Supplementary Data

Detection of Rhodococcus fascians, the causative agent of lily fasciation in South Korea

Joon Moh Park et al.

No	Location	Lily cultivar
1	X :128.172848, Y :37.3113234	Oriental hybrids
2	X :128.185448, Y :37.3120449	Asiatic hybrids
3	X :128.167835, Y :37.3066157	Oriental hybrids
4	X :128.267412, Y :37.2866898	Asiatic hybrids
5	X :128.229448, Y :37.5283488	Oriental hybrid 'Siberia'

Table S1. Sampling place of lilies located in Gangwon province of South Korea.

Primer name	Primer sequence (5'-3')	Target gene	Reference		
27F	AGAGTTTGATCMTGGCTCAG		Lane et al. 1991		
1492R	GGTTACCTTGTTACGACTT	105 fKINA	Turner et al. 1999		
vicA44-F	TCCTATTCGATTTCGTCGAGAAG				
vicA737-R	GGGTCGATCTGGATCTCGAA	VICA	This study		
fasD-F	ATTGTTGTTGCCGACCGTATC	fasD	This study		
fasD-R	AAGGACGCCGTGCTCGACATAC	jusD	This study		

Figure S1. Multiple sequence alignment of the *vicA* genes of *Rhodococcus* species. The alignment was performed using ClustalW. The conserved region for *R. fascians* strains are represented by yellow rectangles. The red arrows indicate *vicA* primers developed in this study for diagnosis of *R. fascians*.

	(1)	1	,10		20	,30		40		50	60		,70		86
A25f D188	(1) (1)	ATGA ATGA	AGGAATO	CAACCAT CAACCAT	GGCACAGA GGCACAGA	CGCAAGO	TAGGC AAGGT	TCGATC(TTGATC)	GACG <mark>G</mark> GGGTG	CAATGGGA CGATGGGA	ACCTG ACCCG	GCGTAT) GCGTAT)	ACGCAATC(ACGCAATC(STCGGTG STCGGTG	CCAC CCAC
A2 EF	(87)	87	3 mm c c 3 7	100	11) 	120	mm.c.a.cm	130	140	mmcmm	_150	160	202 C M C M	172
D188	(87)	CGGA	ATTGGAA	AAAAGCG	CCGAAGCO	AGCAAGI	TGGCA	TTGAGT	CACTO	GGCTCCGZ	ATTGTT(GTTGCC	GACCGTAT(CCAGIGI	TACT
A25f	(173) (173)	173 CCGA	180	GTCACC	190 AGTGGTCG	200	GACGC	210 GAAAGT	22 ggaag	20 <mark>GGCTCA</mark> C <mark>C</mark>	230	FTGGCT	240 CGACAACC	ggacc <mark>g</mark> t	258 ACAT
D188	(173)	CCGA	TCTCCTG	GTCACC	AGTGGTCG	AGCGTTC	GACGC	GAAAGT	GGAAG	GGCTCAAC	CGCGT	TTGGCT(CGACAACC	GGACCAT	ACAT
A25f	(259) (259) (259)	259 CAGO	GCAACTI	270 PCGATCC	280 GGACGAGO	CCTTTGZ		300 TGATAA	AGGTA	310 CTGACCTC	GTACG	320	330	GCGGTGG	344
D 100	(233)	CAGE	OCAACII	COALCO	GGACGAGC		100000	I GAIAA	AAGIA	CIGACUIC	GIACO.	LIGATO	JUBBUBAA	3000100	IAAI
A25f D188	(345) (345) (345)	GGAG GGAG	GGCGGTI GGCGGTI	JOL CGATAT CGATAT	CGCTCATI	370 CTTCGAT CTTCGAT	J8U PTCGCG PTCGCG	CAAACG. CAAACG.	390 ATATC ATATC	4 CAACCTAC CAACCTAC	CGTTC CGTTC	410 CCAGCT(CCAGCT)	GTCGTAAA GTCGTGAA	IZU FGTCATG FGTTATG	430 CCTA CCTA
	(131)	431	44	0	450	460		470		480	490		500		516
A25f D188	(431) (431) (431)	TTCC	TGATAGO TGATAGO	GCAACAC GCAACAC	TACTTTG	CCAGCA	STGCGC STGCGC	AAGGGC AAGGGC	ACGAC ACGAC	AAATGTT AAATGTTZ		AGATTC: AGATTC:	AACGGGCA AACGGGCA	GGAATTT GGAATTT	G <mark>CTC</mark> ACTC
	(517)	517		530	54	0	550		560	570		580	590		602
A25f D188	(517) (517)	ACC6 ACC6	AACTGGC AACTGGC	CGGAAGC CGGAAGC	GTGGGCT GTGGG <mark>T</mark> T GTGGG	TAGGCGI TAGGCGI	ATCAGC ATCAGC	ACAACT ACAACT	TCGTA TCATA	GCCTCGGI GCCTCGGI	TTGCGG(TTGCGG(GTCTGG. GTCTGG.	ACTGTGTA ACTGTGTA	CTCGACT CTCGACT	GGTG GGTG
625f	(603)	603	610	D.C.C.C.D.A.A	620	630	200630	640	65 CTTC 2 C	50	660	CACCAA	670	አ ምርግ አ አ ምርጋ	688
D188	(603)	CGCC	ACGCATI	ICCGTAA	CACCAGA	GAGTTG	GCCAAC	CGAGAC	CTCAC	CACGGAGO	GTGCTC	GACGAA	CTGGCGGC	ATCAATG	GGTG
A25f	(689) (689)	689 GCCG	GTATGTO	,700 CGAGCAC	710 GGCGTCCT	TCAGCAG	20 GGAAAT	730, ATTTT	AAGAA	740	reccc	750 AGGTGT	GACCGCCA	768 GATGA	
D188	(689)	GCCG	GTATGTO	CGAGCAC	GGCGTCCI	TCAGCA	GAAAT	ATTTT	AAGAA	CCTTCGGI	reccce	AGGTGT	GACCGCCA	GATGA	

Figure S2. Design of PCR primers for *fasD* gene of *R. fascians*. Most *fasD* genes from pathogenic *R. fascians* can be classified into two types, A25f and D188. The pairwise alignment of two types of genes include from translational initiation codon to stop codon was performed to determine the conserved region. The red arrows indicate *fasD* primers developed in this study.

Figure S3. Representative PCR-based detection of *fasD*, *vicA*, and 16S rRNA genes of bacterial genomic DNA isolates. Total genomic DNA from bacterial isolates was used as template in PCR analysis. A previous isolate of *Rhodococcus* sp. (*R.* sp. KB6) was used as a negative control *for R. fascians*-specific primers for *fasD* and *vicA*. The 16S rRNA was used as an internal control. The amplicon size is 573 bp for *fasD*, 694 bp for *vicA*, and 1517 bp for 16S rRNA, respectively. *R. fascians* (Loewe Biochemica GmbH) was used for positive control of PCR.

Figure S4. Phylogeney analysis of *R. fascians* YWS isolates from symptomatic lily plants. Phylogenetic trees were constructed based on nucleotide sequences of (A) 16S rRNA, (B) *vicA*, and (C) *fasD* using the Neighbor-Joining method by MEGA software. The reference sequences with Genbank accession numbers from *R. fascians* D188 and A25f, and *Rhodococcus* sp. KB6 were gathered from NCBI nr and wgs database. Accession numbers are followings: 16S rRNA gene for D188 (JMET01000045), A25f (CP049744), KB6 (LNAK01000053); *vicA* for D188 (CP015235), A25f (CP049744), KB6 (LNAK01000134); *fasD* for D188 (CP015236), A25f (CP049745).