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Abstract: Prevalent cervical HPV infection and high-risk HPV persistence consequences have been
extensively investigated in the literature; nevertheless, any causative interrelations of other sexually
transmitted bacterial infections (STIs) with cervical HPV infection have not yet been fully elucidated.
This study aimed to investigate the possible association of STIs with cervical cytology aberrations
and HPV genotyping results in a representative sample of predominantly young Greek women.
Liquid-based cytology and molecular detection for bacterial STIs and HPV as well as extended HPV
genotyping were simultaneously assessed in cervical samples from 2256 individuals visiting several
urban outpatient Gynecology Departments for well-woman visits or cervical screening throughout a
20-month period. All specimens were centrally processed with validated molecular assays. The mean
age of the studied women was 37.0 ± 11.7 years; 722 women (33.30%) tested positive for STI (mean
age 34.23 ± 10.87 years). A higher mean age (38.34 ± 11.83 years (p < 0.05)) was associated with
negative STI testing. Chlamydia trachomatis was detected in 59 individuals (8.2%), Mycoplasma hominis
in 156 (21.6%), Mycoplasma genitalium in 14 (1.9%), and Ureaplasma spp. in 555 (76.9%); infections with
two bacterial pathogens were identified in 73 samples (10.1%). Cervical HPV was detected in 357
out of 1385 samples with a valid HPV typing result (25.8%). The mean age of HPV-positive women
was 32.0 ± 8.4 years; individuals testing HPV-negative were slightly older (N = 1028): 34.4 ± 9.2
(p < 0.05). Among the 1371 individuals with valid results both for bacterial STIs and cervical HPV
detection, women with an HPV-positive sample were more likely to harbor an STI (OR: 2.69, 95% CI
2.10–3.46, p < 0.05). Interestingly, bacterial STI positivity illustrated significant heterogeneity between
NILM and LSIL cases, with 28.88% of NILM and 46.33% of LSIL cases harboring an STI, respectively
(p < 0.05). In brief, in a population with a high prevalence for STIs, especially Ureaplasma spp., an
association was documented between bacterial pathogen detection and cervical HPV infection, as
well as abnormal cytology; these findings merit further investigation.
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1. Introduction

With their long-term reproductive system complications (cervicitis, endometritis,
tubal-factor infertility, pelvic inflammatory disease, susceptibility to ectopic pregnancy,
and HIV acquisition), sexually transmitted infections (STIs) cause significant morbidity in
sexually active women, especially adolescents and young nulliparous women, therefore
representing a major global health priority [1,2]. These infections are often diagnosed simul-
taneously with human papillomavirus (HPV) infections, the latter being the most prevalent
sexually transmitted disease (STD) among women aged <35 years worldwide [3,4]. Lately,
the identification of HPV as the etiologic factor of anogenital tract precancer and neoplasias
has dramatically changed current clinical practice [5,6]. Among the more than 180 HPV
genotypes identified so far, predominantly 14 cause persistent infections and, thus, are
classified as high risk (HR-HPVs) based on their oncogenic potential, while the remainder
are considered as intermediate, low, or of uncertain risk, reflecting their association with
cervical cancer (CC) development [7–9]. While the majority of HPV infections based on
their natural history are mostly transient and spontaneously regress within a short pe-
riod of time (12 to 24 months), HR-HPV persistence and latency are the main causative
factors associated with high-grade precancerous cervical lesions (cervical intraepithelial
neoplasia—CIN2-3/high-grade squamous intraepithelial lesions—HSIL), as well as inva-
sive CC development [10–12].

Despite the extensive literature focusing on the consequences of cervical HR-HPV
infection, as well as guidelines on STI management that are updated periodically by global
stakeholders (e.g., WHO, CDC), the possible interrelationship of other sexually transmitted
infections detected concurrently with cervical HPV infection have not been fully elucidated
yet [13–16]. Novel, widely available molecular assays offer the opportunities for accurate
simultaneous detection of multiple pathogens in cervical secretions. Especially for young
cohorts with suboptimal HPV vaccination rates, defining the epidemiology of cervical
co-infections (concurrent isolation of HPV and bacterial STIs) is crucial both for avoiding
cervical precancer overtreatment as well as preventing antibiotic resistance.

This study aimed to investigate the possible association of STIs with cervical cytology
aberrations and HPV genotyping results in a large representative sample of predominantly
young Greek women.

2. Materials and Methods
2.1. Study Population—Inclusion and Exclusion Criteria

We conducted a prospective pragmatic (real world) observational study enrolling
eligible women who attended outpatient gynecology departments for general gynecolog-
ical examination or routine cervical screening or colposcopy clinics of urban university
hospitals located in 3 different Greek cities (Athens/Larisa/Patras). The study was run
throughout a 20-month period (between October 2015 and June 2017). Following detailed
briefing regarding the scopes of the study, a Thin Prep cervical sample was obtained from
individuals who agreed and signed the informed consent form. Women who were pregnant
at the time of enrolment, had any immunosuppressive condition, those who had been pre-
viously reviewed in colposcopy for abnormal cytology, or had prior ablative or destructive
treatment of cervical precancerous lesions were excluded. We also excluded women who
reported ever receiving treatment for any bacterial STI in the past.
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2.2. Study Protocol

According to the study protocol, detailed history (medical and gynecological) was
obtained from all eligible individuals at the first visit, covering aspects such as age at first
pregnancy, parity, number of lifetime sexual partners, recent changes in sexual partners,
condom use, and HPV immunization. All women were informed about the scope of the
study and were asked to sign a consent form at enrollment. In addition to epidemiolog-
ical data, other confounding factors affecting HPV status and concurrent CIN (such as
smoking) were documented. Consequently, liquid-based cytology (LBC) samples were
obtained from all participants using Rovers™ Cervex brushes and transferred into Pre-
servCyt solution. This was followed by centrally performed (Attikon University Hospital)
cytological and biomolecular analysis of HPV DNA and other bacterial STIs (Chlamydia
trachomatis spp. (CT), Mycoplasma hominis spp. (MH), Mycoplasma genitalium spp. (MG),
and Ureaplasma urealyticum/parvum spp. (UU/UP)). For these scopes, two validated assays
have been utilized:

• HPV DNA Genotyping (CLART-2 HPV Test® (Genomica, Madrid, Spain)).
• CLART® STIs kits (GENOMICA, Madrid, Spain).

When an STI or cervical pathology was identified, individuals were referred for
appropriate management, outside the context of this study.

The study was conducted within a national multidisciplinary research protocol in
cervical pathology and was approved by the Greek Central Government (Ministry of
Education and Religious Affairs) under the framework and funding of the HPVGuard
research project (http://HPVGuard.org, Project Number: 11ΣΥN_10_250, Cooperation
framework, Protocol Number: EΥ∆E—ETAK 1788/1-10-2012) and subsequently received
additional approval from the co-ordinating authority—the Attikon University Hospital
Ethics Committee (code: EB∆ 623/14-5-13).

In this manuscript, we are presenting datasets from eligible individuals for whom STI
assay results as well as LBC and/or HPV genotyping results were available. In order to
obtain a more robust dataset, we did not exclude cases for which some individual exam
results were missing (for example, due to insufficient biological material due to prior
consumption for other examinations or failure of the molecular tests); these cases were used
in pairs for those parts of the analysis where results were available and valid statistical
tests could be obtained (refer to Figure 1 for a Venn diagram indicating the examinations
presenting simultaneously valid results).

Ectocervical and endocervical samples, using the ThinPrep® Pap test, were collected
by Rovers™ Cervex brushes and transferred into PreservCyt solution. PreservCyt® vials
(Cytyc Inc., Boxborough, MA, USA) containing the cellular material were used to pre-
pare mono-layer slides using the ThinPrep® 2000 Automated Slide Processor® (Cytyc,
Boxborough, MA, USA) according to the manufacturer’s instructions. Cytological results
were expressed according to the Bethesda classification system (8): (i) negative for in-
traepithelial lesion or malignancy (NILM); (ii) atypical squamous cells of undetermined
significance (ASC-US); (iii) low-grade squamous intraepithelial lesion (LSIL); (iv) high-
grade squamous intraepithelial lesion (HSIL); (v) squamous cell carcinoma (SCC); and
(vi) adeno-carcinoma (AdenoCa).

HPV DNA detection was performed on the same biological material implementing a
validated molecular assay (CLART2 HPV, Genomica, Coslada, Madrid, Spain) capable of
identifying individually the 35 most common HPV genotypes, both HR-HPVs as well as
several low-risk HPVs (LR-HPVs) (6, 11, 16, 18, 26, 31, 33, 35, 39, 40, 42, 43, 44, 45, 51, 52, 53,
54, 56, 58, 59, 61, 62, 66, 68, 70, 71, 72, 73, 81, 82, 83, 84, 85, and 89).

http://HPVGuard.org
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Figure 1. Venn diagram indicating the number of available valid data for each examination type.
The total number of cases that had at least one valid outcome from HPV, STIs, and LBC were 2256.
The number of women with valid HPV, LBC, and STI test were 1385, 1806, and 2168, respectively.
Intersection of two circles shows the number of valid results for both sets, for instance, simultaneous
HPV and STI test was available for 1371 women, while, for HPV and STIs and LBC, for 1198 women.

The samples were tested for bacterial STIs using a DNA microarray system for the
detection and molecular identification of pathogens causing sexually transmitted infections.
The microorganisms detected were the following: Chlamydia trachomatis (CT), Mycoplasma
hominis (MH), Mycoplasma genitalium (MG), and Ureaplasma urealyticum/parvum (UU/UP).
DNA was extracted, amplified, and analyzed for the detection and genetic identification of
pathogens causing sexually transmitted infections using microarray methods and CLART®

STIs kits according to the manufacturer’s instructions (GENOMICA, Madrid, Spain). Briefly,
1 mL of the homogenized sample was placed in a sterile 1.5 mL microcentrifuge tube
and centrifuged at 12,000 rpm for 10 min to obtain the pelleted form. Subsequently,
the supernatant was discarded; the pellet was resuspended in 1 mL sterile water and
centrifuged at 12,000 rpm for 10 min. The DNA extraction procedure was followed by the
addition of 180 µL lysis buffer T1 and 25 µL proteinase K to the pellet and incubation of
the samples in a thermostatic mixer at 56 ◦C and 550 rpm for 1 h. At the end of the DNA
extraction method, 100 µL of eluted DNA was recovered and stored at −20 ◦C.

We analyzed cytology results in the aforementioned separate Bethesda-based cate-
gories (NILM, ASC-US, LSIL, and HSIL) [17] and correlated them with HPV status and
bacterial STI detection results.

The statistical analysis platform used for all tests was based on SAS version 9.4
for Windows software (SAS Institute Inc., Cary, NC, USA) and a p value of <0.05 was
considered statistically significant. The t-test was used to evaluate the statistical significance
for continuous variables (such as patient age) in cases where two groups were considered
and data normality was assured. When more than two groups were compared and data
normality was also assured, we implemented the ANOVA test and the t-test was used for
post hoc analysis. Data were tested for normality by the Kolmogorov–Smirnov test and,
when normality was not ensured, the Mann–Whitney U test or the Kruskal–Wallis test was
applied (for two or more groups, respectively). For comparison of categorical variables,
the χ2 test was performed and odds ratios were calculated whenever appropriate, i.e., for
2 × 2 contingency tables. All tests were two-sided.

3. Results

In total, 2256 cases were found eligible for further analysis (mean age: 36.98 ± 11.65 years,
min = 18, max = 75), since they possessed a valid result in at least one of the three
studied tests.
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3.1. Analysis of STI Detection Results

One-hundred cases either had invalid results or the biological material was insufficient
for adequate testing. Out of all cases with a valid STI detection result, 722 (33.30%) tested
bacterial-STI-positive. The mean age of positive cases was 34.23 ± 10.87 yrs and women
negative for STIs were about 4 years older, with a mean age of 38.34 ± 11.83 yrs (p < 0.05).
Out of the 722 positive cases, 59 (8.17%) had CT, 156 (21.61%) MH, 14 (1.94%) MG, and 555
(76.87%) UU/UP. Moreover, 73 (10.11%) women suffered from dual bacterial infections;
triple or higher order infections were not detected in the study population.

3.2. Analysis of HPV Typing Results

Out of 1385 samples with valid HPV typing results (see Figure 1), 357 (25.78%) were
HPV-positive. The mean age of HPV-positive women was 32.03 ± 8.41 yrs; HPV-negative
women (N = 1028) were approximately two years older: 34.46 ± 9.20 (t-test: p < 0.05). Out
of the 35 detectable subtypes, 2 LR-HPV genotypes (26 and 71) were not detected in this
cohort; from the remaining, the most frequent were 16 (16.53% of the positive women), 31
(15.97%), 51 (13.45%), 66 (13.17%), 53 (11.00%), and 6 (10.67%) (see Table 1 for a complete list
of HPV genotype frequencies). Among the 357 patients with a documented HPV infection,
223 (62.46%) harbored a single genotype, while, in 90 (25.21%), two HPV subtypes were
isolated; in all other cases, multiple genotypes were documented. HR-HPV types were
confirmed in 298 out of 357 (83.47%) HPV-positive women and LR-HPV types in 101,
respectively (28.29%) (see Table 2 for details related to the number of genotypes found in
the studied population).

Table 1. Frequency of HPV subtypes in the HPV-positive population.

HPV Subtype Subtype Prevalence in the
Positive Population HPV Subtype Subtype Prevalence in the

Positive Population

16 16.53% 84 3.00%

31 15.97% 54 2.33%

51 13.45% 83 2.33%

66 13.17% 45 1.40%

53 11.00% 62 1.33%

6 10.67% 11 1.00%

52 7.56% 82 1.00%

59 7.00% 40 0.67%

58 6.72% 44 0.67%

70 5.67% 73 0.67%

18 5.60% 85 0.67%

35 5.32% 43 0.33%

68 5.32% 72 0.33%

39 4.48% 89 0.33%

61 4.33% 26 0.00%

42 4.00% 71 0.00%

56 3.92% HR 83.47%

81 3.67% LR 28.29%

33 3.08%
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Table 2. Number of women harboring any, HR, and LR subtypes and percentage in relation to the
number of simultaneous HPV subtypes (only for the HPV-positive population).

HPV Subtypes Number of HR Subtypes Number of
LR Subtypes

Number of Subtypes N % N % N %

0 NA NA 59 16.53 256 71.71

1 223 62.46 203 56.86 82 22.97

2 90 25.21 66 18.49 17 4.76

3 32 8.96 22 6.16 2 0.56

4 8 2.24 5 1.40

5 2 0.56 2 0.56

6 2 0.56

3.3. Liquid-Based Cytology (LBC)/Test Papanicolaou Outcomes

Out of the 1806 cases with available and valid cytology results, 1373 (76.02%) cor-
responded to NILM with a mean age of 38.83 ± 12.52 yrs, 86 (4.76%) were diagnosed
as ASC-US with a mean age of 32.52 ± 8.52 yrs, 339 (18.77%) were categorized as LSIL
with a mean age of 32.07 ± 8.10 yrs, and 7 (0.39%) corresponded to HSIL with a mean
age of 40.00 ± 12.88 yrs. Finally, one single SCC case, aged 59, was documented (0.06%)
(See Figure 2). Differences in the ages among the various cervical cytologicaldiagnostic
categories were statistically significant (p < 0.001).
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3.4. Analysis of STIs and HPV for the Age Groups

Focusing on the subgroup of the 58 women of the youngest age (≤20 yrs) for whom a
valid STI and an HPV test were both available, 23 (39.66%) had a bacterial STI detected.
There were no significant differences in the proportions of infected individuals between
the ≤20 yrs group and the 21–30 yrs group (p = 0.9356). As for STI positivity, this was
lower in the older age groups; specifically, 33.33% in the 31–40 group, 21.8% in 41–50 group,
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26.19% in the 51–60 age group, and, finally, 12.5% in the senior, 61–70 age group (see
Table 3). Differences in STI positivity rates were statistically significant among the various
age groups (chi-square p < 0.001). Similarly, HPV positivity percentages were waning in
the older age groups (Table 3).

Table 3. Distribution of HPV status and STIs for the studied population per age group.

Age Group *

Status ** Total
n = 1344

< = 20
n = 58

21–30
n = 415

31–40
n = 555

41–50
n = 266

51–60
n = 42

61–70
n = 8

STI (+) n (%) 449 (33.41) 23 (39.66) 171 (41.2) a 185 (33.33) b 58 (21.8) a,b 11 (26.19) 1 (12.5)

STI (−) n (%) 895 (66.59) 35 (60.34) 244 (58.8) 370 (66.67) c 208 (78.2) 31 (73.81) 7 (87.5)

HPV (+) n (%) 339 (25.22) 17 (29.31) 127 (30.6) c 139 (25.05) c 48 (18.05) 7 (16.67) 1 (12.5)

HPV (−) n (%) 1005 (74.78) 41 (70.69) 288 (69.4) 416 (74.95) 218 (81.95) 35 (83.33) 7 (87.5)

HPV+ STI+ n (%) 172 (12.8) 13 (22.41) 66 (15.9) 67 (12.07) 23 (8.65) 3 (7.14) 0 (0)

HPV+ STI− n (%) 167 (12.43) 4 (6.9) 61 (14.7) 72 (12.97) 25 (9.4) 4 (9.52) 1 (12.5)

HPV− STI + n (%) 277 (20.61) 10 (17.24) 105 (25.3) d 118 (21.26) e 35 (13.16 ) d,e 8 (19.05) 1 (12.5)

HPV− STI− n (%) 728 (54.17) 31 (53.45) 183 (44.1) 298 (53.69) 183 (68.8) 27 (64.29) 6 (75)

HPV HR + n (%) 283 (21.06) 15 (25.86) f 110 (26.51) g,h,i 114 (20.54) g,j 39 (14.66) f,h,j 5 (11.9) i 0 (0)

HPV HR− n (%) 1061 (78.94) 43 (74.14) 305 (73.49) 441 (79.46) 227 (85.34) 37 (88.1) 8 (100)

Chlamydia T. n (%) 33 (2.46) 2 (3.45) 19 (4.58) 12 (2.16) 0 (0) 0 (0) 0 (0)

Mycoplasma H. n (%) 96 (7.14) 8 (13.79) 35 (8.43) 35 (6.31) 13 (4.89) 5 (11.9) 0 (0)

Mycoplasma G. n (%) 11 (0.82) 1 (1.72) 5 (1.2) 4 (0.72) 1 (0.38) 0 (0) 0 (0)

Ureaplasma spp. n (%) 342 (25.45) 12 (20.69) 129 (31.08) 145 (26.13) 47 (17.67) 8 (19.05) 1 (12.5)

* Superscripts indicate pairs with p < 0.05; ** percentages in parentheses denote the percentage of the population
within the age group that is compliant with the denoted status. Details of the statistical tests for the pairs that
exhibited observed difference: a: OR: 0.47, 95% CI: 0.36–0.62. p < 0.0001, b: OR: 0.48, 95% CI: 0.28*0.83, p = 0.0069,
c: OR: 13.57, 95% CI: 1.50–123.04, p = 0.010 (Fisher exact), d: OR: 0.17, 95% CI: 0.12–0.22, p < 0.0001, e: OR: 2.91,
95% CI: 1.68–5.03, p < 0.0001, f: OR: 0.57, 95% CI: 0.39–0.82, p = 0.0026, g: OR: 0.17, 95% CI: 0.13–0.23, p < 0.0001,
h: OR: 0.45, 95% CI: 0.26–0.80, p = 0.0055, i: OR: 0.027, 95% CI: 0.003–0.236, p = 0.0002 (Fisher exact).

Coinfections (HPV and bacterial STI) were mostly prevalent (22.41%) in the youngest
age group (≤20 yrs) and less common in older age groups, specifically 15.9% (21–30 yrs),
12.07% (31–40 yrs), 8.65% (41–50 yrs), and 7.14% (in the 51–60 yrs); indeed, coinfections were
not documented in ages 60+ (Table 3). HPV-positive/STI-negative women were mostly
seen in the young age groups 21–30 yrs (14.70%) and 31–40 yrs (12.97%). HR-HPVs were
more common in the younger age groups of ≤20 and 21–30 yrs (Table 3). The prevalence
of Ureaplasma spp. (UU/UP) gradually decreased with advancing age (Table 3). However,
considerable MH prevalence (11.90%) was observed in the 51–60 age group, comparable to
that of younger age groups ≤ 20 (13.79) and 21–30 (8.43%).

3.5. Analysis of STIs and HPV for the Cervical Cytology According to the Bethesda
Classification Groups

Bacterial STI positivity differed significantly between NILM and LSIL cases, with
28.88% of the NILM cases harboring an STI, compared to 46.33% of the LSIL cases (p < 0.05)
(Table 4). Comparable infection rates were observed among ASC-US, LSIL, and HSIL cases
(Table 4, 33.33%, 46.33%, and 33.33%, respectively, without statistically significant difference
in pairs). As anticipated, significant differences were documented in the HPV infection
status between NILM and LSIL, NILM and HSIL, ASC-US and LSIL, as well as ASC-US
and HSIL (in all cases corresponding to p < 0.05). For the sub-population of HPV-positive
cases, no significant differences in the STI status were observed among the cytological
subcategories; however, for the HPV-negative sub-group, bacterial STI positivity rate was
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higher in the LSIL group than in NILM cases (OR: 0.57, 95% CI: 0.39–0.82, p = 0.0026, see
Table 4).

Table 4. Distribution of cytological findings for the studied population by HPV and other than HPV
STI status (the single SCC case was excluded).

LBC *

Status *** Total
n = 1197

NILM
n = 800

(66.83%)

ASC-US
n = 78 (6.52%)

LSIL
n = 313

(26.15%)

HSIL
n = 6 (0.5%) p-Value

STIs (+) n (%) 404 (33.75) 231 (28.88) a 26 (33.33) 145 (46.33) a 2 (33.33)
<0.0001

STIs (−) n (%) 793 (66.25) 569 (71.13) 52 (66.67) 168 (53.67) 4 (66.67)

HPV (+) n (%) 309 (25.81) 121 (15.13) b,d 21 (26.92) c,e 162 (51.76) d,e 5 (83.33) b,c

<0.0001
HPV (−) n (%) 888 (74.19) 679 (84.88) 57 (73.08) 151 (48.24) 1 (16.67)

HPV+ STIs+ n (%) 153 (12.78) 57 (7.13) 7 (8.97) 88 (28.12) 1 (16.67)
0.1261

HPV+ STIs− n (%) 156 (13.03) 64 (8) 14 (17.95) 74 (23.64) 4 (66.67)

HPV− STIs+ n (%) 251 (20.97) 174 (21.75) f 19 (24.36) 57 (18.21) f 1 (16.67)
0.0065

HPV− STIs− n (%) 637 (53.22) 505 (63.13) 38 (48.72) 94 (30.03) 0 (0)

HPV HR+ n (%) 258 (21.55) 96 (12.00) g,h,i 18 (23.08) h,j,k 139 (44.41) g,j 5 (83.33) i,k

<0.0001
HPV HR− n (%) 939 (78.45) 704 (88.00) 60 (76.92) 174 (55.59) 1 (16.67)

Chlamydia T. n (%) 30 (2.51) 14 (1.75) 2 (2.56) 14 (4.47) 0 (0) 0.0679 @

Mycoplasma H. n (%) 88 (7.35) 51 (6.38) 11 (14.1) 26 (8.31) 0 (0) 0.0852 @

Mycoplasma G. n (%) 9 (0.75) 3 (0.38) 5 (1.6) 5 (1.6) 0 (0) 0.1028 @

Ureaplasma spp. n (%) 305 (25.48) 175 (21.88) 14 (17.95) 114 (36.42) 2 (33.33) <0.0001 @

* Includes women that had simultaneously valid results in STIs, HPV detection, and LBC; *** percentages in
parentheses denote the percentage of the population within the cervical cytology diagnostic category being
compliant with the denoted status. @: Fisher exact test. Details of the statistical tests for the pairs that exhibited
observed difference: a: OR: 0.47, 95% CI: 0.36–0.62. p < 0.0001, b: OR: 0.48, 95% CI: 0.28*0.83, p = 0.0069,
c: OR: 13.57, 95% CI: 1.50–123.04, p = 0.010 (Fisher exact), d: OR: 0.17, 95% CI: 0.12–0.22, p < 0.0001, e: OR: 2.91,
95% CI: 1.68–5.03, p < 0.0001, f: OR: 0.57, 95% CI: 0.39–0.82, p = 0.0026, g: OR: 0.17, 95% CI: 0.13–0.23, p < 0.0001,
h: OR: 0.45, 95% CI: 0.26–0.80, p = 0.0055, i: OR: 0.027, 95% CI: 0.003–0.236, p = 0.0002 (Fisher exact), j: OR: 2.67,
95% CI: 1.50–4.72, p = 0.0006, k: OR: 16.67, 95% CI: 1.83–152.03, p = 0.0053 (Fisher exact).

In relation to the risk for an abnormal cytological outcome, predictably, irrelevant
of the STI status, HPV-positive cases presented higher chances for an abnormal cytology
than the corresponding HPV-negative (OR: 4.99, 95% CI 3.78–6.59, p < 0.05), while this
risk decreased in STI-negative women (OR: 3.37, 95% CI 2.62–4.35, p < 0.05). In cases with
unknown/unavailable HPV status, cases testing positive for bacterial STI were linked
with abnormal cytology (OR: 1.89, 95% CI 1.47–2.43, p < 0.05). Women testing positive
for both an STI and HPV had a higher chance of concurrent cytological abnormalities
(n = 57/800 = 7.13% in the NILM group and n = 96/397 = 24.18% in the cytological abnor-
mal group, Table 4), OR: 4.16, 95% CI 2.92–5.90, p < 0.05), while patients negative for both
HPV and a bacterial STI illustrated higher chances of normal cytology than cases harboring
either or both (bacterial and HPV) infection types (OR: 3.44, 95% CI 2.67–4.43, p < 0.05,
Table 4).

Among HPV-positive individuals with valid cytology and STI outcomes, 121 out of
309 (39.16%) had NILM cytology. ASC-US was identified in 21 (6.78%), LSIL was detected
in 162 out of 309 (52.43%), and HSIL in 5 (1.62%) (Table 4). Out of the 888 HPV-negative
patients, 679 (76.46%) had normal cytology, 57 (6.42%) were categorized as ASC-US, 151
(17%) LSIL, and 1 (1.13%) corresponded to HSIL; the sole SCC case was HPV-positive.
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Out of the cases with valid STI results as well as HPV detection outcomes (n = 1371),
CT was detected in 35 (7.61%) patients, MH in 99 (21.52%), MG in 11 patients (2.39%), while
UU/UP was detected in 350 (76.09%) patients (Table S1). HPV-positive women were more
likely to harbor a bacterial STI (OR: 2.69, 95% CI 2.10–3.46, p < 0.05); a similar situation
was observed when we studied women with HR-HPV infection (irrelevant of the LR-HPV
infections) or LR infections (irrelevant of HR infections) (see Table S1). Interestingly, women
that harboured both HR- as well as LR-HPV genotypes had four-times higher chances of
testing positive for a bacterial STI than women with either an HR- or an LR-HPV genotype
(OR: 4.15, 95% CI 2.16–7.97, p < 0.05).

Out of the 1371 cases with valid results for HPV and STIs, in 35 individuals, CT was
detected (2.55%), which illustrated the strongest correlation with HPV positivity (OR: 3.19,
95% CI 1.62–6.26, p < 0.05) and a stronger correlation with LR- than HR-HPVs (OR: 4.01,
95% CI 1.77–9.07, p < 0.05 and OR: 2.53, 95% CI 1.27–5.03, p < 0.05, respectively, see Table S1)
and, additionally, higher risk if both LR- and HR-HPVs were present (OR: 4.41, 95% CI
1.48–13.11, p < 0.05). Ninety-nine women (7.22%) were positive for MH; the odds ratio of
its association with HPV ranged between 1.95 and 2.45 (see Table S1). MG was detected
in a very small percentage of women (0.8%) precluding safe conclusions; however, it was
detected in comperable proportions in HPV-negative cases as well as HR-, LR-, and both
HR- and LR- (see Table S1) and seemed mostly associated with HPV-negative cases.

Finally, 350 (25.23%) women tested positive for UU/UP; for these women, the risk
of UU/UP positivity increased as the infection switched from LR-HPV-related (OR: 1.97,
95% CI 1.29–3.01, p < 0.05) to HR-HPV-related (OR 2.41. 95% CI 1.83–3.17, p < 0.05)
or simultaneously LR- and HR-HPV-related (OR: 3.04, 95% CI 1.64–5.64, p < 0.05) (see
Table S1).

4. Discussion

In this study, in a European population with relatively high bacterial STI prevalence
(Ureaplasma Spp. in particular), illustrating cervical HPV prevalence and genotype distri-
bution consistent with previously reported epidemiology in a national setting, we have
documented an association between bacterial pathogen detection and HPV infection as
well as abnormal cervical cytology [18,19]. Of particular interest is this study’s finding that
women testing positive both for HR- as well as LR-HPV genotypes illustrated a relative
risk (RR) of 4 to also test positive for a bacterial STI when compared to individuals testing
positive individually either for an HR- or an LR-HPV genotype in isolation.

4.1. Study’s Findings in the Regional Context

In this multicenter molecular epidemiology study, which recruited representative
cohorts of reproductive-age women, the largest materialized in Greece so far, simultaneous
infections by bacterial STIs together with cervical HPV have been frequently detected.
The distribution of HPV genotypes in this large multicenter cohort is consistent with the
findings of previously reported studies conducted by our group [18]. Ureaplasma spp. was
the most prevalent Mycoplasmataceae detected, followed by MH and CT. This is in line
with findings from previous smaller scale, similarly designed single-center studies which
have been conducted regionally during the past decades [20–24]. Ureaplasma urealyticum
is a bacterium belonging to the genus Ureaplasma and the family Mycoplasmataceae in the
order Mycoplasmatales, representing one of the smallest cellular microorganisms found in
nature [25]. It can be isolated in the urogenital system of many healthy individuals as a
commensal. In 2002, Ureaplasma urealyticum was divided into two species, U. parvum (UP)
(biotype 1) und U. urealyticum (UU) (biotype 2) [26].

Despite the absence of formal nationwide data, the literature clearly suggests that
Ureaplasma spp. is endemic in Greece, as is the case with other geographical areas. In
this perspective, our study’s findings might reflect regional bacterial STI variability. In a
previous study also focusing on the possible association of HPV and STI codetection with
cytological findings, Parthenis et al. recruited prospectively 345 asymptomatic patients



Pathogens 2023, 12, 1347 10 of 16

attending a Greek urban gynecology clinic for routine cervical screening [27]. In this co-
hort, Ureaplasma spp., detected in 18.2% of participants, was the most frequently isolated
pathogen; one in every four women in this study testing positive for this bacterium addi-
tionally harbored an HR-HPV genotype. In another contemporary Greek study, comprised
of 347 asymptomatic women undergoing routine cervical screening in an urban setting,
16.13% of the studied individuals carried Ureaplasma spp. (predominantly UP) in high
concentrations [28].

In a different setting, that of an urban Greek STD outpatient clinic, Mortaki et al. con-
ducted a cross-sectional study in which cervicovaginal smears of women with anogenital
warts were examined for the presence of HR-HPV types and common STIs. In contrast with
CT coinfection rates, which were similar across the study groups, the authors report that
coinfections with Ureaplasma spp., MH, and MG were more common in patients with warts,
with 45.9% of individuals among this cohort being diagnosed with Ureaplasma spp. [29].
Finally, in the context of unexplained chronic voiding symptoms, a high prevalence of UU
was detected among 153 Greek women [21].

Other studies from neighboring countries have also investigated the concurrent detec-
tion of cervical HPV together with bacterial STIs. In a recent Italian study, Martinelli et al.
documented a relatively high percentage of women with CT infection, alone or in combi-
nation with seven HR-HPV types, in individuals attending gynecology outpatient clinic
following an abnormal Pap smear [30]. Another recent Italian study also underscored
the need for surveillance to implement tailored vaccination programs and cervical cancer
preventive strategies [31].

4.2. Bacterial STIs and Ureaplasma spp. in Particular as a Potential Co-Factor in
Cervical Carcinogenesis

There is ample literature evidence that, in addition to the key role of HR-HPVs, cervical
carcinogenesis is also associated with inflammation [32,33]. Interestingly, by obscuring the
cytologic identification of atypical cells, persistent cervicitis might also enhance the progress
of undetected precancerous cervical lesions [32]. Cervicitis has been associated with a loss
of cervical columnar cells, a typical feature of the maturational process; thus, STIs might
represent squamous metaplasia promoters [34]. Perhaps the initial steps of HPV-mediated
carcinogenesis are helped by a state of cervical inflammation, driven predominantly by the
hormonal milieu, regulatory cytokines and chemokines, as well as multiple cervicovaginal
microorganisms [32,35,36].

Among bacterial STIs, the detrimental effects of Chlamydia trachomatis (CT) cervical
infection have been suspected for decades; currently, the association between CT and CC
has been well established [23,37–41]. Hypothetically, CT might increase susceptibility to
HPV causing microabrasions or cervical epithelial cells and molecular alterations, thus
facilitating the entry of virions [23,37,42]. In a recent systematic review and meta-analysis
of 48 studies assessing the possible association between HPV and CT infection, Naldini
et al. documented that, among women harboring CT, the odds ratio (OR) of HR-HPV
infection was 2.32 (95% CI 2.02, 2.65), while the OR for CT among HPV-positive women
was 2.23 (95% CI 1.70, 2.92). The authors consider HPV and CT behaving as reciprocal risk
factors, concluding that, in women diagnosed with either cervical HPV or CT, screening for
the mutual infections represents a justified preventive intervention both for CC as well as
infertility [39]. In the interaction between CT and HPV, several host modulating factors
(genetic background, endogenous hormones, and immune response variations) might also
be shared with other bacterial STIs [36].

Ureaplasma spp. are common STI pathogens frequently found in the healthy female
genitourinary tract; therefore, their pathogenic role in individuals is difficult to substanti-
ate [24,43]. In an early study, Lukic et al. postulated that UU is related to the persistence of
HPV infection and early cervical cytological changes [35]. Drago et al. suggested that UP
may be involved in the carcinogenic process of HPV, directly influencing the expression
of HPV proteins or indirectly by stimulating a persistent inflammatory process [44]. The
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chronic inflammation caused by Ureaplasma spp. infections might favor the entry of other
microorganisms, act as cofactor in the pathogenesis of cervical disease, or induce chromo-
somal alterations that might lead to carcinogenesis of epithelial cells [45]. The possible
mechanism of the association between UU infection and abnormal cervical cytopathology
might be related to the combination of several complex infection-associated inflammatory
responses, involving production of reactive oxidative metabolites, increased expression
of cytokines, chemokines and growth and angiogenic factors, decreased cell-mediated
immunity, and the generation of free radicals [40,46]. The large meta-analysis of Liang et al.
concluded that, together with bacterial vaginosis (BV), CT, and reduction in Lactobacilli, UU
are also associated with increased risk of HPV infection and CIN development [40,47,48].

From a microbiome perspective, Ureaplasma spp. vaginal colonization at low levels
is seemingly harmless [49]. In the study of Veteramo et al., a significant association be-
tween HPV and UU was documented, however, only at high-density colonization rates
(HDC-UU), leading the authors to consider that UU pathogenic potential only emerged in
high densities [23]. Similarly, in the study of Kim et al., only HDC-UU was significantly
associated with HPV infection. Interpreting their results, the authors suggest that, at HDC-
UU rates, even asymptomatic UU infection should be eradicated, regardless of age, for the
prevention of HPV infection and subsequent CIN [50]. This is consistent with the opinion
that using Ureaplasma bacterial load as a diagnostic criterion might be required to decide
on appropriate drug intervention [51,52]. In our study, the specifications of the preselected
assay as well as the high inflicted costs precluded the measurement of density colonization
rates in UU-positive cases. Further studies will be required to confirm whether there are
“safe levels” for Ureaplasma, as is also the case for MH [53].

The study of Veteramo et al. also evidenced the lack of protective precautions against
STIs, both in HPV-positive and HPV-negative women. Despite the debate on the effective-
ness of condoms in reducing HPV transmission rates, counseling on STI prevention use
should be continued to prevent bacterial pathogen transmission [23,54].

4.3. Cost Effectiveness Considerations

With their range of severe negative adverse reproductive consequences, early detection
and treatment of bacterial STIs in the susceptible population seems all-important. How-
ever, several factors contribute in suboptimal STI control globally (their relapsing nature,
unreliable assays, limited access to health facilities, inadequate infrastructures, possible
effects of sexual networks, immunosuppression, etc.) [55–57].

Interestingly, there is currently no unanimity in viewpoints and guidelines for STI
detection screening policies [58]. A position statement recently developed by the European
STI Guidelines Editorial Board advises against routine MH, UU, and UP testing and
treatment, not only for asymptomatic but for symptomatic women as well. The authors
argue that asymptomatic bacterial carriage is common and the majority of individuals will
not develop related disease. Based on the position statement, extensive testing, detection,
and antimicrobial treatment of these bacteria might ultimately result in the selection of
antimicrobial resistance towards more “aggressive” STIs as well as in the general microbiota
and substantial economic cost for societies and individuals. The authors consider that the
recent “commercialization” of several multiplex PCR assays detecting typical nonviral STIs
together with MH, UU, and UP has worsened this situation [59].

Undeniably, cost-effectiveness appraisal of bacterial STI screening policies is multi-
factorial, linked with several mid- and long-term social and public health correlates, fre-
quently disregarded by mathematic modeling. Certainly, reliable diagnosis by the novel
multiplex RT PCR assays offering simultaneous detection of cervical pathogens largely
facilitates their management nowadays [8,60,61]. Furthermore, there is already sufficient
evidence that, by complicating the natural course of cervical HPV infections, bacterial
STIs prolong HPV clearance, thus leading to complex morbidity and excess economic
burden [18,62].
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4.4. Strengths and Limitations of This Study

With 2256 individuals enrolled in the analysis, this study’s major strength is predomi-
nantly the sizable patient sample. Our study represents the largest relevant prospective
work conducted in Greece so far. Furthermore, all cytological and molecular assessments
(both for bacterial STIs as well as HPV) have been performed in a single university-affiliated
laboratory (thus minimizing variability), implementing state-of-the-art molecular assays
and undergoing regular external QA. The extended HPV genotyping assay utilized in this
study allows for the detection of subtle differences in the interaction of specific bacterial
STIs with either LR-HPVs or HR-HPVs in a subsequent work.

The main limitation of this pragmatic (real-world) study is the incomplete dataset of
assays affecting several individuals, with missing results either for cytology, a particular
bacterial STI, or for HPV assessment (Figure 1). Further, we did not examine the presence
of pathogens like Trichomonas spp. Or Candida that may have an additional role either
as true pathogens, facilitators, or commensals [40,63]. After performing an evaluation
of the effect of imputations on the final estimations, we bypassed this issue as described
in the Material and Methods section. Second, because of the study’s protocol, no data
on histology, which represents the “gold standard”, were available; obtaining cervical
biopsies for mostly benign conditions would cause unjustified and unnecessary iatrogenic
morbidity. Third, since a national vaccination registry has only recently been introduced in
Greece, after documenting inaccuracies in the self-reported HPV vaccination questionnaire
data, we chose to omit any sub-analysis comparing HPV vaccinated with non-vaccinated
individuals [64]. Fourth, since consistent condom use (>90% of times) was reported by very
few (<5%) individuals, we decided against embarking on a sub-analysis to evaluate condom
effect on the distribution of HPV or bacterial STI positivity rates [18,54]. Fifth, despite
smoking’s established role in cervical carcinogenesis, with several individuals (smokers
and non-smokers) reporting use of alternative simulating devices (vaping or e-cigarette),
smoking exposure data were uncertain to quantify and were omitted. Finally, as stated, no
sub-analysis was included comparing the effect of either LR-HPVs or HR-HPVs covariation
with cytology and bacterial STI expression.

5. Conclusions

With a host of complex interrelated mechanisms, HPV and bacterial STIs cause detri-
mental effects on female fertility as well as significant psychosomatic burden imposed by
the disease and the related treatments. Several physicians and authors indeed consider
their codetection an anticipated finding, since both STIs and HPV represent sexual exposure
correlates [65]. Most likely, only future in-depth in vitro studies will ultimately confirm
whether Ureaplasma spp. and/or other STIs are real cofactors or are just “followers”, tak-
ing advantage of the immune tolerance and abnormal regulation of the cell cycle control
generated by HPV for the high prevalence of STIs found in HR-HPV-positive women [66].

With vaccinated cohorts gradually entering cervical screening, future studies will in-
vestigate the long-term public health effects of HPV vaccination on bacterial STI prevalence
at the population level [67]. Despite the elusive underlying molecular mechanisms, the
variability in guidelines, and a questionable cost-effectiveness profile, we consider that
screening for bacterial STIs should be encouraged, at least for reproductive-age women
harboring cervical HR-HPV or CIN. In the near future, the potential coadministration of the
HPV vaccine together with anti-STI vaccines currently under development might emerge
as a cost-effective strategy [68]. As for now, the feasibility of HPV status, bacterial STI,
and cytology coassessment in vaginal self-sampling material is particularly attractive and
potentially more cost-effective [61,69].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens12111347/s1, Table S1: Distribution of specific STIs
(other than HPV) in relation to HPV positivity (any type, low-risk, high-risk, or both low/high-risk
genotypes).

https://www.mdpi.com/article/10.3390/pathogens12111347/s1
https://www.mdpi.com/article/10.3390/pathogens12111347/s1
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