,180M,204V (n = 8); 204I,80I (n = 6); 180M (n = 5);
180M,204I,80I (n = 5); 173Q,180G,204S,181T (n = 4); 180M,204V,80V (n = 4); 180M,204I,80V (n = 3);

173L,180M,204I,181T (n = 2); 181T (n = 2); 204I,80V (n = 2); 173A,180F,204E,181T,80H (n = 1); 173I,180R,204A,181T
(n = 1); 173L,180M (n = 1); 173L,180M,204I,80I (n = 1); 173L,180P,204G,181T (n = 1); 173P,180P,204I (n = 1);

173R,180R,204P,181V,80H (n = 1); 173R,180R,204S,181V,80H (n = 1); 173W,180D,204L,181T (n = 1);
180M,204V,181V (n = 1); 181T,181S (n = 1); 181V (n = 1); 204S (n = 1); 204V (n = 1)

Adefovir 181T (n = 8); 236T (n = 3); 181T,236A (n = 2); 181V (n = 2); 181E,236T (n = 1); 181I,236T (n = 1); 181P,236T (n = 1);
181T,181S (n = 1); 181T,236L (n = 1); 181T,236T (n = 1); 181V,236Q (n = 1); 181V,236V (n = 1)

Entecavir
204I (n = 47); 204V,180M (n = 25); 204I,180M (n = 24); 184A,204V,180M (n = 1); 184S,204I,180M (n = 1);
202I,169G,184W,250C,204I,180P (n = 1); 202I,204I,180M (n = 1); 202I,204V,180M (n = 1); 204V (n = 1);

204V,202C,180M (n = 1)

Tenofovir 236T (n = 7)

Telbivudine
204I (n = 55); 204V (n = 24); 204I,80I (n = 12); 204I,80V (n = 5); 204R,181T (n = 4); 204V,80V (n = 4); 181T (n = 2);
204I,181T (n = 2); 181T,181S (n = 1); 181V (n = 1); 204A,181T (n = 1); 204E,80H,181T (n = 1); 204G,181T (n = 1);

204L,181T (n = 1); 204P,80H,181V (n = 1); 204S,80H,181V (n = 1); 204V,181V (n = 1)
1 n: Number; MENA: Middle East and North Africa; HBV: Hepatitis B virus.

For the S gene, the most frequent mutations detected are summarized in (Figure 6).
The most common S gene mutations included: 143L (n = 373), 144A (n = 327), 126I (n = 323),
and 141R (n = 302).

3.5. Variable Proportions of Putative Domestic HBV Transmission in the MENA Region for
Different SGTs

The final number of molecular HBV sequences that were considered for phylogenetic
clustering analysis was 2375, based on the genomic region that was selected for final
analysis, which spanned part of the P and S genes (positions 216–755 in relation to HBV
reference genome with GenBank accession no. NC_003977). The selection of this region was
based on an initial analysis of the HBV genetic region with the highest number of MENA
sequences (Figure 7). Sub-genotypes that had at least 10 sequences that were collected in
the MENA region included in descending order: D1 (n = 1777), D7 (n = 268), A1 (n = 102),
D2 (n = 78), E (n = 73), D3 (n = 48), and A2 (n = 23). The excluded SGTs from transmission
cluster analyses included: C2 (n = 3), B1 (n = 1), B4 (n = 1), and C1 (n = 1).
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Figure 7. The number of HBV MENA sequences in each genome position in relation to the reference
HBV genome. HBV: Hepatitis B virus; MENA: Middle East and North Africa; ML: Maximum
likelihood phylogenetic analyses; the reference HBV genome used had the GenBank accession no.
NC_003977.

For SGT D1, the total number of MENA sequences enclosed within domestic phylo-
genetic clusters was 267/1777 (15.0%). These domestic clusters comprised 74 sequences
in dyads (27.7%), small networks (n = 167, 62.5%), and a single large network (26, 9.7%).
For SGT D7, the total number of MENA sequences enclosed within domestic phylogenetic
clusters was 166/268 (61.9%). These domestic clusters comprised 18 sequences in dyads
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(10.3%), small networks (n = 83, 47.7%), and a single large network (73, 42.0%). For SGT D2,
the total number of MENA sequences enclosed within domestic phylogenetic clusters was
22/78 (28.2%). The clusters comprised five dyads and two small networks, each with five
MENA sequences. For genotype E, the total number of MENA sequences enclosed within
domestic phylogenetic clusters was 18/73 (25.7%). These domestic clusters were divided
into a single dyad (n = 2, 11.1%), a single small network (n = 3, 16.7%), and a large network
(n = 13, 72.2%). A single small network was noticed for SGT D3 with an overall proportion
of clustering of 4/48 (8.3%). For SGTs A1 and A2, no domestic clusters were identified.

The largest fraction of sequences from different MENA countries were seen in SGT D7
(135/166, 81.3%). Inter-country spread of SGT D1 was seen in clusters containing a total of
66 sequences (24.7%), while for SGT D2, inter-country spread comprised 5/22 (22.7%), and
it was 3/18 (16.7%) for genotype E. Out of the total 109 MENA clusters identified in this
study, 30 clusters contained sequences from two or more MENA countries. A fraction of the
transmission clusters with MENA sequences collected in two or more countries originated
from neighboring countries: Iran and Oman (D1 dyad, D7 large network), Egypt and KSA
(D1 small network), Egypt and Sudan (E small network), Iran and Turkey (D1 two small
networks), and Algeria, Morocco and Tunisia (D7 two small networks, Table 5). All ML
trees used to infer the putative transmission clusters in the MENA region are provided in
(Supplementary Materials).

Table 5. Detailed description of the HBV phylogenetic clusters detected in the MENA region stratified by cluster size.

Genotype/
SGT 1

Number of the
MENA

Sequences
Analyzed 2

Number of
Sequences

within
Clusters (%)

Dyads 3 Small Networks 4 Large Networks 5

D1 1777 267 (15.0)
Iran (31), Syria (3),

Tunisia (1), Turkey (1),
Iran and Oman (1)

Size 3: Iran (4), KSA (1), Tunisia (1),
Egypt and KSA (1), Iran, Sudan and
Syria (1); Size 4: Iran (7), Iran and

Turkey (2), Iran and Sudan (1), Iran,
Lebanon and Oman (1); Size 5: Iran
(2); Size 6: Iran (2); Size 7: Iran (2);

Size 8: Iran, Morocco, Lebanon,
Turkey and Tunisia; Size 11: Iran (1);

Size 12: Iran (1); Size 13: Iran and
Turkey (1); Size 14: Iran (2)

Size 31: Iran, Oman,
Palestine, Sudan,

Tunisia, Turkey (1)

D7 268 166 (61.9)

Tunisia (4), Morocco
and Tunisia (3),

Somalia (2), Sudan and
Tunisia (1)

Size 3: Morocco, Oman and Tunisia
(1), Oman, Somalia and Tunisia (1),

Tunisia (1); Size 4: Tunisia (2),
Morocco and Tunisia (1); Size 6:

Somalia and Tunisia; Size 7: Algeria,
Morocco, Oman, Sudan and Tunisia
(1), Morocco, Oman and Tunisia (1);
Size 8: Morocco, Oman and Tunisia
(1), Morocco, Sudan and Tunisia (1);

Size 9: Morocco, Somalia and
Tunisia (1), Oman (1), Oman, Sudan

and Tunisia (1); Size 13: Algeria,
Morocco, Sudan and Tunisia (1)

Size 15: Morocco and
Tunisia (1), Morocco

and Tunisia (1); Size 17:
Morocco, Sudan and

Tunisia (1); Size 31: Iran
and Oman (1)

A1 102 0

D2 78 22 (28.2) Iran (4), Sudan (1),
Syria (1) Size 5: Iran (1), Iran and Lebanon (1)

E 73 18 (24.7) Sudan (1) Size 4: Egypt and Sudan (1); Size 14:
Sudan (1)

D3 48 4 (8.3) Size 4: Iran (1)

A2 23 0
1 SGT: Sub-genotype; 2 MENA: Middle East and North Africa; 3 Dyad: phylogenetic cluster with two sequences; 4 Small networks:
phylogenetic clusters with three to 14 sequences; 5 Large networks: phylogenetic clusters with more than 14 sequences.
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4. Discussion

The MENA region can be viewed as a region with a relatively high burden of hepatitis
B [41,69,70]. In this study, we investigated HBV genetic diversity, antiviral drug resistance,
and transmission clustering patterns in the MENA region using a phylogenetic-based
approach. Countries of the region can be classified as intermediate to highly endemic in
relation to the prevalence of CHB [27,41,71]. The study of viral transmission in a region
with a common culture, economic difficulties, belief systems, and behaviors can be valuable
to reveal the dynamics of virus spread [37,72–74]. In addition, the study of HBV genotype
distribution is valuable considering its potential association with the progression of liver
disease, viral load, and viral clearance [75,76].

A major result of this study was the observation of the extensive genetic diversity of
HBV in the MENA region. Nevertheless, genotype D dominated infections in the majority
of the MENA countries, particularly in the Middle East. Additionally, the results indicated
that genotype D emerged as the most significant genetic variant of the virus from an
epidemiologic point of view due to its contribution to the local spread of HBV. This result
appears plausible considering the previous evidence of genotype D dominance in the
Eastern Mediterranean region [55,77,78]. Genotype D was previously reported to be the
most dominant variant of HBV in Iran, Iraq, Syria, Jordan, Lebanon, Palestine, Turkey, and
Northern Cyprus [46,50,53,79–81]. In Iran, two separate studies by Aghakhani et al. and
Pourkarim et al. attributed the dominance of genotype D in the country to its geographical
location and ethnic background [82,83].

The extensive genetic diversity of HBV in the MENA was more pronounced in some
countries (KSA and Egypt). Saudi Arabia has a high level of international migration
within the MENA region countries [84]. Thus, the large diversity of residents in KSA was
reflected by the presence of the eight HBV genotypes in the country. A previous study by
Al-Qudari et al. demonstrated such an extensive genetic diversity of HBV in KSA [85]. For
Egypt—particularly in Cairo—large urban refugee communities existed for a long time,
which might have contributed to the huge genetic diversity of the virus in the country [86].
Saudy et al. suggested that being a destination for many tourists and visitors, particularly
from the countries where genotype D is prevalent, can explain the considerable genetic
diversity and dominance of genotype D in Egypt [87].

Likewise, Sumer and Sayan suggested that the HBV genetic diversity seen in Northern
Cyprus can be related to the relatively large fraction of students and workers present there,
with similar evidence by Arıkan et al. [53,88]. An important point to be considered in areas
with extensive genetic diversity of the virus is the higher possibility of recombination,
which might yield novel viral variants, that may impact the prophylaxis, diagnosis, and
treatment of the disease [89,90].

Another interesting observation was the dominance of SGT D7 in the Arab Maghreb
(Northwest Africa). The sustained presence of SGT D7 in the Maghreb was linked to intra-
familial transmission in early childhood [91]. The dominance of SGT D7 in the Maghreb
was previously reported by several original and review papers and is consistent with the
results of this study [49,91–94].

The early characterization of SGT D7 was reported in Tunisia by Meldal et al., and the
evolution of this SGT in Tunisia was further dissected by Ciccozzi et al., who described
its peculiar distribution geographically [91,94]. The latter study demonstrated a recent
origin of SGT D7 dating back to the 1950s, with an exponential increase in infections
through two main routes, namely, familial transmission and the unsafe use of needles [91].
The peculiarity of SGT D7 in this study extended to involve the classification with the
Geno2pheno (HBV) online tool, where this SGT was initially classified as SGT D4. The
consistent discrepancy between the GenBank sequence metadata and genotyping results,
besides the lack of SGT D4 retrieval using the BLAST tool with D7 as the query sequences,
demonstrated its genuine classification as D7 rather than D4, which is found mainly in
Oceania rather than the MENA region [55]. A possible explanation of SGT D7’s initial
misclassification as SGT D4 is the shared recent common ancestor for both SGTs D4 and



Pathogens 2021, 10, 1333 13 of 19

D7, with its possible divergence from SGT D5 that took place in the Maghreb as suggested
by Ciccozzi et al. [91]. This result points to the importance of conducting phylogenetic
classification using full genomes to achieve reliable conclusions about the genetic diversity
of the virus and the continuous need for revising the classification for HBV, which is
characterized by a swift evolution among human DNA viruses.

Other studies from both Algeria and Morocco add further evidence to the previous
hypothesis of SGT D7 origin in the Maghreb [49,95]. Collaborative efforts are required in
the region to help in better characterization of the HBV epidemic in the Maghreb, which in
turn can help in the implementation of well-informed preventive public health measures
to reduce the burden of CHB in the region [92].

Despite its global distribution, genotype D predominates around the Mediterranean
and in the Middle East [15,26]. The clinical significance of genotype D stems from its
possible association with poor prognosis, besides its higher correlation with acute liver
failure [15,75,96–98]. Previous studies investigating the origin of SGT D1 using the phylo-
geographic approach pointed to possible origins of this sub-genotype in the region (Syria
and Turkey); thus, the predominance of SGT D1 in the Levant appears as an expected
outcome [99–101]. The dominance of genotype E in Sudan contradicts a previous report
with a small sample size in the country, which showed that genotype D was the most
common, followed by genotype E [102]. However, the higher number of molecular se-
quences analyzed in the current study might point to the genuine dominance of genotype
E in Sudan, which appears as a possible outcome considering the high prevalence of this
genotype in Sub-Saharan Africa [103].

The proportion of phylogenetic clustering besides inter-country mixing of HBV lin-
eages was the highest in Maghreb. This was higher than the proportions previously
reported for HIV in Europe and the MENA region [37,73]. Taken together, the results of
phylogenetic cluster analysis can give clues to very high levels of viral mobility for the
following: SGTs A1 and A2; high levels for SGTs D1, D3, and genotype E; and high levels
of domestic spread with inter-country mixing of SGT D7 viral lineages.

A previous phylogenetic suggestion of HBV movement in the MENA region was
reported by Garmiri et al., where Iranian and Egyptian strains clustered together despite the
lack of high statistical support using bootstrapping method [104]. The study by Pourkarim
et al. that reported the clustering of Iranian HBV strains with isolates from Turkey, Syria,
and Lebanon was in line with our results [83].

Another recent study from Jordan demonstrated evidence of possible inter-country
spread of HBV in the MENA region as inferred through the observation of intermingling
of HBV sequences from Iran, Turkey, Syria, and KSA with Jordanian sequences [50].
Nevertheless, the previous study by Ababneh et al. reported a higher proportion of SGT
D1 clustering (30%) compared to the results of this study (15%) [50]. Possible explanations
for this discrepancy can be the adoption of a stricter definition of statistical support for the
internal nodes in defining the monophyletic clades in this study besides the examination of
a larger dataset from a region rather than a single country.

Considering the evidence of domestic viral spread in the region, halting dispersal
of HBV requires collaborative efforts and more comprehensive epidemiologic studies to
identify possible risk factors of infection and proper vaccine coverage, which can be used
to guide well-informed focused preventive measures [105].

Regarding the most common S gene mutations detected in this study, such mutations
can have a notable impact on the biologic behavior of the virus as follows: changing anti-
genicity of the surface antigen, which may affect the specificity of monoclonal antibodies
binding to this antigen [106,107]; reduction in the antigenicity of the surface protein of HBV
with subsequent reactivation resulting in occult HBV infection [108]; the lower possibility
of detection resulting in a higher risk of transmission in association with occult hepatitis
B infection [108]; and possible reduction in the ability to detect HBV surface antibodies
in immunoassays [109,110]. Such mutations should be monitored closely considering the
potential survival advantage of such immune-escape mutants [111].
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For the polymerase gene mutations, the overall prevalence of those mutations con-
ferring antiviral drug resistance was low (mainly against lamivudine and telbivudine).
Nevertheless, continuous monitoring of such mutations is recommended to prevent the
selection of such mutants, which would hinder the management of CHB [112]. This result
should be interpreted with extreme caution due to the lack of data for the treatment status
of the individuals from whom the molecular HBV sequences were retrieved and analyzed
in this study. The previous reports of the rapid emergence of resistance to lamivudine
also shed doubt over this particular result [113–115]. Thus, more studies from various
countries of the region are recommended to confirm or disprove such an uncertain result.
Such research is particularly recommended in the Middle East considering the significantly
higher prevalence of resistance to lamivudine, entecavir, and telbivudine.

The RT amino acid substitutions 204I/V were among the most frequent RT substitu-
tions detected in the study. Such amino acid substitutions were reported previously in Iran
and Jordan, even among treatment-naïve individuals [50,116,117]. The amino acid substi-
tutions 204I/V can be considered among the signature resistance mutations to lamivudine
with cross-resistance to telbivudine [118,119]. The decreased response to lamivudine as-
sociated with the selection of drug-resistant mutants was reported in Egypt and Iran and
should be considered carefully since this antiviral is considered a cost-effective treatment
option widely used in the MENA region [71,120,121].

The current study had several limitations as follows: first, a pre-requisite for the
determination of HBV SGTs is the analysis of full-length genomes, which was not available
in this study. Thus, slight differences in SGT assignments should be expected [122]. Second,
a limitation that should be considered in any prospective research investigating HBV
epidemiology is the need to consider the probable mode of transmission and serologic
profiles among the infected patients, besides the treatment status, all of which were not
available in the majority of sequences utilized in this study [123]. Third, the use of short
genomic regions and sparse sampling were unavoidable in this study as well, which could
have influenced the estimates of HBV clustering. Fourth, the possibility of recombination
in the analyzed sequences was not ruled out. Finally, a few countries from the MENA
lacked HBV molecular sequences in GenBank (Bahrain, Djibouti, Mauritania, and Qatar),
besides the unequal distribution of the number of HBV sequences in this study with a
predominance of sequences from Iran, Saudi Arabia, and Tunisia, which could result in
biased results.

5. Conclusions

The following patterns of HBV genotype distribution were observed in the MENA:
SGT D1 dominance in the Levant, Iran, and Turkey, SGT D7 dominance in the Maghreb,
genotype E dominance in Sudan, and SGT A1 dominance in Somalia. In addition, an
extensive genetic diversity of HBV was seen in Saudi Arabia and Egypt. Low prevalence
of lamivudine, telbivudine, and entecavir drug resistance in the MENA was found in
this study, with almost absence of resistance to tenofovir and adefovir. Transmission
cluster phylogenetic analysis indicated the variable proportions of phylogenetic clustering.
Specifically, the prominent domestic transmission of SGT D7 was observed (particularly
in the Maghreb), while lower levels of clustering observed for genotype E and SGTs D1
andD3 suggests higher levels of virus mobility and inter-country spread of the virus in the
region. Future epidemiologic studies involving the investigation of risk factors, vaccine
coverage, the occurrence of antiviral drug resistance, and vaccine escape mutations are
highly recommended to refine the preventive and management strategies in the MENA.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pathogens10101333/s1, Figure S1: Maximum likelihood phylogenetic trees for the major HBV
genotypes/SGTs used to conduct transmission cluster analysis. Visualization of the phylogenetic
trees was conducted in the software FigTree, available freely at (http://tree.bio.ed.ac.uk/software/
figtree/); accessed on 29 August 2021.
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