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Abstract: Oral microbiome disruptions in periodontitis are related to the chronic inflammatory
reactions that could in turn lead to the development of multiple oral diseases. The objective of the
study was to assess the frequencies of Streptococcus mitis, Prevotella melaninogenica, and Prevotella
intermedia in oral benign lesions, oral potentially malignant disorders (OPMDs), and oral squamous
cell carcinomas (OSCCs) and investigate the impact of these bacteria on the expression patterns of the
selected (potential) target genes (PI3CA/AKT2/mTOR, DUSP16/MAPK14, and COX2). After sample
collection (25 benign lesions, 30 OPMDs, and 35 OSCCs) and DNA/RNA extraction, quantitative
real-time polymerase chain reaction (qPCR) was performed to detect bacterial presence and assess
relative gene expression levels in different lesion groups. Prevotella melaninogenica was the most
prevalent of the three analyzed bacteria, with the frequency being 60% in benign lesions, 87% in
OPMDs (p = 0.024), and 77% in OSCC. The OPMD tissues in which Prevotella melaninogenica was
present exhibited a higher expression level of AKT2 (p = 0.042). Significantly lower expression of
DUSP16 was observed in OSCC tissues containing Streptococcus mitis (p = 0.011). The obtained results
indicate a substantial contribution of P. melaninogenica and Str. mitis in the pathogenesis of oral
mucosal lesions, possibly via AKT2 upregulation and DUSP16 downregulation.

Keywords: oral pathogenic bacteria; chronic inflammation; oral mucosal lesions; oral potentially
malignant disorders; Prevotella melaninogenica; Streptococcus mitis

1. Introduction

The oral cavity is a highly dynamic but at the same time a well-controlled microenvi-
ronment; its variations provide fertile ground for the development of numerous pathologies.
One of the most important factors in maintaining oral homeostasis is the oral microbiome,
which is the second most diverse microbial community in the human body, harboring over
700 bacterial species so far identified [1]. Pertubations in quantity and/or quality of the
oral microbiome, termed “oral dysbiosis“, have been associated with both common oral
diseases such as periodontitis [2] and those that are less frequent but more serious, such as
benign lesions [3], oral potentially malignant disorders (OPMDs) [4], and oral cancer [5].

Although benign oral lesions are not lethal, they can result in extensive loss of soft
tissue and/or bone, and they are prone to recurrence [6]. Unfortunately, literature data
related to their exact incidence are rare [6,7]. OPMDs are defined as oral mucosal lesions
associated with a statistically increased risk of developing oral cancer [8]. Epidemiological

Pathogens 2023, 12, 1194. https://doi.org/10.3390/pathogens12101194 https://www.mdpi.com/journal/pathogens

https://doi.org/10.3390/pathogens12101194
https://doi.org/10.3390/pathogens12101194
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0001-9743-3299
https://orcid.org/0000-0002-8513-9313
https://orcid.org/0000-0002-6225-7210
https://orcid.org/0000-0002-8470-6670
https://doi.org/10.3390/pathogens12101194
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens12101194?type=check_update&version=2


Pathogens 2023, 12, 1194 2 of 12

studies have shown that almost 5% of the world population has OPMDs [9], while their
overall malignant transformation rate is estimated at around 8% but can grow up to
40%, indicating the seriousness of the problem [10,11]. Oral cancer is the sixth most
common malignancy worldwide, and more than 90% of these tumors are oral squamous
cell carcinomas (OSCC) [12]. In 2020, over 350,000 new cases of oral cancer were diagnosed
globally, resulting in more than 175,000 deaths. It is estimated that by 2040, the incidence of
OSCC will increase up to 40%, with a corresponding increase in mortality [13].

Periodontitis is a highly prevalent oral inflammation, ranging from 20 to 50% across
the world, triggered by bacteria [14]. The host’s immune response ultimately causes the
breakdown of connective tissue and alveolar bone around the teeth [15]. There is a wealth of
evidence linking chronic inflammation and the risk of neoplastic transformation, and some
researchers point to the necessity of treating patients with periodontitis as a group at high
risk of developing malignancy [5,16,17]. However, since the vast majority of people with
periodontitis do not develop oral tumors, the link between these pathologies is not straight-
forward, and studies dealing with the identification and quantification of microorganisms
in patients with oral tumors have not established a causal relationship between oral dysbio-
sis and oral cancer [18]. The presence of various periodontal pathogens, including Prevotella
melaninogenica and Prevotella intermedia, and some oral commensals, such as Streptococcus
mitis, has been investigated in patients with oral tumors and premalignant lesions, but
the focus has been more on “who is present“ rather than “what they are up to“ [19]. The
mere existence of certain bacteria in saliva, supra- or subgingival biofilm, and even in
the tumor tissue itself does not automatically label them as the causal force of neoplastic
transformation and progress, but may indicate just an opportunistic infection sustaining
the conditions of the already altered oral mucosa. However, bacterial damage is for sure
the culprit in the activation of inflammatory signaling cascades, which might in turn lead to
malignant alteration [20]. It is therefore essential to show not only the bacterial presence in
different types of altered oral mucosa, but simultaneous changes in chronic inflammation
and neoplastic transformation markers as well. Key players in these processes are involved
in cell cycle regulation, apoptosis, nutrient metabolism and/or protein synthesis, and tumor
angiogenesis. PIK3K-AKT-mTOR signaling pathway modulation is described as one of
the crucial mechanisms connecting chronic inflammatory conditions and malignancies via
cellular growth stimulation [21]. The mitogen-activated protein kinase (MAPK) cascades
are well-defined signaling modules, regulated by phosphatases (DUSP16, among others),
and have been demonstrated to play important roles in a variety of cellular responses, such
as proliferation, differentiation, and apoptosis [22]. Cyclooxygenase (COX) is an enzyme
involved in the conversion of arachidonic acid to prostaglandin H2 and is implicated in
cancerogenesis via cell proliferation, angiogenesis, and inhibition of apoptosis [23].

Therefore, the aims of the present study were as follows: (i) to determine the fre-
quencies of Prevotella intermedia, Prevotella melaninogenica, and Streptococcus mitis in oral
benign lesions, OPMDs, and OSCC tissues in periodontitis patients; and (ii) to analyze the
expression patterns of possible candidate genes (PI3CA/AKT2/mTOR, DUSP16/MAPK14,
COX2) that might be modulated by the presence of the aforementioned bacteria.

2. Materials and Methods
2.1. Participants and Study Design

This cross-sectional research study was conducted between January 2020 and Decem-
ber 2022. The study design was approved by the Ethical Committee of the School of Dental
Medicine, University of Belgrade (No. 36/7) and was in accordance with the Declaration of
Helsinki’s ethical and scientific principles.

The research included consecutive patients referred for examination, diagnosis, and
possible treatment of suspicious oral mucosal lesions (benign lesions, OPMDs, or OSCCs) to
the Department of Oral Medicine and Periodontology or to the Department of Maxillofacial
Surgery, School of Dental Medicine, University of Belgrade. Patients were thoroughly
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informed about the study, its purpose, and potential risks, and they signed the informed
consent prior to entering the study.

The inclusion criteria were the following: (1) adult patients aged ≥ 18 years; (2) pres-
ence of a suspicious oral mucosal lesion; (3) confirmed periodontal disease (periodontitis)
with at least 10 teeth remaining; and (4) toothless patients with a known history of periodon-
tal disease. The exclusion criteria were the following: (1) periodontal treatment coupled
with the use of antibiotics, antiseptics, or anti-plaque mouthwashes within the last two
months; (2) presence of dentures; and (3) history of radiotherapy and/or chemotherapy
in the head and neck region. A total of ninety patients met the abovementioned crite-
ria, and their detailed anamnestic data were collected and recorded in the predesigned
medical records.

A comprehensive head and neck examination was conducted along with a visual
assessment of the oral cavity during the clinical examination [24].

Periodontal parameters, such as periodontal probing depth (PPD), clinical attach-
ment level (CAL), and gingival recession (GR), were measured at six points around every
present tooth (mesio-buccal, mid-buccal, disto-buccal, mesio-lingual, mid-lingual, and
disto-lingual) using a periodontal probe (North Carolina–Hu-Friedy, Chicago, IL, USA).
Oral hygiene status was recorded using the bleeding on probing (BOP) index and plaque
index (PI) in the same manner [25].

The periodontal stage of patients was determined using periodontal parameters such
as tooth presence and X-ray-detected bone loss [26].

2.2. Sample Collection

The most suspicious parts of the OPMDs and OSCCs were observed using 2.5× magnifi-
cation glasses (Keeler, Windsor, UK). Samples were collected by the incisional biopsy technique,
while the collection of benign lesions was performed by means of an excisional biopsy. After
local anesthesia administration, a surgical #11 blade was used to collect the tissue sample. All
lesions were sampled according to the clinical experience of two clinicians (a specialist in oral
medicine and a specialist in maxillofacial surgery). All the tissue samples were cut into two
fragments; one was placed into sterile Eppendorf tubes containing RNAlater solution (Ambion,
Thermo Fisher Scientific Inc., Waltham, MA, USA) and stored at −70 ◦C until RNA extraction.
The second tissue fragment was immediately immersed in a 10% formalin solution (Merck,
Darmstadt, Germany) and subsequently paraffin embedded for histopathological verification.
Absorbable sutures were placed, and antibiotics (Amoxicilline 0.5 g, 3 times daily for 5 days)
were prescribed.

Following histopathological verification, out of ninety patients, 25 were classified as
benign lesions, 30 as OPMDs, and 35 as OSCCs.

2.3. DNA Extraction and Microorganisms’ Detection

Tissue samples were paraffin embedded and cut on a microtome (Leica RM2245,
Nussloch, Germany) at 4 µm thickness. After xylene deparaffinization, standard phenol-
chloroform DNA extraction was performed. TaqMan-based quantitative polymerase chain
reaction (qPCR) was performed in order to detect the presence of microorganisms. The
species-specific PrimeTime qPCR assays (Integrative DNA Technologies, Coralville, IA,
USA) were designed, and the sequences of each primer-probe set are given in Table 1. The
qPCR mix in the final volume of 15 µL contained 20 ng of a DNA template, 0.5 µM of each
primer, 0.25 µM of each TaqMan probe, 1× FastGene® Probe qPCR Universal Mix (NIPPON
Genetics EUROPE, Germany), and sterilized nuclease-free water. The temperature profiles
were the following: 10 min at 95 ◦C, followed by 45 cycles of 15 s at 95 ◦C and 30 s at 58 ◦C.
For each sample, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was amplified
in order to exclude false negative findings, and in each run, a positive control was run: a
DNA sample extracted from strains acquired from the American Type Culture Collection
(ATCC): P. intermedia (ATCC33563), P. melaninogenica (ATCC25845), and Str. mitis strain
NCTC 12261 (ATCC49456).
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Table 1. List of primers and probes used in this study.

Microorganism/
Gene Primer and/or Probe Sequence

Prevotella intermedia
Fwd: GACCCGAACGCAAAATACAT
Rv: AGGGCGAAAAGAACGTTAGG
Probe: FAM-AAAGAAGGAACACCCCGACT-TAMRA

Prevotella
melaninogenica

Fwd: GTGGGATAACCTGCCGAAAG
Rv: CCCATCCATTACCGATAAATCTTTA
Probe: FAM-CAAATCTGATGCCGTCATCGAAGACTATGC-TAMRA

Streptococcus mitis
Fwd: TTTTGTCATCTAGCCTTGC
Rv: GCAGTCATATCATCACCTTC
Probe: FAM-ACTTGGGCAATCCCGACAGATTCTAAC-TAMRA

GAPDH
Fwd: GGGCTCTCCAGAACATCATCC
Rv: GTCCACCACTGACACGTTGG
Probe: FAM-CCTCTACTGGCGCTGCCAAGGCT-TAMRA

PIK3CA Fwd: TTACCCTCTTCTGCCGGAGG
Rv: AAGTGGATGCCCCACAGTTC

DUSP16 Fwd: AGGTGGGTTTGCTGAGTTCTC
Rv: CTCGGGGATAAAGTCAGGCTT

AKT2 Fwd: GCAAAGCAGGAGTATAAGAAAGGAA
Rv: GCAGAGAGGTAATCAGCACCAA

mTOR Fwd: GCCGCGCGAATATTAAAGGAA
Rv: TGGTTTCCTCATTCCGGCTC

MAPK14 Fwd: ACTGGCTCGGCACACAGATG
Rv: TCCCACTGACCAAATATCAACTG

COX-2 Fwd: CAGCACTTCACGCATCAGTT
Rv: CGCAGTTTACGCTGTCTAGC

GAPDH Fwd: ATGGGGAAGGTGAAGGTCG
Rv: GGGGTCATTGATGGCAACAATA

2.4. RNA Extraction, Reverse Transcription, and Real-Time PCR Relative Gene
Expression Analysis

TRIzol reagent (Thermo Fisher Scientific, Waltham, MA, USA) was used to extract total
RNA from the samples in accordance with the manufacturer’s instructions. Prior to RNA
extraction, tissue samples were homogenized in 1 mL of TRIzol reagent using a tissue disrupter
(Sonopuls HD 2070/2200; Bendlin Electronics GmbH and Co. KG, Berlin, Germany). After the
isolation, complementary DNA from total RNA (1 µg) was generated using the Transcriptme
RNA Kit (Blirt SA, Gdansk, Poland). The FastGene ICGreen 2× PCR Universal Mix (NIPPON
Genetics EUROPE, Germany) was used to amplify segments of PIK3CA, DUSP16, AKT2,
mTOR, MAPK14, and COX2 genes in the presence of the corresponding primers (Table 1).
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as an endogenous control
for normalization (primer sequences are also listed in Table 1). The following conditions for
the qPCR were used: a holding stage of 95 ◦C for 3 min and a cycling stage with 45 cycles of
95 ◦C for 30 s, followed by 60 ◦C for 30 s, and 72 ◦C for 30 s. Each qPCR run was performed
using the CFX96 real-time system (Bio-Rad Laboratories, Hercules, CA, USA), followed by
melting curve analysis in order to confirm the amplification specificity. All the samples
were run in duplicate. The results were obtained as threshold cycle (Ct) values, and the
relative expression levels were calculated using the ∆∆Ct method [27]. The mean value of
duplicates for each sample was calculated, and the relative gene expression levels of the
selected genes were defined as the ratio of each gene to the glyceraldehyde 3-phosphate
dehydrogenase expression.
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2.5. Statistical Analysis

The statistical analyses were performed using Statistical Package for Social Science
(SPSS software package, version 22.0; SPSS Inc., Chicago, IL, USA) and GraphPad Prism
9.0.00 (GraphPad Software, San Diego, CA, USA). Categorical data were studied using
Pearson’s χ2 test or Fisher’s exact test, depending on the sample size. Descriptive statistics
were presented as mean ± standard deviation and median values. The distribution of
continuous outcome values was examined using the Kolmogorov–Smirnov normality test.
Owing to the deviation from the normal distribution and given that all three study groups
differed in size, i.e., in the number of patients, non-parametric statistical tests were used.
Specifically, the Kruskal–Wallis H-test was applied for comparisons between all three study
groups and the Mann–Whitney U-test for comparisons between each of the two groups.

3. Results
3.1. Clinical and Epidemiological Findings

The benign lesions group consisted of fibromas, papillomas, frictional keratoses,
and one benign granular cell tumor. OPMD lesions included leukoplakias, erythroplakias,
erythro-leukoplakias, and sublingual keratoses. Out of all OSCCs, two were subcategorized
as verrucous carcinomas and one as carcinoma in situ. Among OSCC patients, 7 (20%)
were classified as clinical stage 1, 8 (22.9%) as clinical stage 2, 11 (31.4%) as clinical stage 3,
and 9 (25.7%) as clinical stage 4. As for the histological grade, 10 (28.6%) carcinomas were
grade 1, 23 (65.7%) were grade 2, and 2 (5.7%) were grade 3.

No statistically significant difference was observed between the benign, OPMD, and
OSCC groups regarding the patients’ age (p = 0.322, Table 2). On the other hand, OPMD and
OSCC lesions were more frequent in male patients, while benign lesions were predominant
in female patients (p = 0.013, Table 2). The majority of patients with OSCC had the fourth
stage of periodontal disease (19/31). More specifically, compared to all the other stages,
including toothless patients, the presence of the fourth periodontal stage led to an almost
four-fold increase in risk for the development of OSCC compared to benign lesions (Odds
Ratio (OR) 3.76, 95% Confidence Interval (CI) 1.21–11.68, p = 0.019) and an almost five-fold
increase in risk compared to OPMD (OR 4.75, 95%CI 1.56–14.48, p = 0.005). No significant
difference was observed between patients with different types of lesions regarding the
results of clinical periodontal measurements and the duration of the specific oral lesion
(p > 0.05, Table 2).

Table 2. Patient data obtained upon examination.

Benign (n = 25) OPMD (n = 30) OSCC (n = 35) p Value

age (mean ± SD; median) 58.29 ± 2.79; 58 54.29 ± 3.82; 50 60.39 ± 2.41; 63 0.322
sex (male/female) 6/19 18/12 20/15 0.013

smoking (yes/used to smoke/no) 5/9/11 8/15/7 8/14/13 0.596
alcohol (yes/used to drink/no) 17/3/5 17/4/9 23/5/7 0.871

periodontal stage (1/2/3/4/toothless) 0/11/7/6/1 2/10/9/6/3 0/6/7/19/3 0.047
periodontal probing depth (mm) (mean ± SD, median) 3.55 ± 0.15; 3.5 3.05 ± 0.22; 3.2 3.47 ± 0.22; 3.2 0.295

clinical attachment level (mm) (mean ± SD, median) 4.29 ± 0.30; 3.8 3.91 ± 0.36; 3.77 4.73 ± 0.49; 4.1 0.720
plaque index (mean ± SD, median) 0.60 ± 0.06; 0.51 0.63 ± 0.08; 0.76 0.69 ± 0.08; 0.78 0.327

bleeding on probing (mean ± SD, median) 0.62 ± 0.06; 0.54 0.63 ± 0.07; 0.65 0.72 ± 0.07; 0.8 0.243
duration of oral lesion (in months) (mean ± SD, median) 20.52 ± 6.72; 12 14.43 ± 5.6; 6 12.30 ± 5.23; 4 0.111

3.2. Microbiological Findings

Streptococcus mitis was found very frequently in all three lesion types: 60% in benign
lesions, 50% in OPMDs, and 69% in OSCC (Table 3), without a statistically significant
difference between the groups (p > 0.05). Prevotella melaninogenica was the most prevalent
of the three analyzed bacteria, with the frequency being 60% in benign lesions, 87% in
OPMDs (p = 0.024), and 77% in OSCC. Logistic regression analysis shows that the presence
of P. melaninogenica led to a 4.33-fold increase in the risk for the lesion to be potentially
malignant (OR 4.33, 95% CI 1.15–16.26). Prevotella intermedia was the least frequent of the



Pathogens 2023, 12, 1194 6 of 12

analyzed bacteria: 16%, 27%, and 31% in benign lesions, OPMD, and OSCC, respectively,
and no significant difference was observed between the groups (p > 0.05). No significant
difference was observed between the presence of bacteria and clinical stage or histological
grade in OSCC patients.

Table 3. The frequency of positive/negative findings for Streptococcus mitis, Prevotella melaninogenica,
and Prevotella intermedia in benign lesions, OPMDs, and OSCC tissue samples.

Bacteria Benign (n = 25) OPMD (n = 30) OSCC (n = 35) p Value OR (95%CI)

Streptococcus mitis
(y/n)

15/10 15/15 24/11
benign vs. OPMD 0.458 0.67 (0.23–1.95)
benign vs. OSCC 0.493 1.45 (0.50–4.25)
OPMD vs. OSCC 0.128 2.18 (0.79–5.99)

Prevotella
melaninogenica

(y/n)
15/10 26/4 27/8

benign vs. OPMD 0.024 4.33 (1.15–16.26)
benign vs. OSCC 0.153 2.25 (0.73–6.92)
OPMD vs. OSCC 0.325 0.519 (0.14–1.94)

Prevotella
intermedia (y/n) 4/21 8/22 11/24

benign vs. OPMD 0.340 1.91 (0.50–7.30)
benign vs. OSCC 0.174 2.41 (0.67–8.70)
OPMD vs. OSCC 0.671 1.26 (0.43–3.71)

3.3. Gene Expression Patterns

A significantly higher relative gene expression level of PIK3CA was found both in
OPMD and OSCC tissues compared to benign oral mucosal lesions (p = 0.001) (Figure 1a,
Table 4). DUSP16 was only overexpressed in the OSCC group when compared to benign
lesions (p = 0.05, Figure 1b, Table 4). AKT2 was significantly upregulated in OSCC tissues,
compared both to benign and OPMD tissues (p = 0.002) (Figure 1c, Table 4). Similar to
PIK3CA, mTOR was also overexpressed in OPMD and OSCC tissues, compared to benign
(p = 0.016 and p = 0.002, respectively, Figure 1d, Table 4), as well as MAPK14 (p = 0.007 and
p = 0.001, respectively, Figure 1e, Table 4). The COX2 expression level was the lowest in
benign lesions and the highest in OSCC tissues (p = 0.003 for benign vs. OPMD, p = 0.004
for OPMD vs. OSCC, and p = 0.001 for benign vs. OSCC, Figure 1f, Table 4).
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Figure 1. Relative gene expression levels of (a) PIK3CA, (b) DUSP16, (c) AKT2, (d) mTOR,
(e) MAPK14, and (f) COX2 in benign lesions, oral potential malignant lesions (OPMDs), and oral
squamous cell carcinomas (OSCCs). *—p > 0.005, **—p > 0.001, ***—p = 0.001.
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Table 4. Median values with the corresponding range of relative gene expression levels for all the
analyzed genes.

Gene Expression
Median (Range) Benign (n = 25) OPMD (n = 30) OSCC (n = 35) Comparison p Value

PIK3CA
0.0007

(0.00001–0.28)
0.05

(0.00005–7.98)
0.027

(0.00–57.65)

benign vs. OPMD 0.0001
benign vs. OSCC 0.0001
OPMD vs. OSCC 0.717

DUSP16
0.039

(0.0002–0.56)
0.06

(0.00013–20.98)
0.14

(0.02–2.48)

benign vs. OPMD 0.161
benign vs. OSCC 0.050
OPMD vs. OSCC 0.990

AKT2
0.009

(0.00002–0.66)
0.009

(0.00001–2.66)
0.25

(0.00005–15.61)

benign vs. OPMD 0.859
benign vs. OSCC 0.002
OPMD vs. OSCC 0.002

mTOR
0.72

(0.009–23.6)
4.43

(0.0022–171.65)
5.03

(0.0006–181.9)

benign vs. OPMD 0.016
benign vs. OSCC 0.003
OPMD vs. OSCC 0.664

MAPK14
2.89

(0.03–98.38)
19.38

(0.15–432)
30.21

(0.0055–223.12)

benign vs. OPMD 0.007
benign vs. OSCC 0.001
OPMD vs. OSCC 0.580

COX2
0.0007

(0.00001–0.66)
0.004

(0.00001–0.71)
0.091

(0.00003–1.03)

benign vs. OPMD 0.003
benign vs. OSCC 0.0001
OPMD vs. OSCC 0.004

3.4. Correlation between Bacterial Presence and Gene Expression

The OPMD tissues in which Prevotella melaninogenica was present exhibit a higher
expression level of AKT2 (p = 0.042, Figure 2). Additionally, a positive correlation was
found between the presence of P. melaninogenica and the relative expression of the AKT2
gene (ρ = 0.374, p = 0.042) in the OPMD lesions.
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In contrast, significantly lower expression of DUSP16 was observed in OSCC tissues
containing Streptococcus mitis (p = 0.011, Figure 3). A negative correlation was observed be-
tween the presence of Str. mitis and the relative expression of the DUSP16 gene (ρ = −0.387,
p = 0.029) in the OSCCs. No other correlations were established.
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4. Discussion

The oral cavity is inhabited by a usually symbiotic, complex ecosystem consisting of
numerous bacterial species, viruses, fungi, and other microorganisms [28,29]. However,
qualitative and/or quantitative disruptions of the oral microbiome, the so-called “oral
dysbiosis”, may occur, leading to chronic inflammation, a condition that has been implicated
in the pathogenesis of multiple diseases, including oral cancer.

Periodontitis is a chronic inflammatory disease shown to be associated with OPMD
and OSCC [4,17,30]. Komlós et al. found that most of the OSCC patients had stage IV
periodontitis [31], and our study corroborates these findings since the majority of stage
IV periodontitis patients included in the study had developed OSCC. Given that all the
patients had periodontitis, it is understandable that no significant difference was observed
between the three groups regarding clinical periodontal parameters, such as PPD and CAL.
The results of the present study also show a male predominance of OSCC and OPMD
lesions. This finding could be partially explained by their more frequent smoking and
alcohol consumption habits [32], although there was no significant difference in these
environmental factors between patients with different lesions.

Numerous studies have attempted to uncover microbial changes involved in oral
cancer development and progression and reveal new potential therapeutic targets [20,33],
but literature data remain inconclusive, especially in terms of the signaling pathways
affected by the microorganisms. Therefore, one of the aims of the present study was to assess
the frequency of the periopathogenic bacteria Prevotella melaninogenica, Prevotella intermedia,
and Streptococcus mitis in different oral pathological conditions. Prevotella is a genus of
Gram-negative bacteria frequently found in the oral cavity. Although undoubtedly linked
to the development of periodontitis, the role of Prevotella species in oral carcinogenesis is
still under debate. For instance, Zang and co-workers [34] showed that Prevotella species
were more frequent in the tumor tissues of oral cancer patients than in the adjacent normal
tissue. In our study, all three examined microorganisms were present at varying frequencies,
the lowest being 16% for P. intermedia in benign lesions and the highest being 87% for P.
melaninogenica in OPMD lesions. P. melaninogenica was the most frequent of the three
bacteria, and a significant difference in its distribution between benign lesions and OPMD
(p = 0.024) was established. In fact, the results of the logistic regression analysis show that
the presence of P. melaninogenica leads to a 4.3-fold increase in the risk that the lesion will be
potentially malignant. On the other hand, the other representative of the genus, Prevotella,
P. intermedia, was scarcely present in oral mucosal lesions. This finding contradicts the
study of Zhang and co-workers [30], who found a high prevalence of P. intermedia in the
tumor tissues, suggesting a potential association with OSCC. On the other hand, Moghimi
and coworkers [35] reported 29% of OSCC samples to be positive for the presence of P.
intermedia, which is quite similar to the 31% found in the present study. The literature
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data show higher counts of P. melaninogenica and S. mitis in saliva samples of patients with
OSCC compared to non-OSCC patients [36,37]. The study of Gopinath and co-workers [38]
established that the bacteriome in tumor tissue and both paired swab and whole mouth
fluid samples from oral cancer patients differed significantly in terms of overall community
structure. Since the focus of our study was to evaluate the influence of the presence of
bacteria in the mucosal lesion on gene expression changes, we opted for the deeper layers
of the lesions, collected by means of tissue biopsy. Contrary to our findings, Robayo and
coworkers did not detect P. melaninogenica in oropharyngeal carcinoma tissue samples [39],
but de Martin et al. confirmed its presence in the tonsillar OSCC [40]. A recent study by
Zheng et al. using in situ hybridization established the presence of P. melaninogenica in oral
lichen planus [41].

Several possible mechanisms have been suggested in regard to the role of oral micro-
biota in cancer pathogenesis: (i) stimulation of local and/or systemic chronic inflammation,
during which the inflammatory mediators initiate or facilitate cell proliferation and mu-
tagenesis; (ii) the activation of NF-κB and apoptosis inhibition; or (iii) the production of
some carcinogenic substances [42]. The present study aimed to analyze the gene expression
patterns of some potential candidate genes that might be modulated by the presence of
the abovementioned bacteria. The phosphoinositide 3-kinase (PI3K) AKT/mTOR signaling
pathway is involved in protein synthesis, autophagy, cell cycle regulation, apoptosis, nu-
clear protein organization, and nutrient metabolism, and its upregulation is associated with
the risk of OSCC formation [43–47]. The results of the present study support these findings,
since PIK3CA, AKT2, and mTOR were overexpressed in OPMD and/or OSCC compared
to benign lesions. The activation of the mitogen-activated protein kinase (MAPK) cascade
transduces various extracellular signals to the nucleus, thus regulating gene expression,
cell proliferation and differentiation, cell cycle arrest, and apoptosis. MAPKs’ activation is
regulated by the dual-specificity protein phosphatases (DUSPs). More specifically, DUSP16
has been shown to interact with MAPK14 [48], which is involved in lymphangiogene-
sis, angiogenesis, and cell proliferation in head and neck cancer [22] and cancer cells
growth control [49]. Additionally, it was found that DUSP16 overexpression increases cell
chemotherapy resistance and promotes cell proliferation [50,51]. Finally, the expression
of COX2 was also significantly higher in OPMD and OSCC compared to benign lesions,
which is in line with the role of the encoded enzyme. Namely, COX is involved in the
conversion of arachidonic acid to prostaglandin H2, an important precursor of prostacyclin,
which is implicated in cancerogenesis via cell proliferation, angiogenesis, and inhibition of
apoptosis [23].

The study by Zheng and co-workers [41] found that P. melaninogenica can adhere to
the cell surface, invade macrophages, and increase IL-1β, IL-6, and TNF-α expression in
oral lichen planus. The results of the present study show that AKT2 was overexpressed in
the presence of P. melaninogenica in OPMDs. Since AKT2 gene activation is associated with
OSCC pathogenesis [43], patients with OPMD lesions with AKT2 overexpression should be
closely monitored owing to the higher probability of malignant alteration.

There are different reports about the presence and effect of Streptococcus mitis in oral
mucosal lesions, some of them suggesting cancerous and others anti-cancerous
effects [20,52,53]. The protective (anti-cancer) effect of Str. mitis was attributed to hydrogen-
peroxide production and to T-cell mediated immunity [54,55]. Our study demonstrates
that DUSP16 expression was downregulated in the presence of S. mitis in OSCC. Since we
also found a higher DUSP16 expression in OSCC compared to benign oral mucosal lesions,
Str. mitis putatively exhibits a protective effect in OSCC via DUSP16 downregulation.

P. intermedia is a Gram-negative anaerobic bacterium associated with different patholo-
gies in the oral cavity, such as periodontal disease and oral squamous cell carcinoma [56].
Despite the strong literature evidence of PI3K, MAPK, and COX2 activation by P. interme-
dia [57–59], our study did not confirm the microorganism’s influence on the investigated
molecules and pathways.
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5. Conclusions

The present study suggests a significant contribution of P. melaninogenica and Str.
mitis in the pathogenesis of oral mucosal lesions. They might exhibit their corresponding
roles via AKT2 upregulation in OPMD and DUSP16 downregulation in OSCC. Further
investigations should be performed on larger cohorts to investigate the abundance of the
analyzed bacteria and confirm the obtained results.
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