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Abstract: Small ruminant lentiviruses (SRLVs), i.e., CAEV and MVYV, cause insidious infections
with life-long persistence and a slowly progressive disease, impairing both animal welfare and
productivity in affected herds. The complex diagnosis of SRLVs currently combines serological
check for methods including whole-virus and peptide-based ELISAs and Immunoblot. To improve the current
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_ ) diagnostic protocol, we analyzed 290 sera of animals originating from different European countries
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iations. 1. Introduction
® Maedi-Visna virus (MVV) and caprine arthritis-encephalitis virus (CAEV) belong to
the family Retroviridae, and the genus Lentivirus. They are members of a heterogeneous

group called the small ruminant lentiviruses (SRLVs) comprising five different genotypes
(A, B,C, D and E), infecting goats and sheep, causing cross- and superinfections [1-5]. MVV-
This article is an open access article 1K€ and CAEV-like strains belong to genotype A and B, respectively, with a worldwide
distributed under the terms and  distribution. The transmission routes for SRLVs are principally vertically through colostrum
conditions of the Creative Commons  OF milk but also horizontally through respiratory secretions, favored by overcrowding [6].
Attribution (CC BY) license (https://  SRLV infections persist for life, whereby the mounted specific immune response does not
creativecommons.org/licenses /by / protect against disease or superinfection [7]. Only one-third of the infected animals show
40/). clinical signs [8,9]. Still, SRLVs have a significant economic impact on animal production
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and affect animal welfare [10]. The presence of specific antibodies is useful as an indicator
of an infection and therefore, eradication and surveillance programs are based on the
serological detection of infected animals. The most frequently used assays are the agar gel
immunodiffusion (AGID) test and the enzyme-linked immunosorbent assay (ELISA) (OIE
Terrestrial Manual, https:/ /www.oie.int/fileadmin/Home/eng/Health_standards/tahm/
3.07.02_CAE_MV.pdf, accessed on 6 December 2021). For the AGID test, the two major
SRLV antigens used routinely are the glycoprotein 135 (gp135) and the capsid protein (p28),
respectively. The specificity of the AGID test is high, but its sensitivity has been reported
as being low [11-13]. Still, a recent study carried out on Belgian sheep and goats [13]
reported a sensitivity and specificity of 100% by combining the results of two AGID Kkits.
Several ELISA tests have been developed and described in the literature using whole virus
preparations, recombinant proteins or synthetic peptides, mostly designed as indirect but
also as competitive assays (according to the OIE Terrestrial Manual). The high sensitivity,
efficient handling and ease of interpretation of the results are the major advantages of
the ELISA compared to AGID tests. For this reason, the ELISA tests are preferred for
surveillance and eradication programs. A major drawback of serology is the high genetic
variability of the SRLVs, translating into high antigenic diversity [14,15]. Therefore, the
serological diagnosis of SRLV remains quite challenging [7,12,16] in the absence of a “gold
standard” [17]. The high genomic variability also complicates the design of tools for the
molecular detection of SRLV. Furthermore, apart from low viral load, no free virus is
detectable in the blood of naturally infected animals using PCR methods. Therefore, these
methods mainly target the provirus in peripheral blood leukocytes [18,19].

The current SRLV diagnostic procedure in Switzerland is based on a protocol consist-
ing of an array of four sequentially used serological tests [20] performed on individual
seropositive—not herd—samples. The sampling follows field criteria, e.g., animal pur-
chase, animal transport or clinical suspicion. The serum samples are initially screened
with the IDEXX CAEV/MVYV Total Ab Test (Idexx Laboratories, Liebefeld, Switzerland), a
whole-virus antigen-based indirect ELISA [21] and the Small Ruminant Lentivirus Anti-
body Test Kit VMRD (VMRD, Pullman, WA, USA), which is a gp135-based competitive
ELISA [22]. Subsequently, the immunoblot based on whole virus antigen is performed
as a confirmatory assay for seropositive samples [23] followed by the SU5-ELISA set as a
serotyping differentiation test into the subtypes A1, A3, A4, B1 and B2 [24]. As far as the
voluntary MVV control program in sheep is concerned, the sera are screened initially for
SRLV antibodies using the Eradikit® SRLV Screening Kit (In3 diagnostic, Via B.S. Valfre,
18, 10,121 Torino, Italia) before confirmation as described above. This thorough diagnostic
procedure is expensive, laborious and time-consuming, and still quite frequently leads to
inconclusive or contradictory results. Therefore, the aim of this work was to evaluate more
closely the performance of the single and combined tests used, with the goal of optimizing
the overall procedure. Additionally, we designed a nested real-time PCR targeting highly
conserved genomic regions [25] and evaluated the benefit of the inclusion of this tool in the
current diagnostic strategy.

2. Results
2.1. Determination of SRLV True Positive Standard

The results obtained for the 290 samples used in the serological screening, confirmation
and genotype differentiation tests and the nested real-time PCR are visualized in a graphical
heatmap format in Table 1. The colors reflect the intensity of each serological reaction,
with values ranging from dark to light blue to white (negative) and from light to dark red
(positive). In general, positive serological reactions were seen in all flocks investigated,
indicating the presence of SRLV infections. However, overall, remarkable discordance
between the results obtained by different serological tests was evident(*), avoiding the
recognition of clear serological reactivity patterns within flocks. The highest agreement
among the screening and confirmatory test results was seen in the samples of flocks 2, 3
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and 5, whereas flock 10 exhibited discordance among the results of the screening tests as
well as among screening and confirmation (Table 1).

In order to evaluate the performance of each test in the absence of a generally ac-
cepted gold standard, the SRLV true positive status was identified as a composite reference
standard as recommended by others [13,16,26-28]. For that purpose, the composite con-
cordance of the serological results across the different screening tests was analyzed, as
shown in the Venn diagram (Figure 1). A total of 137 samples were positive with all three
commercial tests, and therefore were considered as serologically true positives. The IDEXX-,
VMRD- and ERADIKIT ELISA tests detected 178, 177 and 170 positive samples, respectively.
The results of the Immunoblot (IB) formerly used as a serological and real-time PCR as
an additional truth standard were included for comparative purposes (Figure 2). In the
non-overlapping areas, one of four single-positive IDEXX ELISA samples showed a positive
IB result, and three of them showed a positive real-time PCR result. None out of seven
single-positive VMRD ELISA samples were positive in IB; however, three were positive by
PCR. Finally, none out of nine single-positive ERADIKIT ELISA samples were positive in
IB, and only one was positive by PCR. The proportion of real-time PCR positive samples
was highest in single-positive IDEXX ELISA samples. In the overlapping regions between
the IDEXX ELISA with either the ERADIKIT ELISA or the VMRD ELISA, more IB and
real-time PCR positive results were observed than in the overlapping region between the
ERADIKIT- and the VMRD ELISA. Samples’” ELISA reactivity tended to be higher in the
overlapping areas of the Venn diagram than that of samples in the non-overlapping regions
(data not shown). Based on these results, we arbitrarily defined the condition of a positive
reaction with at least two screening ELISAs as a composite standard rule for serological
truth, complemented with real-time PCR as an additional, independent truth standard.

n:
IB:

PCR MVV:
PCR CAEV:
PCR M&C:

n: 10
1B: 0
PCRMVV: 4
PCR CAEV: O
PCRM&C: 0
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Figure 1. Venn diagram showing the concordance between serological results. Number of samples
(n), results of the immunoblot test (IB), and real-time PCR results (PCR MVV: positive for Maedi-Visna
virus; PCR CAEV: positive for the caprine arthritis-encephalitis virus; and PCR M&C: samples that
were positive for both virus types) are indicated in the boxes.



Pathogens 2022, 11, 129

40f21

Table 1. Heatmap for the serological and the real-time PCR results of all samples.
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173/S/CH_I1( 016 006 - - 82/S/CH24 069 083 0.66 -
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174/S/CH_1C 036 023 039 066 022 - - 78/S/CH25 203 646 44
175/S/CH_1( 008 002 001 —002 002 - - 444/S/CH 26 184 829 71 - —0.02 —0.01
176/S/CH_1C 007 014 012 025 018 - - 445/S/CH26[ =2 4 0.05 —0.05 0.03

177/S/CH_1d

001 014 009 010 012 - - 447/S/CH_27 250 @ 81.7 027 053 044 038 054 C C

1 ID number consists of lab number, species (G = goat and S = Sheep), country (HR = Croatia, IT = Italy, DE = Germany, CH = Switzerland) and the continuous numbering of flocks
tested; 2 results of IDEXX ELISA, corrected OD; 3 results of VMRD ELISA, percent of inhibition; 4 results of ERADIKIT ELISA, corrected OD; 5 Immunoblot, CA (capsid, p25), MA
(matrix, p18) and NC (nucleocapisd, p15), 0 = no reaction, 1 = slight reaction, 2 = moderate reaction, 3 = strong reaction; ® SU5 ELISA, corrected OD. ” Serological results: S (gray cell
background) = SRLV if SU5 is negative but 2 of the commercial ELISAs are positive; M (green cell background) = MVYV if SU5 positive at A4, A3, Al; C (orange cell background) = CAEV
if SU5 is positive at B1 or B2. 8 PCR results: M for MVV (green cell background) = RT-PCR MV V-positive; C for CAEV (orange cell background) = RT-PCR CAE-positive; MC (yellow cell
background) = RT-PCR MVV- and CAE-positive. The colors reflect the intensity of each serological reaction, with values ranging from dark to light blue to white (negative) and from
light to dark red (positive).
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Figure 2. Jitter plots (a—c) and histogram (d) showing the distribution of results obtained for the
commercial ELISAs and the SU5 ELISA. Exp. Positive/Exp. Negative: Expected positive (blue dots)
and negative (red dots) results were defined according to the composite reference standard. Sens,
Spec, and PPV: sensitivity, specificity and positive predictive value. Pre-specified assay thresholds
are shown as red lines for a-c. Agrmt indicates the agreement between the real-time PCR results and
the SU5 ELISA.

2.2. Performance of the Serological Tests Based on the Composite Truth Standard vs.
Real-Time PCR

Sensitivity and specificity were calculated by crossing the results of each test with the
composite truth standard (Table 2). The IDEXX ELISA exhibited a sensitivity of 92.2%, a
specificity of 98.9%, with a positive (PPV) and a negative (NPV) predictive value of 99,4%
and 85.9%, respectively, whereas the VMRD ELISA’s sensitivity, specificity, PPV and NPV
were 90.1%, 95.7%, 97.7% and 82.2%, respectively. The lowest performance was observed
with the ERADIKIT ELISA with a sensitivity of 84.4%, a specificity of 91.3%, a PPV of 95.3%
and an NPV of 73.7%. The distribution of the results of the commercial ELISA tests is shown
as dot plots in Figure 2, revealing the IDEXX ELISA as the clearest discriminant between
the expected negative and positive samples, followed by VMRD and the ERADIKIT ELISA
tests. The immunoblot, which was formerly used as a confirmatory test, showed a low
sensitivity of 59.2%, a specificity of 92.4%, a PPV of 94.2% and an NPV of 52.2%. The
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performance of the nested real-time PCR as the new, independent truth standard exceeded
that of the immunoblot, with a sensitivity of 75.5%, a specificity and PPV of 100%, and an
NPV of 66.2% (Table 3).

Table 2. Diagnostic performance of the screening ELISAs, Immunoblot and RT-PCR crossing the
results of each test with the composite truth standard.

Sensitivity Specificity Pos. Predictive Value Neg. Predictive Value
Value % 95%CI%! Value% 95%CI%! Value%  95%CI%! Value% 95%CI%1
IDEXX ELISA 922 87.4-95.6 98.9 94.1-100 99.4 96.2-99.9 85.9 77.7-91.9
VMRD ELISA 90.1 85.0-93.9 95.7 89.2-98.8 97.7 94.3-99.1 822 73.7-89.0
EI}?]IDSIEIT 84.4 78.5-89.2 91.3 83.6-96.1 95.3 91.2-97.5 73.7 64.6-81.5
Immunoblot 59.2 51.8-66.2 924 85.0-96.9 94.2 88.4-97.6 52.2 44.2-60.0
Real-time PCR 75.5 68.8-81.4 100 96.1-100 100 97.5-100 66.2 57.7-74.0
195% CI % = 95% Confidence Interval in %.
Table 3. Diagnostic performance of the immunoblot test and the nested real-time PCR.
Immunoblot Nested Real-Time PCR
Truth Pos Neg Total Percent Truth Pos Neg Total Percent
Pos 113 78 191 59.2 (Se) Pos 145 47 192 75.5 (Se)
Neg 7 85 92 92.4 (Sp) Neg 0 92 92 100 (Sp)
Total 120 163 283 100 Total 145 139 284 100
Percent 94.2 (P) 52.1 (N) 100 Percent 100 (P) 66.2 (N) 100

Se = sensitivity, Sp = specificity, P = positive predictive value; N = negative predictive value.

Comparing the results regarding the animal host or viral species (Tables 4 and 5), the
immunoblot exhibited more false negative samples in sheep (50%) than in goats (5.9%,
Table 4. Still, from the view of the viral species, the results of the immunoblot show a clear
tendency toward more false negative results in samples identified as MVV than in samples
identified as CAEV by PCR (Table 5). No significance tests were applied due to the small
sample size of goats.

Table 4. Immunoblot failure by animal host.

I-Blot pos I-Blot neg
MVV?2 (%) CAEV? (%) MVV?2 (%) CAEV? (%) N (% Detected)
Sheep 14 (26.9) 38 (73.1) 43 (82.7) 9(17.3) 104 (50.0)
Goats 9(28.1) 23 (71.9) 2 (100) 0(0) 34 (94.1)
Total 23 (16.7) 45 (32.6) 61 (44.2) 9(6.5) 138 (49.3)
Viral species assigned by nested real-time PCR.
Table 5. Immunoblot failure by viral species.
I-Blot pos I-Blot neg
Sheep Goats Sheep Goats N (% Detected)
Mvv? 14 (60.9) 9(39.1) 43 (95.6) 2(4.4) 68 (33.8)
CAEV? 38 (62.3) 23 (37.7) 9 (100) 0(0) 70 (87.1)
Total 52 (37.7) 32(23.2) 52 (37.7) 2(1.4) 138 (60.9)

Viral species assigned by nested real-time PCR.
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2.3. Serological and Molecular Differentiation between MVV and CAEV Infections

The SU5 ELISA had been used to date to differentiate between MVV and CAEV
infections in seropositive samples. According to the composite truth standard, 24 samples
were categorized as false positive. Due to its use as a differentiation test, we restricted
the evaluation of SU5 ELISA to the serological differentiation between MVV and CAEV.
In total, 151 out of 184 serologically positive samples could be characterized as MVV- or
CAEV-positive. Samples without positive SU5 test results were classified as “SRLV-positive”
(Table 1). Using the nested real-time PCR for differentiation, a total of 147 samples were
classified either as MVV or CAEV, whereas in six samples, coinfection with both MVV
and CAEV was detected. In a total of 57 real-time PCR positive samples, the classification
was confirmed by sequencing (Figure 3). The differentiation between MVV and CAEV
by real-time PCR was 100% concordant with the phylogenetic analysis of the sequences
using both NCBI BLAST (basic local alignment search tool [29]) and phylogenetic analysis.
To evaluate the agreement between the SU5 ELISA and the real-time PCR, the results of
116 samples available for both methods were compared. The real-time PCR results were
considered as true on the basis of the sequence confirmation. Fifty-nine and 51 samples
were differentiated as CAEV and MVYV, respectively, by real-time PCR (Figure 2d). Good
concordance between the real-time PCR and SU5 ELISA results (48 out of 51 samples) was
observed in the samples classified as MVV by real-time PCR (Figure 2d). However, 19 out of
59 samples classified as CAEV were misclassified as MVV by SU5-ELISA. Furthermore, the
real-time PCR was able to detect coinfection with both virus types in six samples (Table 1).

2.4. Phylogenetic Analysis of Sequences

The genetic relatedness among the SRLV was analyzed using a 200 bp-long LTR-gag
sequence fragment located within the real-time PCR target sequence. A total of 57 sequences
supplemented with 14 closely related sequences retrieved from GenBank were analyzed
phylogenetically (Figure 3). Two main clusters with clear separation between genotype A
and genotype B according to the reference sequences were observed in the phylogenetic tree.
Thus, the clusters were denominated as genotype A and genotype B (Figure 3). Moreover,
as mentioned above, the classification as MVV or CAEV by real-time PCR was in complete
agreement with the genotype classification in the phylogenetic tree.

The genetic relatedness of the sequences characterized was higher within flocks or
within given geographic regions. The sequences from Italian samples in the genotype B
cluster, split into two different clades closely related to Italian sequences previously charac-
terized as subtype B2 (MG554402) and B3 (JF502417) strains [30], respectively. Additionally,
four Italian samples were placed as separate groups in the genotype A cluster. These
sequences were closely related to representative sequences of the subtypes A19 (MH374287)
and A8 (MH374284), respectively, which similarly originated from Italy. The sequences of
Croatian samples were also present in both the genotype A and B clusters of the tree. Two
sequences located in the genotype B were found to be related to the subtype B1 reference
sequence of the strain CAEV-Co (M33677.1) and three to the representative subtype Bl
sequence M(G554410. Sequences of genotype A were located in three different clades and
were closely related to the representative sequences of the subtypes A18 (MG554409) and
A4 (AY445885). Interestingly, due to sequence divergence, two distant clades were related
to the same subtype A18 (MG554409) sequence. This divergence was also reflected in
the percentages of identity among the samples of the individual clades (data not shown)
and additionally in the different ranges of identity observed between the two clades and
the subtype A18 (MG554409) sequence (Figure 4). Given the most commonly accepted
SRLV subtyping method, it would be interesting to sequence the gag gene of these samples,
which was beyond the focus of this work.



Pathogens 2022, 11,129 14 of 21
@ 319/S/CH16 )
100 | @ 318/S/CH 16
5 @ 444/S/CH 26
@ 447/SICH 27
LE @ 4T0/S/CH 18
@ 463/SICH 17
@ 112/S/ICH 15 o
19 @ 107/SICH 15 | 80 - 89% identitiy to
@ 93/S/CH 14
® 100/5/CH 14 CAEVCo (B1)
A MH374290 (B1)
A CAEVCo (B1)
A MG554414 (B1)
@ 258/G/DE 9 R,
@ 764/GHR 5 v
¥l @ TS6/GHRS =¥
A MH374288 (B2) o _Ex
S5 A r-nG.ss.uoz (B2) 87 - 88% identitiy to e
345/SMT 8 1
L@ asan s | M6554402 (B2) 5
® 303516 .
@ 317/sT7 @)
[ ] GG’S IT6
p @ 324/5MT7
%6 @ 325/5T7
v— '@ s
s ——— @ 308/31T6 . -
- A, JFs02417 B3) 80 - 92% identitiy to
@ 328/S/T 7| JF502417 (B3)
23 @ 31sIm7
@ 3225017
H @ 318577
@ 329s1T7
@ 35/saTT
° @ 313sT7
742/GMHR 9
[ ® 740GHR3 1 85 94% identitiy to
&5 ? @ 728/GHR 2 MG554410
— A MGS54410(B1)
@ 214/S/CH 12
..MaBé’ﬁg:;(;E 80 - 81% identitiy to
@ 606/S/CH 11 MG554409 (A18)
@ 601/S/CH 11
* 2~ — @ 158/S/ICH 10
@ 151/SICH 10
%0 .‘1 é?;%ﬁ%%s 41 91 - 95% identitiy to
% > '@ 0/S/CH 13 AY445885 (A4) <«
62 61 @ 16/S/CH 21
@ 21/SICH20 v
- @ ?2‘G‘HR5 - &
45T/SICH 17
L " @ 453S/CH 17 °
32 n @ T50/GHR 4 c
o[ @ T23/6HR1 84 - 96% identitiy to 3)
@ 720/GHR 1
. @ 749/G/HR 4 MG554409 (A18) QO
&0 , @ T19/G/HR 1
Lﬁl 718/G/HR 1
A 116554409 (A18)
o4 22 @ 257/G/IDE 9
31 99 @ 19/S/CH22 | 75 _ 78% identitiy to
A MT993908.1 (A2)
A MH916859 (A2) MT993908(A2)
” [ A MT993907 (A2)
= A IR B0 e a2} 72 - 81% identitiy to
34 | ® 299/5/T6 | MH374284 (A8)
‘ A MHI74287 (A19) A
5 o @ 30756 85 - 93% identitiy to
o7 — @ 305/51T6 MH374287 (A19)
—_—
010
@ Italy (IT)
@ Croatia (HR)
@ Germany (DE)
@ Switzerland (CH)
A Characterized Genotype B samples used as reference (GenBank accession number)
A Characterized Genotype A samples used as reference (GenBank accession number)

Figure 3. Phylogenetic tree constructed using a 200-bp LTR-gag region located within the target

sequence of the real-time PCR. The tree was constructed using the maximum likelihood method using

the Tamura—Nei substitution model. A total of 57 sequences of 2 German, 12 Croatian, 20 Italian and

23 Swiss samples of this study were included in the analysis. Moreover, 14 closely related sequences

from Genbank were used as a reference. The sample names contain information regarding the lab

ID, species (G = goat and S = sheep), country of origin (HR = Croatia, IT = Italy, DE = Germany,

CH = Switzerland) and the continuous numbering of flocks tested. The genotypes groups A and B

correspond to MVV and CAEYV, respectively, in classical terminology.
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Figure 4. Schematic diagram showing the SRLV target regions of primers and probes. Abbreviations:
O-PF: outer primer forward; O-PR: outer primer reverse; RT-PF: real-time PCR primer forward;
RT-PR: real-time PCR primer reverse; RT-P: real-time PCR fluorescent probes; SL: stem loop structure
(according to Bjarnadottir et al. 2006).

The 17 German samples were sent for diagnostic and epidemiological purposes.
The only two positive goat samples were serologically positive repetitively in a German
SRLV surveillance program. Our serological and genotyping results were in complete
concordance with those of the Friedrich-Loeffler Institut (FLI, personal communication).
The sequence of the German sample classified as genotype A was closely related to the
subtype A2 sequence (MT993908), and that classified as genotype B was linked to the
sequence of the subtype B1 CAEV-Co strain.

The Swiss samples were almost exclusively from sheep with only two samples from
goats, which tested negative with all the protocols used. Sequence analysis revealed a
balanced distribution of the Swiss sheep samples within the genotype A and B clusters.
Samples with genotype B sequences were exclusively found in the clade with the subtype B1
CAEV-Co reference strain, whereas the genotype A samples were located in four different
clades. The closest relatives of these four clades were sequences of the subtypes A18
(MGb54409), A4 (AY445885) and A2 (MT993908), respectively (Figure 3).

3. Discussion

The diagnosis of SRLV infections is based on the serological detection of infected
animals [3,12,31-37]. Due to low viral load and genomic heterogeneity, direct detection of
the virus in blood is considered less efficient [3,12,16,32,33,38—45], though not negligible
in view of delayed seroconversion [18,46-53]. In this work, using a panel of 290 sera of
animals originating from different European countries, we aimed to improve and simplify
the quite complex diagnostic protocol established in our diagnostic laboratory consisting of
several serological tests run in parallel. Heat-mapping of the results from three commercial
screening ELISAs, Immunoblot as a confirmatory assay and five SU5 peptide ELISAs for
genotype differentiation exhibited a quite complex and challenging pattern of reactivity
with a number of inconsistent results. Therefore, it was crucial to define, based on the given
serological results, an overall truth standard. We based this decision on the well-accepted
concept of using a “composite standard” [13,16,26-28] defined by the three screening
ELISAs used. A useful complementation of this purely serological approach was the
addition of a newly developed, highly sensitive PCR consisting of a primary round of
a conventional PCR followed by a nested real-time PCR with the ability to differentiate
between CAEV and MVYV due to reliably discriminating probes with 100% specificity. The
nested approach using serial dilutions of plasmids containing the target sequences exhibited
at least 10-fold higher sensitivity compared to simple real-time PCR (data not shown).
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This composite truth for determining the condition of infection status of a given animal
allowed us to re-evaluate the current diagnostic procedure performed in our laboratory.
IDEXX ELISA showed the highest sensitivity and specificity out of the three screening tests
and the combination of IDEXX ELISA and VMRD ELISA detected the most “true positives”
compared to the combinations of IDEXX-/ERADIKIT ELISA and VMRD-/ERADIKIT
ELISA. The Immunoblot based on CAEV whole virus used for confirmation exhibited
an unsatisfactory sensitivity of 59.2%. This is in accordance with its tendency toward
inconclusive results due to an unexplained nonspecific reactivity of most sera with the
capsid protein p25 of CAEV seen over the years (data not shown). Furthermore, we show
a weaker reactivity of the immunoblot in the case of MVV compared to CAEV infections
(Table 5), which does not appear to be due to either the host species or the antigen used
(not shown). Given this rather poor performance, the Immunoblot is a quite laborious,
demanding and antigen-consuming confirmatory assay, and we would recommend its
exclusion from the diagnostic procedure.

PCR exhibited a nearly equal overall sensitivity (75.5%) compared to the SU5-ELISA
set (80.7%), combined with 100% specificity and consequent unambiguous differentiation
between the infection source (CAEV or MVV). Therefore, it seems appropriate to exclude the
labor-intensive and costly SU5 peptide ELISA approach consisting of five ELISAs in favor
of the PCR protocol as a differentiation tool. The application of the PCR in the diagnostic
procedure has additional advantages regarding the possibility of detecting seronegative
animals and sequencing the amplification products for molecular epidemiological analysis.
Furthermore, the chance to achieve specific amplification in a seropositive sample might
be significantly higher, apparently depending on the sample quality according to our
laboratory experience (up to 85%, not shown). This point combined with the determination
of the analytical sensitivity of the nested real-time PCR should be elucidated in further
applied studies.

As also shown by others [12,43,54—62], the resulting LTR sequence fragments of this
work allowed quite a robust and plausible phylogentic reconstruction of the taxonomy of
lentiviruses detected in the samples originating from a number of Western European coun-
tries. Sequencing of the whole genome or other fragments thereof to exclude homologous
recombination could be a useful complementation for future work.

In conclusion, given these results, the diagnosis of SRLV infection by a reference
laboratory could actually be reduced to the combined application of well-established
screening ELISAs complemented with the PCR described here as a differentiation tool
regarding the source of infection, i.e., CAEV or MVYV, respectively. Finally, with only minor
loss of overall performance (not shown), the screening could be reduced to two ELISA Kkits,
e.g., IDEXX ELISA combined with VMRD ELISA and PCR.

4. Materials and Methods
4.1. Samples

EDTA-anticoagulated whole blood samples from 290 animals originating from differ-
ent countries including Croatia, Germany, Italy and Switzerland were analyzed (Table 1).
Animals were sampled during 2019 and 2020 for serological and molecular diagnosis of
SRLV infections. All flocks tested positive for SRLV infection previously. Croatian samples
consisted of 50 samples from goats of 5 flocks (10 each). The Italian samples consisted of
51 samples from sheep of 3 flocks located in south of Italy (11, 20 and 20, respectively).
German samples consisted of 17 samples from goats of one flock. The samples originating
from Switzerland were sent to our laboratory for SRLV diagnosis consisting of 170 sheep
and 2 goat samples from 18 different flocks with one or more samples per flock (Table 6).
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Table 6. Samples tested in this study listed by country, number of sheep, goats and farms.
Country Number of Sheep Number of Goats Number of Farms
Croatia 0 50 5
Italy 51 0 3
Germany 0 17 1
Switzerland 170 2 18

4.2. Serology

Blood samples were analyzed for the presence of SRLV antibodies using three commer-
cial ELISA kits in parallel, namely the IDEXX ELISA (IDEXX CAEV/MVYV Total Ab Test
(Idexx Laboratories, Liebefeld, Switzerland; whole-virus antigen based indirect ELISA),
VMRD ELISA (Small Ruminant Lentivirus Antibody Test Kit-VMRD, Pullman, WA, USA;
genotype B gp135 competitive ELISA) and the ERADIKIT ELISA (Eradikit® SRLV Screening
Kit-In3Diagnostic, Torino, Italy; gag and env peptide based indirect ELISA), followed by
immunoblotting and an in-house SU5 peptide ELISA test [24]. The cut-off values for the
commercial ELISA tests were determined according to the manufacturers’ guidelines.

The Immunoblot confirmation was based on the detection of the viral capsid (p25),
matrix (p15) and nucleocapsid (p18) proteins [23]. Reactive bands were visually evaluated
and scored from 1 to 3 according to the band intensity. Samples showing staining of at least
two bands or single bands scored as 2 or more were considered as positive.

The SU5 peptide ELISA was implemented for genotype differentiation. This test
consisted of five ELISA tests containing synthetic peptides of the immunodominant SU5
region of the SRLV subgenotypes Al, A3, A4, Bl and B2. Samples with an OD value equal
to or over 30% were considered as positive.

4.3. Multiple Sequence Alignments and Design of Primers and Probes

Primers and probes for the nested real-time PCR system are shown in Table 7. Whole
genome sequence alignment comprising 52 published SRLV sequences retrieved from
the National Centre for Biotechnology Information (NCBI) was used for the selection
of conserved genomic regions and the design of the nested real-time PCR system. The
Geneious prime software version 2020 (https:/ /www.geneious.com, accessed on 6 Decem-
ber 2021) was used for alignment and the Primer Express® Software Version 3.0.1 (Applied
Biosystems) was used for the design of primers and probes.

The forward primers (outer primer-F) of the first amplification step were designed
to anneal to the highly conserved lentiviral RNAtYS primer-binding site (PBS) located
at the leader region of the lentiviral genome. The similarly conserved annealing region
of the reverse primers (outer primer—R) is located at 87 and 108 bp downstream of the
predicted ATG gag initiation codon of the genotype A (GenBank Acc. No M60610) and
B (GenBank Acc. No. M33677), respectively (outer primer-R). The forward primers for
the genotype-specific real-time PCRs are located in a previously described conserved
region encompassing a stem-loop structure that contains the dimer initiation site (DIS), just
upstream of the major splice donor (MSD) of the small ruminant lentiviruses [63,64]. The
reverse primers and probes are located immediately downstream of the predicted gag start
codon. The target sequences of the real-time PCR reverse primers and probes and that of
the outer reverse primers used were described previously [65,66]. A schematic diagram
showing the localization of the nested real-time PCR target sequences is shown in Figure 3.
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Table 7. Sequences of primers and probes for the nested real-time PCR system. IUPAC codes
were used to indicate degenerated primers. # F indicates forward primer, R reverse primer and P
fluorescent probe, respectively, ® GenBank accession number M33677 used as a reference sequence to
indicate positions of primers and probes’ binding sites, and ¢ GenBank accession number used as a
reference sequence.

First-step PCR:

Second-step:

Nested Real-Time PCR Oligonucleotide ? Primer Sequence/Flouorescent Dye Position
outer primers Outer SRLV-F1 5'-CGCAGGTGGCGCCCAG-3 158-173°

Outer SRLV-F2 5'-CGCAGSTGGCGCCCAA-3' 158-173 P

Outer SRLV-R1 5'-CCTTCTGTCAGGCGCTCCCC-3' 622-642 °

Outer SRLV-R2 5'-CCTTCCGTCAAGGTCTCCTTCC-3' 621-642 P

Outer SRLV-R3 5-CCTTCTGTCAAGGTCTCCTTCCC-3 620-642°

Outer SRLV-R4 5'-CCTTCTGTCAAGTGCTCCCCTCT-3/ 620642 °

Outer SRLV-R5 5-CCTTCTGTCAGGTGCTCCCCTCT-3' 620642 P

Genotype Aspecific = RTMVVLIRgag-F 5'-GGGGACGCCTGAAGTRAGGTAA-3/ 287-308 ©

real-time PCR RTMVVLTRgag-R 5-YTTGAGCTCRGGGTAYCCCTT-3/ 517-537 ¢

5'-FAM-CTTTGAGCCTTGCKTCGCCATGTCT-

RTMVVLTRgag-P TAMRA-3’/

486-510 €

Genotype Bspecific RTCAELTRgag-F 5'-CTGRAGGAGTAMGGTAAGTRACTCTGC-3 324-350 °
real-time PCR RTCAELTRgag-R 5'-TTGATRCATTTKTCSAKCTCAGGATAA-3' 365-591 P

5'-FAM-CCGGAGACTTGCCTCGCCATGTC-

=50 b
TAMRA-3/ 530-552

RTCAELTRgag-P

4.4. DNA Extraction and Two-Step Nested Real-Time PCR System

Seven hundred and fifty microliters of EDTA blood were treated with ammonium chlo-
ride/Tris buffer (0.14 M NH4Cl, 0.17 M Tris, pH 7.2) to obtain the buffy coats [67]. Buffy coats
were stored at —20 °C or used directly for DNA extraction. DNA extraction was performed
using the Qiagen DNeasy® Blood & Tissue kit (Qiagen, Hilden, Germany) and finally the
DNA was eluted in 100 pL of elution buffer according to the manufacturer’s protocol.

The nested real-time PCR was carried out in two successive amplification steps. The
first step PCR reaction consisting of a conventional qualitative PCR contained 12.5 pL
of Hotstar Taq Master Mix (HotStarTaq DNA Polymerase kit, Qiagen GmbH, Hilden,
Germany), 300nM of each primer and 5 pL of the extracted DNA. Amplification started
with the activation of the polymerase at 95 °C for 15 min, followed by 40 cycles at 95 °C for
20 s, and at 60 °C for 30 s. All products of the first PCR were then tested in parallel with
the genotype-specific real-time PCRs (second step of the nested real-time PCR protocol) for
a sensitive detection and discrimination between genotypes A and B.

Real-time PCR reactions contained 12.5 uL. TagMan™ Universal PCR Master Mix
(Applied Biosystems, Life Technologies), 900 nM of each primer, 200nM probes and 5 pL of
the PCR product of the first step. Amplification profiles consisted of a hold stage of 20s at
95 °C and a PCR stage of 40 cycles at 95 °C for 15s and 60° C for 1 min. Thermal cycling was
performed with a 7300 Real-Time PCR System (Applied Biosystems, Life Technologies).

4.5. Sequencing and Sequence Analysis

Samples with positive nested real-time PCR results were submitted for sequencing
of the real-time PCR target region (Microsynth AG, Balgach. Switzerland). Sequences
obtained were aligned using the clustal omega algorithm implemented in Geneious Prime
software (Geneious Prime 2020.2.4). The phylogeny was inferred using the maximum
likelihood method and the Tamura—Nei substitution model. Phylogenetic analyses were
conducted using MEGA X [68]. The sequences from PCR products were deposited in
GenBank under the following accession numbers: OL456240, OL456241 and OL449029 to
OL449084.



Pathogens 2022, 11,129 19 of 21

4.6. Data Analysis

Sensitivity and specificity of serological tests and PCR were calculated using Single
Sample Binary Diagnostic Tests by the software NCSS (NCSS Statistical Software (2019).
NCSS, LLC. Kaysville, UT, USA, ncss.com/software/ncss, accessed on 6 December 2021).
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