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Abstract: Several species of avian schistosomes are known to cause dermatitis in humans worldwide.
In Europe, this applies above all to species of the genus Trichobilharzia. For Austria, a lot of data are
available on cercarial dermatitis and on the occurrence of Trichobilharzia, yet species identification of
trematodes in most cases is doubtful due to the challenging morphological determination of cercariae.
During a survey of trematodes in freshwater snails, we were able to detect a species in the snail
Physella acuta (Draparnaud, 1805) hitherto unknown for Austria, Trichobilharzia physellae; this is also
the first time this species has been reported in Europe. Species identification was performed by
integrative taxonomy combining morphological investigations with molecular genetic analyses. The
results show a very close relationship between the parasite found in Austria and North American
specimens (similarity found in CO1 ≥99.57%). Therefore, a recent introduction of T. physellae into
Europe can be assumed.

Keywords: trematodes; Schistosomatidae; DNA barcoding; cercariae; swimmer’s itch; Trichobilharzia
physellae; Europe

1. Introduction

Digenean trematodes are parasitic worms, and some of them have considerable medi-
cal and economic relevance [1]. Among them are members of the family Schistosomatidae
that includes mammal parasites, some of which cause severe human diseases particularly
in tropical and subtropical regions [2], and birds schistosomes, etiological agents of avian
cercarial dermatitis worldwide [3]. Avian schistosomes use birds as final hosts. Eggs
contain and release miracidia which infect freshwater snails, the first intermediate hosts.
In the snails, further larval stages—sporocysts and cercariae—propagate and develop,
respectively. Swimming invasive larvae, the cercariae, finally leave the snail host and, if
they find a suitable bird host, they enter it by penetrating the skin. Adults settle in blood
vessels of visceral organs or mucus tissue of the bird host species, where they can complete
their life cycle and reproduce sexually. Yet, cercariae may also penetrate the skin of unsuit-
able “aberrant” hosts, such as humans. In such a case, the life cycle cannot be completed,
but the immune response of the host to the invading worms may cause an exanthema
called “cercarial dermatitis” or “swimmer’s itch”. Generally, the dermatitis is harmless but
awkward due to heavy pruritus which may last several days. This causes inconvenience
and may—due to scratching—lead to secondary bacterial infections [4,5]. However, in
some cases cercarial infection can also lead to more serious symptoms such as anaphylaxis
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or disorders of the respiratory system [6]. There have also been reports of other symptoms
such as nausea, diarrhea, swollen glands, insomnia, and fever as well as reports of finding
schistosomula in different organs of mammals which are summarized in Marszewska et al.
and Horák et al. [3,7]. Worldwide, several genera are known to cause these symptoms [3,8].
Overviews of cercarial dermatitis outbreaks and avian schistosome occurrences in Europe
have been provided by several papers [4,9,10]. The causative agents of cercarial dermatitis
in Europe are mostly species of the genus Trichobilharzia. This genus comprises, depend-
ing on differences in genus assignments, 30–40 known species worldwide [11–14]. Six
species are known in Europe, namely Trichobilharzia szidati Neuhaus, 1952; Trichobilharzia
regenti Horák, Kolářová, and Dvořák, 1998; Trichobilharzia franki Müller and Kimmig, 1994;
Trichobilharzia salmanticensis Simon-Vicente and Simon-Martin, 1999; Trichobilharzia anseri
Jouet, Kolářová, Patrelle, Ferté, and Skírnisson, 2015; and Trichobilharzia mergi Kolářová,
Skírnisson, Ferté, and Jouet, 2013 [3,15,16]. Besides Trichobilharzia, five other genera of
avian schistosomes are reported to infect aquatic birds in Europe: Allobilharzia, Bilharziella,
Dendritobilharzia, Gigantobilharzia, and Ornithobilharzia [10].

In Austria, to date, T. szidati from Lymnaea stagnalis (Linnaeus, 1758), T. franki from
Radix auricularia (Linnaeus, 1758), and Bilharziella polonica (Kowalewski, 1895) from Planor-
barius corneus (Linnaeus, 1758) have been recorded as potential causative agents of human
cercarial dermatitis. More findings of (presumed) Trichobilharzia cercariae were reported
from Aplexa hypnorum (Linnaeus, 1758), Gyraulus parvus (Say, 1817), Lymnaea stagnalis,
Stagnicola sp., Radix auricularia, and Ampullaceana balthica (Linnaeus, 1758) (syn., e.g., Radix
ovata (Draparnaud, 1805), Radix balthica (Linnaeus, 1758)) [17,18], yet without species as-
signment. The very first records from the 1970s were tentatively assigned to T. szidati
due to the swimming behavior of the cercariae and the occurrence in L. stagnalis [19,20].
Later, investigations of Trichobilharzia from Lower Austria evidenced the species identity
as T. szidati by rearing adults via life cycle performance in the laboratory [21]. Recently,
T. franki was reported for the first time for Austria by Reier et al. [22]. Species identification
was performed by employing morphological and molecular genetic methods (DNA bar-
coding). Similarly, Gaub et al. [23] verified the occurrence of T. szidati from eastern Austria
using DNA sequence data. In view of the scarce data and considering the availability of a
diversity of host species, it can be assumed that still other (avian) schistosomes may occur
in Austria [10,24].

The invasive snail Physella acuta (Draparnaud, 1805) is native to North America
but was long thought to be a European species since it was first described in 1805 from
France [25]. However, it may be one of the earliest cases of a successful biological invasion
that started in Europe [26] and resulted in the species now having a global distribution
with the exception of Antarctica [27]. Physella acuta is known to be capable of a very high
reproduction rate (as short as 4 weeks) and even to alter the number of generations per
year [27,28]. This effectively enables P. acuta to displace native gastropods in a very short
time [28]. In recent years, P. acuta has been investigated in Upper and Lower Austria at
several localities (but in moderate numbers) at Danube backwaters and tributaries as well
as in Upper Austrian lakes, but without any trematode evidence until now.

In the framework of a survey of trematodes in freshwater snails in eastern Austria,
avian schistosomes were collected from infected freshwater snails [29]. During that study,
schistosome cercariae were found also in physid snails. We report here (1) the first finding
of Trichobilharzia physellae in Austria/Europe in the intermediate host snail P. acuta in
the field, (2) provide first DNA barcode sequences of this species (for Europe) and (3)
compare it with earlier published sequences. We also (4) assessed its phylogenetic position
among other Trichobilharzia species as well as the intraspecific genetic diversity found in the
mitochondrial marker sequence. Furthermore (5) we provide some general morphometric
data and photomicrographs of the cercariae of this European isolate of T. physellae.
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2. Results
2.1. Morphology

The measurements of 25 T. physellae specimens (Figure 1) found on 16 September 2020
(NHMW, Collection Evertebrata Varia, inventory number 5858) in Upper Austria can be
seen in Table 1 in comparison with previously published measurements. The measured
specimens were similar in every measurement and there were no outliers in the data
(Supplementary Spreadsheet S1). In particular, the diameter of ventral sucker, the width of
tail stem, and the width of tail furca were very consistent. In comparison with previously
published data, there is a good consensus with the measurements reported by Talbot [30]
except for length of body, length of tail stem, and length of tail furca. The values reported
by Tanaka [31] and Pence and Rhodes [32] were more deviant in most measurements,
especially in diameter of sucker, distance from ventral sucker to posterior of body, and all
width measurements.
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Table 1. Morphological measurements of Trichobilharzia physellae specimens of this study (n = 25) in comparison with
previously published measurements. Our measurements and those by Pence and Rhodes [32] give mean values in µm with
standard error; measurements by Talbot [30] are mean values in µm with probable error; measurements by Tanaka [31] are
only mean values in µm. Abbreviations: MI = Michigan, OI = Oki Islands, TX = Texas, UA = Upper Austria, Formalin = hot
formalin solution (10%), AFA = alcohol formalin acetic acid mixture, EtOH = ethanol.

Reference Talbot (1936) Tanaka (1960) Pence and Rhodes (1982) This Study

Host Physella parkeri, P.
magnalacustris Radix japonica Physa anatina Physella acuta

Locality MI, USA OI, JPN TX, USA UA, AUT

Fixation Formalin Formalin AFA 96% EtOH

Length of body 265 ± 8.4 281 244 ± 15 306.5 ± 3.1

Width of body 60 ± 4.5 51 65 ± 4 60.5 ± 1.4

Diameter of ventral sucker 29 ± 2.4 27 18 ± 3 29.2 ± 0.7

Distance from ventral sucker to
the posterior end of the body 80 ± 5.2 95 68 ± 6 83.6 ± 1.2

Length of tail stem 374 ± 10.6 361 301 ± 7 343.8 ± 3.1

Width of tail stem 40 ± 3.6 35 36 ± 4 43.5 ± 0.8

Length of tail furca 196 ± 7.8 221 157 ± 4 225.9 ± 1.8

Width of tail furca 32 ± 0.9 39 18 ± 1 26.3 ± 0.8

2.2. Molecular Genetic Results

Sequencing of the two cercariae specimens from the lake Pleschinger See from 16
September 2020 (NHMW, Collection Evertebrata Varia, inventory number 5858) resulted
in long mitochondrial cytochrome c oxidase subunit 1 gene (CO1) fragments of 1130 bp
(Pha1-21-001) and 1143 bp (Pha1-21-002), respectively. In addition, CO1 DNA barcode
sequences (Folmer region) of a length of 591 bp were obtained from independent PCR reac-
tions from both specimens. The sequences from both specimens gave a clear result, both
gave hits with 99.88% similarity with T. physellae, using NCBI (National Center for Biotech-
nology Information) BLAST (Basic Local Alignment Search Tool). From the two cercariae
specimens (Pha2-21-001 and Pha2-21-002) from 11 November, 2020 (NHMW, Collection Ev-
ertebrata Varia, inventory number 5859) only short sequences could be obtained due to bad
DNA quality. One was obtained with the primers Tricho_tRNA_fw and CO1560R_modif
(length of sequence 576 bp) and one with ZDOE-COI-fw and Tricho_rev_20 (460 bp). We
were not able to amplify the section in between those two sections. Additionally, the
sequences were not compliant with the quality criteria for DNA barcodes. Yet, the NCBI
BLAST with the sequences gave a clear result for both specimens (T. physellae with 99.57%
and 99.78%, respectively). Sequencing of both host snails (NHMW, Collection Evertebrata
Varia, inventory numbers 21338 and 21339) resulted in CO1 DNA barcode sequences of a
length of 655 bp (BOLD (Barcode of Life Data System) ID: NHBP005-21 and NHBP006-21;
NCBI GenBank accession numbers: OL434666 and OL434667). The sequences from both
host snail specimens gave a clear result for P. acuta (99.24% and 99.39%, respectively). The
comparison of the two host snail sequences to the data published by Moore et al. [33] also
showed a clear assignment to the P. acuta lineage.

The maximum likelihood (ML) and Bayesian Inference (BI) trees based on the
Trichobilharzia data both have the same overall topology, differing only in support for
some branches (Figure 2). Trichobilharzia regenti was the sister group to all other lineages.
The tree displays a separation of the remaining Trichobilharzia species into two main clades.
Clade 1 comprises the highly supported species T. anseri, T. mergi, T. stagnicolae, T. szidati
and two not yet described Trichobilharzia species (Trichobilharzia sp. D, E; [34]). The rela-
tionships within this clade did not receive considerable support values and have to be
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considered as unresolved. Clade 2 comprised T. franki, T. querquedulae, T. physellae plus five
not yet described species (Trichobilharzia sp. haplotype peregra; Trichobilharzia sp. A, B, and
C; Trichobilharzia sp. HAP 2013; [15,34,35]). Nodes within clade 2 are generally much better
supported. Our specimens of T. physellae originating from Austria cluster within the other
sequences of this species (Figure 2).
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The median-joining (MJ) haplotype network (Figure 3) illustrates the high diversity of
haplotypes within T. physellae with 13 different haplotypes present in 17 specimens. The
haplotype diversity was accordingly high with 0.95, whereas the nucleotide diversity was
very low (Pi = 0.006). The two specimens from Austria correspond to the same haplotype
and are separated by one substitution from the most common haplotype shared by three
specimens collected in New Mexico and one in Pennsylvania (FJ174514.1, FJ174515.1,
FJ174518.1, and FJ174523.1). The specimens collected in New Mexico and Michigan both
have a large haplotype diversity with different sets of substitutional steps. The haplotypes
of the specimens from Alaska (FJ174512.1 and FJ174516.1) differ considerably from the rest
of the presented haplotypes (Figure 3) as well as from each other. An examination of the
sequences showed that the two sequences from Alaska each have a different short region
with a high aggregation of autapomorphic substitutions, while in the remaining parts
the sequences are rather similar to the other T. physellae sequences. FJ174512.1 has seven
autapomorphic substitutions between position 708 and 782 of the alignment and FJ174516.1
has five autapomorphic substitutions between position 546 and 568 of the alignment.

Pathogens 2021, 10, x FOR PEER REVIEW 6 of 16 
 

 

and are separated by one substitution from the most common haplotype shared by three 

specimens collected in New Mexico and one in Pennsylvania (FJ174514.1, FJ174515.1, 

FJ174518.1, and FJ174523.1). The specimens collected in New Mexico and Michigan both 

have a large haplotype diversity with different sets of substitutional steps. The haplotypes 

of the specimens from Alaska (FJ174512.1 and FJ174516.1) differ considerably from the 

rest of the presented haplotypes (Figure 3) as well as from each other. An examination of 

the sequences showed that the two sequences from Alaska each have a different short 

region with a high aggregation of autapomorphic substitutions, while in the remaining 

parts the sequences are rather similar to the other T. physellae sequences. FJ174512.1 has 

seven autapomorphic substitutions between position 708 and 782 of the alignment and 

FJ174516.1 has five autapomorphic substitutions between position 546 and 568 of the 

alignment.  

 
Figure 3. Median-joining network (MJ) based on CO1 sequences of T. physellae. NCBI GenBank accession numbers / spec-

imen Lab-IDs representing different haplotypes are given near the dots. The central shared haplotype consists of 

FJ174514.1, FJ174515.1, FJ174518.1, and FJ174523.1. Haplotypes from the USA were coded at the level of the U.S. states. All 

haplotypes are marked in different colors and are constituted of one to four sequences (representative circle sizes in the 

legend). Sequences obtained in the present study are in bold. Orthogonal lines on the connecting lines between the haplo-

types indicate the number of mutation steps; black dots indicate missing haplotypes. 

3. Discussion 

This study represents the first report of Trichobilharzia physellae in Europe. Species 

assignment is based on a combination of morphology, DNA sequence comparison, and 

determination of the host snail. So far, the species was recorded unambiguously only in 

North America by means of morphology [30,32] and DNA sequence data [34,36,37]. There 

are also reports of T. physellae from Japan with studies on the general morphology of adult 

flukes and cercariae as well as on the fine structure of cercariae [31,38,39]. Another study 

from India also reported T. physellae, but in this study no data were provided to support 

this assumption [40]. A study from Brazil [35] found a genetically similar Trichobilharzia 

lineage in Stenophysa marmorata (Guilding, 1828) (mentioned in that publication under its 

synonym Physa marmorata Guilding, 1828). This lineage (Figure 2, sequence HAP 2013) 

might be, according to the data of that paper and our data, a sister species of T. physellae.  

Our morphological measurements are highly congruent with the original species de-

scription by Talbot [30] in most measurements taken (despite different fixation), which 

confirms our morphological determination. In contrast, the specimens of T. physellae meas-

Figure 3. Median-joining network (MJ) based on CO1 sequences of T. physellae. NCBI GenBank accession numbers/specimen
Lab-IDs representing different haplotypes are given near the dots. The central shared haplotype consists of FJ174514.1,
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3. Discussion

This study represents the first report of Trichobilharzia physellae in Europe. Species
assignment is based on a combination of morphology, DNA sequence comparison, and
determination of the host snail. So far, the species was recorded unambiguously only in
North America by means of morphology [30,32] and DNA sequence data [34,36,37]. There
are also reports of T. physellae from Japan with studies on the general morphology of adult
flukes and cercariae as well as on the fine structure of cercariae [31,38,39]. Another study
from India also reported T. physellae, but in this study no data were provided to support
this assumption [40]. A study from Brazil [35] found a genetically similar Trichobilharzia
lineage in Stenophysa marmorata (Guilding, 1828) (mentioned in that publication under its
synonym Physa marmorata Guilding, 1828). This lineage (Figure 2, sequence HAP 2013)
might be, according to the data of that paper and our data, a sister species of T. physellae.

Our morphological measurements are highly congruent with the original species
description by Talbot [30] in most measurements taken (despite different fixation), which
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confirms our morphological determination. In contrast, the specimens of T. physellae
measured by Pence and Rhodes [32] differ in most points. However, higher deviation and
variability, especially of the length of body, tail stem, and furca has often been observed and,
therefore, body dimensions are not considered as reliable tools for species determination
of cercariae [11,41]. This is due to the contractibility of cercariae, the temperature of
the environment, and the snail size during the development of cercariae, as well the
influence of varying fixatives [41,42]. Based on our data and the data from Talbot [30],
the diameter of sucker, distance from ventral sucker to the posterior end of the body,
and all width measurements seem to be more stable and informative. The information
on host species neither helps to explain the considerable differences in measurements,
nor allows straightforward interpretations concerning species assignment of the cercariae.
Talbot [30] collected T. physellae (morphologically the most similar to ours) from Physella
parkeri (Currier in DeCamp, 1881) and Physella magnalacustris (Walker, 1901), which later
were considered as synonyms of Physella ancillaria (Say, 1825) [43]. On the other hand,
Pence and Rhodes [32] collected the cercariae (morphologically quite distinct from ours)
from Physa anatina I. Lea, 1864 (syn. Haitia mexicana (Philippi in Küster, 1841)), which later
was synonymized with Physella acuta [33,43]. The cercariae collected by Tanaka [31] differ
strongly in measurements and were released from Radix japonica (Jay, 1857) which belongs
to the family Lymnaeidae while the other above-mentioned host snails belong to Physidae.
The same is true for cercariae which have been reported as hatching from R. auricularia
(Linnaeus, 1758) in India by Dutt [40]. Based on the data provided, species identification as
T. physellae by both Tanaka [31] and Dutt [40] is highly doubtful and has been questioned
by other authors as well [41]. Similarly, the comparison with measurements of other
Trichobilharzia species from Austria and other European countries did not allow clear
delimitation of the species as can be seen in the Supplementary Spreadsheet S1 [15,22,42].
More detailed characters, which could optimize the differentiation, would require living
cercariae and special staining [44], which was not performed in this study, since it was
based on ethanol fixed material. In summary, it appears that determination solely on
morphological measurements or the host snail species is not sufficient for T. physellae.

The sequence data of our specimens give a much clearer result when compared to data
available in GenBank and we could exemplify that CO1 is a good marker for identifying
species. Concerning the topology of our tree (Figure 2) we may state here that it matches
that of published CO1 trees including Trichobilharzia species [15,22,34,35,45]. However, in
comparison with published trees based on other genetic markers, the deeper nodes of
Clade 1 and the position of T. regenti differ, seemingly depending on the genetic markers
used and the chosen outgroup [12,14,34]. Yet, for a solid phylogenetic reconstruction of the
relationships within the genus Trichobilharzia (which was not the aim of the study) CO1
sequences are certainly not sufficient.

The MJ network presented here (Figure 3) gives an interesting picture concerning
the distribution of T. physellae. Our specimens from Austria are only separated by one
substitution from the most common haplotype in North America, whereas many other
haplotypes were found in North America. Especially the haplotypes from Alaska are
very different. However, despite the larger geographic separation of these two specimens,
these sequences appear doubtful since it appears strange for a coding gene to have a
tight aggregation of autapomorphic substitutions within a short section. Thus, it would
need more data from specimens from Alaska to confirm these conspicuous mutations.
The high overall haplotype diversity and the very low overall nucleotide diversity of
the T. physellae sequences are similar to those of other Trichobilharzia species found in the
literature [22,46,47].

Since the CO1 haplotype of the Austrian specimens is very closely related to the most
common North American haplotype, a recent introduction of the species to Europe may be
assumed. The most plausible vector seems to be the host snail P. acuta. Originally native to
North America it was accidentally introduced to reach a nowadays worldwide distribution.
The introduction of P. acuta in Europe started over 200 years ago and the population today
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is considered to be the result of multiple invasions into Europe from where the snail
subsequently spread eastwards [27]. The phases of invasion and distribution through
Europe are summarized by Vinarski [26] and indicate that P. acuta was present in Austria
at least by 1925. Findings in southern Germany and in the Czech Republic suggest an
introduction into northern Austria even earlier in the twentieth century [26] which would
imply that a suitable host for T. physellae has already been established in Austria and
Europe for some time. A plausible transmission route of aquatic snails and therefore
probably also for T. physellae is nowadays the international aquarium trade and trade of
water plants [48]. A good example is another invasive snail species, Melanoides tuberculata
(O. F. Müller, 1774), which was originally described from India and has since reached
a pantropical distribution mainly due to the trade of aquarium plants and its ability to
essentially reproduce clonally [49]. Additionally, M. tuberculata is reported to be the host of
37 trematode species in 26 countries [50]. Yet, it should be considered that snails may be
transported mainly as eggs or small/young snails which have a much lower prevalence
for cercarial infection [27,51]. Therefore, the introduction of infected snails might be a
rare event.

Several migrating Anatidae may also be considered as possible vectors for
Trichobilharzia from North America to Europe. For example, Anatidae (mostly the genus
Anas) have been reported for the transcontinental dispersal of T. querquedulae [45]. All hosts
of adult T. physellae recorded so far in North America belong to Anatidae [32,34,37]. For
example, the lesser scaup Aythya affinis (Eyton, 1838) and the ring-necked duck Aythya
collaris (Donovan, 1809) are both common in North America and vagrants in Europe. The
sightings accepted by local avifauna committees in countries around Austria and in Austria
of wild birds are scarce but regular (most recent sightings of A. affinis: Germany [52];
Switzerland [53]; of A. collaris: Austria [54]; Slovakia [55]; Hungary [56]; Italy [57]; Ger-
many [58]; Switzerland [59]; Czech Republic [60]). Within Europe, the goosander (Mergus
merganser Linnaeus, 1758) could be a possible avian vector since it is also a known host
in North America [34]. The goosander has known populations in the Swiss Alps, Bavaria
(Germany) and Austria; the male birds from these populations seem to migrate regularly
to northern Europe [61]. The Austrian population of the goosander is distributed along
rivers in Upper Austria and one of the highest densities is in the area of the city Linz [62]
where our specimens of T. physellae were collected. Whether our record of T. physellae is
part of a single population of this species or the species has a wider distribution in Austria
or even in Europe (and simply was not detected so far) remains to be investigated.

4. Materials and Methods
4.1. Sampling

While performing a study dedicated to eDNA detection of cercarial dermatitis agents
in Upper Austrian water bodies, different species of potential host snails were collected
at locations where cercarial dermatitis cases were reported. Among them were 36 P. acuta
(Draparnaud, 1805) specimens collected at the lake Pleschinger See in Linz (Upper Austria)
on 16 September, 2020 (6 specimens) and on 11 November, 2020 (30 specimens). This
quarry lake has a surface area of 0.13 km2, a maximum depth of 8 m, and an altitude
of 248 m above sea level (Coordinates: 48◦19′9′′ N, 14◦19′57′′ E). The lake temperatures
were estimated at approximately 22 ◦C in September and 8 ◦C in November. In both
cases, the snails were transported within lake water to the lab and subsequently isolated
in individual jars with lake water, which were placed near a window (but not in direct
sunlight) at room temperature. Cercarial infection of the snail (detected by release of
cercariae) was found after one day in one snail collected on 16 September 2020 and after
three days in one snail collected on the 11 November 2020. This results in a prevalence of
5.6%. The cercariae released from two P. acuta specimens were fixed in molecular grade
ethanol (96%) immediately after discovery. The corresponding infected snails were also
fixed in molecular grade ethanol (96%) after death (18 September 2020 and 16 November
2020). Uninfected snails were released at the collecting site.
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4.2. Morphological Examination

A part of the fixed cercariae obtained from several infected snails was placed in a
50:50 ethanol (80%)/glycerol mixture, which was complemented with 1 mL borax-carmine
solution (according to Grenacher from Sigma Aldrich) per 100 mL. The ethanol was than
evaporated for 48 hours in a thermo-incubator (at 40 ◦C) pre-mounting. After evaporation
of the ethanol, the cercariae were mounted in glycerol on micro slides and covered with
cover glasses. This procedure results in increased lucency from glycerol and slight staining
from Borax-Carmine for better visibility of the anatomy. The mounted cercariae were
morphologically examined through a Nikon Eclipse Ni-U microscope (Nikon Instruments
Inc., New York, NY, USA). Subsequently, photomicrographs were made using the mounted
Nikon DSRi2 microscope camera unit. Based on the photomicrographs, measurements of
the body length and width, diameter of ventral sucker, distance from ventral sucker to the
posterior end of the body, stem length and width, furca length, and width [30,32] were
taken in the corresponding application NIS-Elements BR v.5.02.00. For some specimens,
there were missing data caused by non-visibility of some characters due to the position of
the specimens on the microscopic slide. Finally, the mean and the standard errors were
calculated, and the measurement data were tested for outliers. The final photomicrographs
were edited using Gimp 2.10.24 (https://www.gimp.org, accessed on 28 May 2021). The
corresponding host snails were morphologically examined, identified based on their shell
anatomy, and photographed using a stereo microscope (Wild-Leica Heerbrugg M420
Makroskop, Leica, Wetzlar, Germany). The mounted slides, fixated cercariae and host snails
are deposited in the collection of the Natural History Museum Vienna (NHMW, Collection
Evertebrata Varia, inventory numbers 5858 and 5859 for the microslides/cercariae and
inventory numbers 21338 and 21339 for the host snails, respectively).

4.3. Analysis of the Mitochondrial cytochrome c oxidase subunit 1 Gene

For the molecular genetic analysis, DNA of single cercaria of every infected snail
was extracted using the QIAmp DNA Micro Kit (Qiagen, Hilden, Germany). Altogether,
four cercariae were analyzed genetically. Cercariae were isolated with stainless insect
needles under a stereo microscope (Wild-Leica Heerbrugg M420 Makroskop, Leica, Wetzlar,
Germany), dried for approximately 10 seconds on the needle to remove the ethanol, and
subsequently transferred into the lysis buffer. The extraction was performed according
to the manufacturers’ protocol. In the final step, the DNA was eluted with 25 µL AE
buffer. Additionally, small tissue samples of the foot of both host snails were taken and
extracted using the DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany). Lysis of the
tissue samples was conducted overnight. The extraction was performed according to the
manufacturers’ protocol. In the final step, the DNA was eluted with 40 µL AE buffer.

Fragments of the mitochondrial cytochrome c oxidase subunit 1 gene (CO1) were ampli-
fied. For the cercariae, the first primer pair (Cox1_schist_5k/Cox1_schist_3k) was used to
gain a 1244 bp amplicon of the CO1 gene. Additional primers optimized for Trichobilharzia
were designed to amplify four overlapping fragments in specimens with poor DNA quality
and/or for sequencing: Tricho_tRNA_fw/Tricho_tRNA_rv_2, 401-482 bp amplicon length
(depending on an indel between tRNA-Ser and CO1); Cox1_schist_5_trich/CO1560R_modif,
612 bp amplicon length (corresponding to the so-called “Folmer region”, covering 88,6% of
this sequence); Tricho_Fw2/Tricho_Rv2_2, 491 bp amplicon length; ZDOE-COI-fw/Tricho_
rev_20, 486 bp amplicon length). For the host snails, the primer pair LCO1490_ABOL_Moll_
1/HCO2198_ABOL_Moll¬_1 was used to gain a 704 bp amplicon of the CO1 gene. Primer
sequences are given in Table 2.

PCR amplification was performed in 25 µL reaction volume including 18.4 µL distilled
water, 2.5 µL of 10× TopTaq PCR buffer, 1.5 µL of 25 mM MgCl¬2 (only for the cercariae),
0.5 µL of 50 µM primers (0.25 µL each), 0.5 µL dNTP (10 mM each), 0.5 units of TopTaq
DNA polymerase (Qiagen, Hilden, Germany), and 1.5 µL template DNA. The conditions
used in the PCR reactions were 94 ◦C for 180 s, 35–40× of (94 ◦C for 30 s, Tann for 30 s,

https://www.gimp.org
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72 ◦C for 60–90 s), 72 ◦C for 420 s; elongation time and annealing temperature (Tann) can
be found in Table 3.

Table 2. List of used primers and their sequences.

Name Sequence 5′–3′ Reference

Schisto-COI-5-Fw TCTTTRGATCATAAGCG [63]

Schisto-COI-3-Rv TAATGCATMGGAAAAAAACA [63]

Tricho_tRNA_fw GGTTGTCGCTGCTAACGA This study

Tricho_tRNA_rv_2 CCATATAAAACATTGAAGGAACC This study

Cox1_schist_5_trich GTTRGTTTCTTTGGATCATAAGCG This study

CO1560R_modif GCAGTACCAAATTTTCGATC This study

Tricho_Fw2 GGTTCTGTAAAATTTATAACTAC This study

Tricho_Rv2_2 CCTAACATATACAACCAAG This study

ZDOE-COI-fw TAGTTTGTGCTATGGGTTCTATAGT This study

Tricho_rev_20 GCATTCCTAAATAATGCATAGG This study

LCO1490_ABOL_Moll_1 TCAACAAAYCATAARGAYATTGG [64]

HCO2198_ABOL_Moll_1 TAAACTTCTGGRTGACCAAAAAAYCA [64]

Table 3. Conditions of PCR reactions of the different primer pairs. Tann = annealing temperature.

Primer Combination Amplicon Length Tann/Elongation Time

Cox1_schist_5k/Cox1_schist_3k 1244 bp 50 ◦C/90 s

Tricho_tRNA_fw/Tricho_tRNA_rv_2 401–482 bp 54 ◦C/60 s

Cox1_schist_5_trich/CO1560R_modif 612 bp 52 ◦C/60 s

Tricho_Fw2/Tricho_Rv2_2 491 bp 49 ◦C/60 s

ZDOE-COI-fw/Tricho_rev_20 486 bp 53 ◦C/60 s

LCO1490_ABOL_Moll_1/HCO2198_ABOL_Moll _1 704 bp 50 ◦C/60 s

The amplified DNA products were purified using the QIAquick PCR Purification
Kit (Qiagen, Hilden, Germany) according to the manufacturers´ protocol. Purified PCR
products were sequenced in both directions using the PCR primers by Microsynth Austria
(Vienna, Austria).

Chromatograms of the sequencing results were checked using FinchTV 1.4.0 (Geospiza
Inc.) and sequences were edited using GeneDoc 2.7.0 [65]. The final sequences were blasted
using NCBI BLAST search. Sequences obtained in the present study were deposited in the
NCBI GenBank database and in the BOLD database (see Table A1). Additionally, 159 CO1
sequences of Trichobilharzia species (representing all species and clades currently available)
were downloaded from GenBank and added to the preliminary alignment. Anserobilharzia
brantae (Farr and Blankemeyer, 1956) was used as outgroup. The alignment was built using
MEGA-X 10.0.5 [66] and MAFFT 7.481 with the L-INS-i algorithm [67]. Due to different
lengths of published sequences, the alignment was reduced to a length of 782 sites with
all shorter sequences excluded. Furthermore, a selection of 1–5 sequences was chosen
from the various species (except T. physellae), depending on the availability in the NCBI
database, in an attempt to cover the genetic variability of each species. For that purpose,
the genetic variability was checked by calculating a neighbor-joining test tree in MEGA-
X and a ML test tree with 1000 ultrafast bootstrap approximations [68] in the software
IQ-Tree (for details see below). The final alignment consisted of 58 sequences including
the two T. physellae sequences sampled from 16 September 2020 (Appendix A Table A1).
The sequences from the specimens from 11 November 2020 were not included in the tree
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and network calculations as only short sections of the CO1 gene could be obtained from
them. The sequencing results of the host snails have been additionally checked against the
data published by Moore et al. [33] to assess which genetic lineage our snail specimens
belong to.

The best fitting evolutionary models for the phylogenetic tree searches were selected
for every codon position by using ModelFinder [69] with the BIC criterion implemented
in the IQ-Tree software (1. Pos.: TN+F+I; 2. Pos.: TN+F+I, 3. Pos.: TIM2+F+I+G4).
For the ML analyses, the software IQ-Tree 2.1.1. [70] was used with edge-linked partition
models [71]. Branch support was assessed by calculating 1000 standard bootstrap iterations.
Bayesian Inference (BI) was conducted using MrBayes 3.2.6 [72] with 2 × 4 Markov Chain
Monte Carlo iterations of 1 × 107 generations and sampling every 200th generation. After
inspecting the log-likelihood values, a 10% burn-in was chosen. The final trees were
visualized by using iTOL v5 [73].

The sequences of the species T. physellae (782 bp alignment) were also used to produce a
median-joining (MJ) haplotype network [74] using PopART 1.7 (http://www.popart.otago.
ac.nz, accessed on 6 July 2021) to compare the specimens found in Austria with already
published sequences from the USA (accession numbers FJ174512-FJ174523.1, MK433245.1,
MK433249.1, MK433251.1, see Table A1). In addition, the haplotype diversity (Hd) and the
nucleotide diversity (Pi) were calculated using DnaSP 6.12.03 [75]. The final tree and the
network were graphically edited using Inkscape 1.0.2 (https://inkscape.org, accessed on
17 May 2021) and exported using Gimp 2.10.24.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pathogens10111473/s1, Spreadsheet S1: Morphological measurements and test for outliers.
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Appendix A

Table A1. List of sequences that have been used in the present study. § refers to corrected data (Host, Life Cycle Stage,
Locality) based on personal communication with Sara Brant concerning differences between data in the NCBI GenBank
Database and the cited paper [34,76]. Accession numbers (Acc.No) are in general GenBank accession numbers, those
marked with an asterisk are the DNA barcodes generated in the present study (Lab-ID, BOLD as well as GenBank accession
numbers are provided).

Genus/
Species

Acc.No/
Lab-ID Host Life Cycle Stage Locality Reference

Anserobilharzia

Anserobilharzia brantae

MK433247.1 Gyraulus sp. cercariae USA, Michigan [37]

KC570954.1 Anser anser egg France, Der-Chantecoq Lake [14]

Trichobilharzia

Trichobilharzia anseri

KP901380.1 Radix balthica cercariae Iceland, Family park, Reykjavik [77]

KP901382.1 Anser anser egg France, Der-Chantecoq Lake [77]

KP901381.1 Radix balthica cercariae Iceland, Family park, Reykjavik [77]

Trichobilharzia franki

§ FJ174530.1 Radix sp. cercariae Czech Republic [34]

HM131200.1 Radix auricularia cercariae France, Beauvais [15]

HM131197.1 Radix auricularia cercariae France, Der-Chantecoq Lake [15]

Trichobilharzia mergi

JQ681535.1 Radix ampla cercariae Belarus, Naroch Lake [78]

JQ681536.1 Radix ampla cercariae Belarus, Naroch Lake [78]

JX456172.1 Mergus serrator adult Iceland, Botsvatn Lake [79]
JX456171.1 Mergus serrator adult Iceland, Botsvatn Lake [79]

Trichobilharzia physellae

FJ174512.1 Aythya affinis adult USA, Alaska [34]

FJ174513.1 Physa gyrina cercaria USA, New Mexico [34]

FJ174514.1 Bucephala albeola miracidia USA, New Mexico [34]

FJ174515.1 Aythya affinis adult USA, Pennsylvania [34]

FJ174516.1 Clangula hyemalis adult USA, Alaska [34]

FJ174517.1 Aythya collaris adult USA, New Mexico [34]

FJ174518.1 Aythya affinis adult USA, New Mexico [34]

FJ174519.1 Mergus merganser miracidia USA, Michigan [34]

§ FJ174520.1
Mergus

merganser/Physa
parkeri

miracidia/cercariae USA, Michigan [34]

FJ174521.1 Mergus merganser miracidia USA, Michigan [34]

FJ174522.1 Aythya affinis adult USA, New Mexico [34]

FJ174523.1 Physa gyrina cercaria USA, New Mexico [34]

MK433245.1 Physa sp. cercariae USA, Michigan [37]

MK433249.1 Common Merganser miracidia USA, Michigan [37]

MK433251.1 Mallard miracidia USA, Michigan [37]

* Pha1-21-
001/NHBP001-21/

OL434665
Physella acuta cercaria Austria, Upper Austria Present Study

* Pha1-21-
002/NHBP002-21/

OL434663
Physella acuta cercaria Austria, Upper Austria Present Study
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Table A1. Cont.

Genus/
Species

Acc.No/
Lab-ID Host Life Cycle Stage Locality Reference

* Pha2-21-
001/NHBP003-21/

OL434664
Physella acuta cercaria Austria, Upper Austria Present Study

* Pha2-21-
002/NHBP004-21/

OL434662
Physella acuta cercaria Austria, Upper Austria Present Study

Trichobilharzia querquedulae

KU057181.1 Anas rhynchotis adult New Zealand, South Island [45]

FJ174498.1 Anas discors adult USA, Louisiana [34]

KU057183.1 Anas rhynchotis adult New Zealand, South Island [45]

FJ174497.1 Anas clypeata adult USA, Louisiana [34]

Trichobilharzia regenti

MN337555.1 Anas platyrhynchos egg Iran, Azbaran unpublished

MN337560.1 Radix auricularia cercariae Iran, Azbaran unpublished

NC_009680.1 Radix peregra cercariae Laboratory Snail [80]

MN337557.1 Anas platyrhynchos
domesticus egg Iran, Sari unpublished

HM439501.1 Mergus merganser adult France, Annecy Lake [81]

Trichobilharzia sp. A

FJ174527.1 Anas americana adult USA, Alaska [34]

FJ174524.1 Anas americana adult USA, New Mexico [34]

Trichobilharzia sp. B

FJ174528.1 Anas americana adult USA, Alaska [34]

Trichobilharzia sp. C

KJ855996.1 Aix sponsa adult USA [35]

FJ174529.1 Lophodytes
cucullatus adult USA [34]

Trichobilharzia sp. D

FJ174485.1 Stagnicola sp. cercariae Canada [34]

Trichobilharzia sp. E

FJ174483.1 Stagnicola sp. cercariae Canada [34]

FJ174487.1 Anas acuta adult Canada [34]

FJ174486.1 Stagnicola sp. cercariae Canada [34]

Trichobilharzia sp. HAP_2013

KJ855995.1 Physa marmorata cercariae Brazil, Espírito Santo [35]

Trichobilharzia sp. haplotype peregra

HM131205.1 Radix peregra cercariae France, Annecy Lake [15]

HM131204.1 Radix peregra cercariae France, Annecy Lake [15]

HM131203.1 Radix peregra cercariae France, Annecy Lake [15]

Trichobilharzia stagnicolae

FJ174488.1 Stagnicola sp. cercariae USA, Montana [34]

KT831352.1 Stagnicola elodes cercariae Canada, Alberta [36]

FJ174492.1 Stagnicola sp. cercariae USA, New Mexico [34]

Trichobilharzia szidati

NC_036411.1 Lymnaea stagnalis cercariae Belarus, Naroch Lake [82]

MT708493.1 Lymnaea stagnalis cercariae Belarus, Naroch Lake [83]

MG570047.1 - - China unpublished

JF838200.1 Lymnaea stagnalis cercariae Russia, Moscow,
Olympiyskaya derevnya ponds [47]
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