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Abstract: Candidiasis, caused by opportunistic fungal pathogens of the Candida genus, poses a
significant threat to immunocompromised individuals. Natural compounds derived from medicinal
plants have gained attention as potential sources of anti-fungal agents. Ajwa dates (Phoenix dactylifera
L.) have been recognized for their diverse phytochemical composition and therapeutic potential. In
this study, we employed a multi-faceted approach to explore the anti-candidiasis potential of Ajwa
dates’ phytochemicals. Utilizing network pharmacology, we constructed an interaction network to
elucidate the intricate relationships between Ajwa dates phytoconstituents and the Candida-associated
molecular targets of humans. Our analysis revealed key nodes in the network (STAT3, IL-2, PTPRC,
STAT1, CASP1, ALB, TP53, TLR4, TNF and PPARG), suggesting the potential modulation of several
crucial processes (the regulation of the response to a cytokine stimulus, regulation of the inflammatory
response, positive regulation of cytokine production, cellular response to external stimulus, etc.)
and fungal pathways (Th17 cell differentiation, the Toll-like receptor signaling pathway, the C-
type lectin receptor signaling pathway and necroptosis). To validate these findings, molecular
docking studies were conducted, revealing the binding affinities of the phytochemicals towards
selected Candida protein targets of humans (ALB–rutin (−9.7 kJ/mol), STAT1–rutin (−9.2 kJ/mol),
STAT3–isoquercetin (−8.7 kJ/mol), IL2–β-carotene (−8.5 kJ/mol), CASP1–β-carotene (−8.2 kJ/mol),
TP53–isoquercetin (−8.8 kJ/mol), PPARG–luteolin (−8.3 kJ/mol), TNF– βcarotene (−7.7 kJ/mol),
TLR4–rutin (−7.4 kJ/mol) and PTPRC–rutin (−7.0 kJ/mol)). Furthermore, molecular dynamics
simulations of rutin–ALB and rutin-STAT1 complex were performed to gain insights into the stability
and dynamics of the identified ligand–target complexes over time. Overall, the results not only
contribute to the understanding of the molecular interactions underlying the anti-fungal potential of
specific phytochemicals of Ajwa dates in humans but also provide a rational basis for the development
of novel therapeutic strategies against candidiasis in humans. This study underscores the significance
of network pharmacology, molecular docking and dynamics simulations in accelerating the discovery
of natural products as effective anti-fungal agents. However, further experimental validation of the
identified compounds is warranted to translate these findings into practical therapeutic applications.

Keywords: Phoenix dactylifera; Ajwa dates; candidiasis; fungal infection; network pharmacology;
molecular dynamics
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1. Introduction

Candidiasis, a group of fungal infections caused by species of the Candida genus,
has emerged as a prominent healthcare concern with increasing incidence and clinical
significance [1–3]. Candida species are commensal organisms found in various mucosal
and cutaneous sites in the human body. However, under certain conditions, these fungi
can transition from harmless commensals to opportunistic pathogens, leading to a range of
clinical manifestations, from mild mucosal infections to life-threatening systemic diseases [4–6].
The Candida genus encompasses a diverse array of species, with Candida albicans being
the most prevalent and well-studied one. Other species, such as Candida glabrata, Candida
tropicalis and Candida auris have received attention due to their growing impact, particularly
in immunocompromised and critically ill patients [7,8]. Candidiasis is associated with a
wide spectrum of clinical presentations, including oral thrush, vaginal infections, cutaneous
infections, and invasive bloodstream infections, the latter of which have alarmingly high
mortality rates [9–12].

Several factors contribute to the rising challenge of candidiasis. Immunocompro-
mised individuals, such as those with HIV/AIDS undergoing cancer treatments, or organ
transplant recipients, are at heightened risk [13–15]. Additionally, the increasing use of inva-
sive medical interventions, broad-spectrum antibiotics, and immunosuppressive therapies
has created favorable conditions for Candida species to flourish and cause infections [16].
Moreover, the emergence of drug-resistant strains, particularly in hospital settings, further
complicates treatment options [17,18]. The treatment of candidiasis relies primarily on
anti-fungal agents, including azoles, echinocandins, and polyenes [19]. However, the
efficacy of these drugs is becoming compromised due to the development of anti-fungal
resistance, which emphasizes the need for innovative treatment strategies. Furthermore,
the limited therapeutic options for certain species, such as the multidrug-resistant Candida
auris, highlight the urgency for novel interventions [17,18,20].

Natural products have garnered increasing attention for their potential as sources of
novel antimicrobial agents [21–23]. Among these is the Ajwa date (Phoenix dactylifera L.), a
popular fruit known for its nutritional and medicinal value [24,25]. Ajwa dates have been
traditionally used for their health benefits and have exhibited various bioactivities, includ-
ing antimicrobial effects [26,27]. Previous studies have reported their inhibitory effects
against various microorganisms, including fungi [28–30]. However, the intricate molecular
mechanisms underlying their antimicrobial activity, particularly against Candida species
in humans, remain largely unexplored. Network pharmacology, a systems biology-based
approach, offers a holistic perspective on the interactions between bioactive compounds
and their targets within complex biological systems [31]. This approach allows for the
identification of potential therapeutic targets, elucidation of molecular pathways, and pre-
diction of synergistic interactions between bioactive compounds [32,33]. This study aims
to employ an integrative network pharmacology approach to elucidate the multi-target
pharmacological mechanism underlying the antimicrobial activity of Ajwa dates against
candidiasis in humans. Through the integration of bioinformatics, computational analyses,
and experimental validation, we aim to identify key bioactive compounds in Ajwa dates,
predict potential target proteins within humans for the Candida species and elucidate the
molecular pathways through which these compounds can exert their antimicrobial effects.

2. Materials and Methods
2.1. Identifying the Potential Targets of Compounds and Diseases

In the present study, phytochemical constituents of Ajwa dates known for their an-
timicrobial activity were selected from the literature [34–36]. The PubChem database
(http://pubchem.ncbi.nlm.nih.gov/ (accessed on 15 February 2023)) was used as the
source of information about these molecules structure, molecular weights, and canonical
smiles, along with the corresponding .sdf files (accessed on 16 February 2023). For the
purpose of retrieving targets for phytochemical constituents of Ajwa dates related to the
species Homo sapiens, different databases including SwissTargetPrediction and PharmMap-

http://pubchem.ncbi.nlm.nih.gov/
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per were utilized. For the purpose of standardizing the names of the target proteins, the
UniProtKB database (https://www.uniprot.gov/ (accessed on 16 February 2023)) was
consulted [37,38]. The targets related to candidiasis in humans were identified by searching
for keywords such as “candidiasis” and “candida infection” in the GeneCards database
(http://www.genecards.org/ (accessed on 16 February 2023)), the Online Mendelian Inher-
itance in Man database (OMIM, https://omim.org/ (accessed on 16 February 2023)) and
the gene–disease associations database (DisGeNET, http://www.disgenet.org/) (accessed
on 16 February 2023) [39,40]. Using the UniProt database (https://www.UniProt.org/ (ac-
cessed on 16 February 2023)), the target protein names were converted into gene names [41].
Following the removal of repetitive targets, all candidiasis targets of humans were acquired.

2.2. Finding and Acquiring Potential Targets

Several potential targets were identified in the study, including those that are predicted
for phytochemical constituents of Ajwa dates as well as those connected with candidiasis
in humans. FunRich tool version 3.1.3 was used to construct Venn diagrams for analyzing
common targets [42]; the Swiss target prediction database was used for information regard-
ing the classes of potential protein targets [http://www.swisstargetprediction.ch/error_
page.php?error=1/ search (accessed on 15 February 2023)].

2.3. Construction and Analysis of Protein–Protein Interaction Network

The STRING database [https://string-db.org/ (accessed on 20 February 2023)] was
utilized to study protein–protein interactions (PPIs) of potential targets [43]. According to
the parameter settings, the analysis was performed at a confidence level of 0.400, while a
false discovery rate (FDR) stringency of 5% was assigned. Cytoscape software (Version 3.9.1)
was used to build and analyze a PPI network of the potential targets [44]. The nodes of
the network were analyzed for their topological features and a range of possible targets
were selected by taking into account three parameters, namely “degree”, “betweenness
centrality” and “closeness centrality”. These three parameters were used to estimate the
topological properties of the nodes.

2.4. Findings of Hub-Genes and GO-KEGG Pathway Enrichment Analysis

Using the cytohubba plugin of Cytoscape tool, the top ten hub genes in the network
were identified, and based on the maximal clique centrality (MCC) topological analysis,
the top ten hub genes in the network were predicted. In order to analyze the biological
functions of target proteins and pathways associated with diseases, a functional enrichment
analysis was performed on the DAVID database [https://david.ncifcrf.gov/ (accessed
on 25 February 2023)] [45]. In order to visualize the enriched GO terms and pathways, a
false discovery rate (FDR) of less than 0.05 was used. In order to summarize the top ten
most insightful GO terms (BP, CC and MF) using bioinformatics tools, a bubble graph was
generated using SRplot [https://www.bioinformatics.com.cn/ (accessed on 25 February
2023) and a top ten KEGG pathway map was also generated using SRplot.

2.5. Molecular Docking Analysis

An investigation of the interaction between phytochemical constituents of Ajwa dates
and identified candidiasis targets of humans was conducted using AutoDock Vina [46].
From the PubChem database, the 3D structures of phytochemical constituents were down-
loaded. The 3D structures of each compound were converted from .sdf into .pdb using
Open Babel 3.1.1. Energy minimization was performed using Avogadro using an MMFF94
force field. In total, 5000 steps were taken to be optimized using the Steepest Descent
algorithm. In the process of energy minimization, the structure was updated at every step
and when the energy difference was less than 0.1, minimization was terminated, and then
the .PDB file was saved. Protein 3D crystal structures were downloaded from RCSB-PDB
database ALB (PDB ID: 1AO6), STAT3 (PDB ID: 1BG1), STAT1 (PDB ID: 1BF5), IL2 (PDB
ID: 1M48), CASP1 (PDB ID: 3DCY), TP53 (PDB ID: 6PZP), TNF (PDB ID: 2AZ5), PTPRC
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(PDB ID: 5FMV), TLR4 (PDB ID: 2Z65) and PPARG (PDB ID: 6TSG). Water molecules
were deleted from the crystal structure. The protein structure was then charged with a
Kollman charge and hydrogen was added. The coordinates of the proteins were saved in
a .pdb file. The Open Babel tool was then used to convert all structures from .pdb into
.pdbqt. The molecular docking analysis was carried out via AutoDock 4.2.6 [46]. All the
parameters used for the docking of phytochemical constituents of Ajwa dates with the
target proteins of humans against candidiasis were kept the same, except for the grid center,
which differed for each protein inside the grid box. Auto Grid was used for the prepara-
tion of the grid map, using a grid box. The grid size was set to X = 74.08, Y = 61.54 and
Z = 80.45 for ALB; X = 37.42, Y= 38.38 and Z = 48.30 for IL2; X= 57.57, Y = 49.16 and
Z = 57.01 for PPARG; X = 105.82, Y = 115.82 and Z = 75.76 for PTPRC; X = 123.35, Y = 87.09
and Z = 78.49 for STAT1; X = 100.26, Y = 62.06 and Z = 121.15 for STAT3; X = 38.89, Y = 40.61
and Z = 76.95 for TLR4; X = 42.98, Y = 40.70 and Z = 37.44 for TNF; X = 48.44, Y = 51.47 and
Z = 54.09 for TP53; X = 54.30, Y = 50.27 and Z = 66.25 points for CASP1, for all proteins. Grid
spacing was kept to 0.375 Å for all the proteins. The grid center for ALB was designated at
dimensions (x, y, and z) of 29.5302, 31.8382, and 23.5064; that for IL2 was designated at (x, y,
and z) 9.4214, 12.7182, and 6.5658; that for PPARG was designated at (x, y and z) −10.0619,
1.9499, and −26.9904; that for PTPRC was designated at (x, y, and z) −4.3593, 15.8529 and
18.7986; that for STAT1 was designated at (x, y, and z) 71.9873, 46.5916, and 79.496; that for
STAT3 was designated at (x, y, and z) 117.3573, 87.4948, and 31.1853; that for TLR4 was
designated at (x, y, and z) 22.6019, 5.1926, and 31.938; that for TNF was designated at (x, y,
and z) −26.3998, 65.8979, and 41.9649; that for TP53 was designated at (x, y, and z) 22.9991,
37.3443; and 3.7189 and that for CASP1 was designated at (x, y, and z) −12.6912., −30.7536,
and −9.2255. The grid box was created in such a way that it enclosed the entire binding site
of each protein and provided enough space for the translation and rotation of ligands. The
generated docked conformation was ranked according to predicted binding energy, and the
topmost binding energy’s docked conformation was analyzed using PyMOL and Discovery
Studio Visualizer [47]. By using Discovery Studio Visualizer, it was possible to explore the
types of interactions, the participating residuals, and the atomic coordinates involved.

2.6. Molecular Dynamics Simulation

A further study was undertaken to understand how ligands behave within the binding
pocket of receptors as a result of their time-dependent conformational stability, which was
based on the MD studies. The usefulness of this method has been demonstrated in several
studies, including the identification of new inhibitors in a variety of applications [48–51].
As part of this study, MD analyses were conducted using GROMACS version 2019.4 [52].
In order to conduct MD studies, the GROMOS force field was used. From the ATB server,
the topology of the chosen ligand was determined in order to obtain the coordinates of
the force field. This system was optimized by minimizing the vacuum in 1500 steps by
using a steepest descent algorithm. Following that, the complex structures were solvated
in a cubic periodic box of 0.5 nanometers using a simple point charge water model (SPC).
In order to maintain an appropriate salt concentration (0.015 M) in the complex systems,
appropriate numbers of Na+ and Cl- counterions were added. A leap frog algorithm was
used to equilibrate NVT and NPT for 100 ps steps. Following equilibration, the production
MD was applied to the complex of the solvated protein and ligand for 100 nanoseconds.
After removing periodic boundary conditions from the MD run, a trajectory file was
further analyzed. Data were analyzed using the Chimera package. XMGRACE was used
to generate the diagrams (https://plasma-gate.weizmann.ac.il/Grace/ (accessed on 1
March 2023)).

2.7. Binding Free Energy Calculations

By using the Poisson-Boltzmann surface (PBSA) method of molecular mechanics (MM),
binding free energy calculations were performed. The MM-PBSA method has been widely
used in drug discovery to calculate the solvation-based score of protein-ligand interactions.

https://plasma-gate.weizmann.ac.il/Grace/
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Solvation free energy (polar and non-polar) and vacuum potential energy were used to
determine the solvation-based binding free energy. Non-polar and polar solvation energy
terms have been calculated using Poisson-Boltzmann equations and solvent accessible
surface areas (SASA). In order to estimate the affinity between a ligand and a receptor,
the Poisson–Boltzmann equation was used. By utilizing a van der Waals contact probe,
the SASA method was used to predict which solvent was surrounding a protein surface.
To calculate the MM-PBSA, a script in the G_MMPBSA module was used that uses the
AMBERTOOLS [53] software in the backend.

The solvation-based free energy of binding (∆Gbinding) was calculated using the equa-
tions given below:

∆Gbinding = ∆GMM (Potential energy vaccum) + ∆Gsol (Solvation effects)
Where, ∆GMM = ∆GColoumb (electrostatic interaction) + ∆Gvdw and

∆Gsol = ∆Gpolar + ∆Gnonpolar

3. Results
3.1. Prediction and Screening of Compound-Diseases Targets

According to the literature search, 17 phytochemical constituents of Ajwa dates were
selected, and their detailed information was retrieved from the PubChem database in order
to be analyzed through the use of SwissTargetPrediction and PharmMapper databases
(Table 1). Once duplicate targets were removed from the predicted targets, a screening of
785 potential targets was carried out for further evaluation. A database of human genomes
was used in order to gather the targets that are related to the development of candidiasis in
humans. There were 128, 95, and 892 identified targets in total in OMIM, DisGeNET, and
GeneCards, respectively. After the removal of duplicate entries from these databases, in
total, 786 candidiasis targets in humans were identified. The intersection of these targets
with component targets resulted in 106 intersection targets (Figure 1).

Table 1. List of selected phytochemical constituents of Ajwa dates with their basic information
and structure.

Sr. No. Name PubChem ID MF MW Canonical SMILES Structure

1 Apigenin 5280443 C15H10O5 270.24 C1=CC(=CC=C1C2=CC(=O)
C3=C(C=C(C=C3O2)O)O)O
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Table 1. Cont.

Sr. No. Name PubChem ID MF MW Canonical SMILES Structure

4 Chlorogenic
acid 1794427 C16H18O9 354.31

C1C(C(C(CC1(C(=O)O)O)OC
(=O)C=CC2=CC(=C(C=C2)

O)O)O)O
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Table 1. Cont.

Sr. No. Name PubChem ID MF MW Canonical SMILES Structure
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Table 1. Cont.

Sr. No. Name PubChem ID MF MW Canonical SMILES Structure
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Figure 1. Venn diagram showing common targets between phytochemical constituents of Ajwa 
dates and candidiasis in humans. 

3.2. Compound–Disease Common Target Network Construction and Analysis 
The relationships between target genes were analyzed by using a PPI network. Dur-

ing the course of this process, potential targets were entered into the STRING database as 
the first step, and then after receiving the data, we used Cytoscape version 3.9.1 to analyze 
and visualize the data. A network of identified common targets was created with the help 
of Cytoscape version 3.9.1, which consisted of 106 nodes and 958 edges (Figure 2). Simi-
larly, a network of a component intersection target was also created via Cytoscape version 
3.9.1, which consisted of 106 nodes and 330 edges (Figure 3). The significance of each node 
within a complex network was estimated using three parameters: the degree, closeness 
and centrality between the nodes in the network (Tables 2 and 3). These three parameters 
were used in order to estimate how significant each node was compared with how signif-
icant other nodes were in the network. Several genes that have been reported to play a 
crucial role in the development of candidiasis in humans were identified in this study. As 
a result of these findings, it appears that the anti-fungal activity of Ajwa dates exhibited 
by a variety of phytochemical constituents can be attributed to the activities of these key 
targets. According to the topology properties of the network, there were ten targets in the 
network, corresponding to STAT3, IL-2, PTPRC, STAT1, CASP1, ALB, TP53, TLR4, TNF 
and PPARG, the interaction of which with each other via edges are presented in Figure 4. 
The phytochemical constituents of Ajwa dates may be able to target these ten targets in 
order to effectively fight candidiasis in humans by targeting them. Additionally, we used 
the GeneMANIA tool to export the identified protein targets of humans into a PPI net-
work so we could see what kind of relationships there might be between the identified 
target proteins and others in the network. According to the results, the percentage 
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work so we could see what kind of relationships there might be between the identified 
target proteins and others in the network. According to the results, the percentage 
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Figure 1. Venn diagram showing common targets between phytochemical constituents of Ajwa dates
and candidiasis in humans.

3.2. Compound–Disease Common Target Network Construction and Analysis

The relationships between target genes were analyzed by using a PPI network. During
the course of this process, potential targets were entered into the STRING database as the
first step, and then after receiving the data, we used Cytoscape version 3.9.1 to analyze
and visualize the data. A network of identified common targets was created with the
help of Cytoscape version 3.9.1, which consisted of 106 nodes and 958 edges (Figure 2).
Similarly, a network of a component intersection target was also created via Cytoscape
version 3.9.1, which consisted of 106 nodes and 330 edges (Figure 3). The significance of
each node within a complex network was estimated using three parameters: the degree,
closeness and centrality between the nodes in the network (Tables 2 and 3). These three
parameters were used in order to estimate how significant each node was compared with
how significant other nodes were in the network. Several genes that have been reported to
play a crucial role in the development of candidiasis in humans were identified in this study.
As a result of these findings, it appears that the anti-fungal activity of Ajwa dates exhibited
by a variety of phytochemical constituents can be attributed to the activities of these key
targets. According to the topology properties of the network, there were ten targets in the
network, corresponding to STAT3, IL-2, PTPRC, STAT1, CASP1, ALB, TP53, TLR4, TNF
and PPARG, the interaction of which with each other via edges are presented in Figure 4.
The phytochemical constituents of Ajwa dates may be able to target these ten targets in
order to effectively fight candidiasis in humans by targeting them. Additionally, we used
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the GeneMANIA tool to export the identified protein targets of humans into a PPI network
so we could see what kind of relationships there might be between the identified target
proteins and others in the network. According to the results, the percentage represents
the weight that is given to the interactions in the network. Based on the analysis of all the
interactions between targets in the network, it was estimated that 4.91% of the interactions
involved co-expressions and 70.38% of them involved physical interactions between the
targets. The results of the study also revealed that there was a correlation between genetic
interactions (10.80%), predicted (1.14%) and colocalization (2.92%) (Figure 5).
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Figure 3. An Ajwa date–phytochemical constituent–intersected candidiasis protein target network,
which is a network between the phytochemical constituents of Ajwa dates and the intersected genes
(the pink ‘V’ shape represents common protein targets, orange diamonds represent phytochemical
constituents of Ajwa dates and green-color edges denote the association between targets).

Table 2. Topological parameters of the targeted proteins.

Sr. No. Genes Degree Betweenness Closeness

1 TNF 65 988.208 0.15648286
2 ALB 64 1225.0367 0.15695067
3 STAT3 54 470.05515 0.15418503
4 EGFR 53 668.1908 0.15441176
5 VEGFA 50 370.19366 0.15328467
6 TP53 50 373.23392 0.15328467
7 TLR4 47 222.14207 0.15239477
8 PTPRC 45 248.6846 0.15086207
9 IL2 45 268.14774 0.1517341
10 STAT1 42 167.48207 0.15086207
11 HRAS 41 266.0002 0.15129682
12 ICAM1 38 276.51984 0.1502146
13 HSP90AA1 37 441.82166 0.15064563
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Table 2. Cont.

Sr. No. Genes Degree Betweenness Closeness

14 PPARG 35 175.21269 0.14957266
15 SYK 33 68.06617 0.14767933
16 CCL5 33 62.759113 0.14767933
17 ERBB2 33 128.60736 0.14872521
18 ESR1 32 262.75586 0.14957266
19 MAPK14 32 76.563156 0.14872521
20 MPO 32 104.47263 0.1480959
21 CAT 30 590.64325 0.14872521
22 SELL 29 68.562836 0.14623955
23 LCK 28 69.942894 0.1474719
24 CASP1 27 38.12457 0.1474719
25 NR3C1 26 135.64508 0.1474719
26 ITGB2 25 38.64269 0.1446281
27 SELE 24 31.730501 0.14623955
28 SELP 24 28.364697 0.14563107
29 BTK 24 38.74685 0.14502762
30 TLR9 23 26.082947 0.14522822
31 IKBKB 23 16.278957 0.14644352
32 HDAC1 23 75.05072 0.14644352
33 PLG 23 93.70508 0.14664805
34 HSP90AB1 23 156.0722 0.1474719
35 REN 22 101.38719 0.14583333
36 ZAP70 22 22.437016 0.14482759
37 ABCB1 21 110.38468 0.14644352
38 RAC2 21 30.51389 0.14383562
39 ELANE 20 15.914155 0.14344262
40 LGALS3 20 203.58853 0.1446281
41 CXCR1 20 11.40124 0.14403293
42 ITGAL 20 17.016296 0.14363885
43 CYP3A4 19 90.02866 0.14603616
44 F2 19 33.436974 0.14403293
45 F3 18 12.540235 0.14403293
46 JAK3 16 12.340351 0.14363885
47 HSPA8 16 51.118656 0.1446281
48 PTPN6 15 3.2728631 0.1420839
49 CTSG 15 10.223254 0.14227642
50 LCN2 15 11.1281185 0.14383562
51 SOD2 14 26.54373 0.1446281
52 SHH 14 19.630491 0.14403293
53 ADAM17 13 3.4592445 0.14324693
54 PTPN22 13 3.366081 0.1418919
55 FGFR1 13 4.2498856 0.14383562
56 CYP1A2 13 239.40514 0.14246947
57 HDAC2 13 5.7672634 0.14383562
58 CD209 13 4.428888 0.14266305
59 FGF1 13 7.1389694 0.14423077
60 IKBKG 13 2.9129455 0.14285715
61 HPRT1 13 41.86046 0.14403293
62 FGFR2 13 62.313843 0.14285715
63 IDO1 12 114.35072 0.14363885
64 WAS 12 9.96579 0.13962767
65 CYP2C9 12 28.406013 0.14131898
66 EPHA2 12 110.74736 0.1420839
67 CHEK1 11 3.897872 0.14344262
68 COMT 11 44.608868 0.13636364
69 ATP12A 11 20.04787 0.14266305
70 ITK 11 2.3593173 0.13962767
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Table 2. Cont.

Sr. No. Genes Degree Betweenness Closeness

71 DHFR 10 143.46443 0.14324693
72 CYP2C19 10 51.41783 0.14056225
73 ICAM2 10 1.6470731 0.13981359
74 CYP17A1 9 132.31921 0.136897
75 RNASE3 8 0.6450318 0.14075068
76 MAPK10 7 1.7650008 0.13833992
77 UGT2B7 7 2.0575106 0.13944224
78 LTF 7 0.71694976 0.14018692
79 CYP51A1 6 265.89664 0.13530928
80 RORC 6 0 0.13981359
81 TGM2 6 8.930667 0.14112903
82 ADA 6 15.780002 0.14112903
83 TNK2 6 3.9851854 0.1392573
84 IL6ST 5 0 0.13779527
85 LAP3 5 98.4974 0.13707572
86 MPI 5 223.96904 0.13027295
87 PNP 4 83.11256 0.136897
88 ACADM 4 6.846439 0.13358779
89 CFB 4 0.9110306 0.13981359
90 DYRK1A 4 1.15 0.13636364
91 APCS 3 0 0.13907285
92 GALK1 3 19.146414 0.12962963
93 TPH1 3 5.359037 0.13092269
94 SQLE 3 14.4429655 0.12382075
95 RAN 3 0 0.13307984
96 FDFT1 2 0 0.12041284
97 CRAT 2 0 0.13059701
98 TREH 1 0 0.13043478
99 CHIT1 1 0 0.13636364

100 ARSA 1 0 0.00952381
101 ECE1 1 0 0.12727273
102 PSAP 1 0 0.00952381
103 GNPDA1 1 0 0.1160221
104 CA6 0 0 0.009433962
105 PNPO 0 0 0.009433962
106 AKR1A1 0 0 0.009433962

Table 3. Topological parameters of phytochemical constituents of Ajwa dates.

Sr. No. Compounds Degree Betweenness Closeness

1 Myrecitin 52 551.76263 0.49593496
2 Quercitin 51 523.5583 0.4919355
3 Luteolin 52 652.4729 0.49593496
4 Rutin 57 1270.8419 0.5169492
5 Isoquercitin 54 855.9138 0.5041322
6 Chlorogenic acid 58 1955.7657 0.52136755
7 Catechin 47 422.1807 0.4765625
8 Digalacturonic acid 56 1521.1764 0.5126051
9 Apigenin 46 393.6386 0.4728682

10 Ferrulic acid 51 1359.5 0.4919355
11 Caffeic acid 47 1025.8472 0.4765625
12 Gallic acid 44 779.46545 0.46564886
13 Protocatechuic acid 33 176.04279 0.42957747
14 Beta-sitosterol 43 1956.6543 0.46212122
15 p-coumaric acid 38 838.4169 0.4452555
16 Beta-carotene 35 881.8214 0.43571427
17 Resorcinol 20 932.9409 0.3935484



Pathogens 2023, 12, 1369 13 of 32

Pathogens 2023, 12, x FOR PEER REVIEW 13 of 31 
 

 

9 Apigenin 46 393.6386 0.4728682 
10 Ferrulic acid 51 1359.5 0.4919355 
11 Caffeic acid 47 1025.8472 0.4765625 
12 Gallic acid 44 779.46545 0.46564886 
13 Protocatechuic acid 33 176.04279 0.42957747 
14 Beta-sitosterol 43 1956.6543 0.46212122 
15 p-coumaric acid 38 838.4169 0.4452555 
16 Beta-carotene 35 881.8214 0.43571427 
17 Resorcinol 20 932.9409 0.3935484 

 
Figure 4. A PPI network of identified hub targets from the obtained common targets of phytochem-
ical constituents of Ajwa dates and candidiasis for humans. A gradient of orange shades indicates 
the centrality degree of the nodes. Darker shades represent nodes with higher-degree centrality (i.e., 
they have more connections (edges) to other nodes in the network). Conversely, lighter or paler 
shades indicate nodes with lower-degree centrality (i.e., signifying fewer connections). 

Figure 4. A PPI network of identified hub targets from the obtained common targets of phytochemical
constituents of Ajwa dates and candidiasis for humans. A gradient of orange shades indicates the
centrality degree of the nodes. Darker shades represent nodes with higher-degree centrality (i.e., they
have more connections (edges) to other nodes in the network). Conversely, lighter or paler shades
indicate nodes with lower-degree centrality (i.e., signifying fewer connections).
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in searches. Nodes (purple-color diamonds) on the outer side represent targets associated with
query targets. (Peach-pink-color edges represent physical interactions, purple-color edges represent
co-expression, green-color edges represent genetic interactions, cyan-color edges represent path-
ways, sand-brown-color edges represent colocalization, and orange-color edges represent shared
protein domains).

3.3. Analysis of Functional and Pathway Enrichment

GO and KEGG analyses were performed using the DAVID database to enrich the
top 10 intersected targets. In the course of screening, 705 items in total were obtained
pertaining to biological processes (BP), molecular functions (MF), and cellular components
(CC) (Figure 6A–C), along with a p-value of < 0.05, as screening conditions. The total
number of items obtained pertaining to biological process was 705, the number of items
obtained pertaining to molecular function was 79, and the number of items obtained
pertaining to cellular components was 25. There is a possibility that the phytochemical
constituents in Ajwa dates might be involved in inhibiting candidiasis in humans by acting
on the regulation of the response to a cytokine stimulus, regulation of the inflammatory
response and positive regulation of cytokine production and the cellular response to an
external stimulus via molecular functions such as protein phosphatase binding, cytokine
receptor binding, the repression of transcription factor binding, nuclear hormone receptor
binding, tumor necrosis factor receptor binding, histone acetyltransferase binding in cellular
compartments such as transcription regulator complex, inflammasome complex, membrane
raft, membrane microdomain, membrane region, and transcription factor TFIID complex.
As a result of the KEGG pathway enrichment analysis, 123 enrichment results were obtained.
Among them, Th17 cell differentiation, the Toll-like receptor signaling pathway, the C-type
lectin receptor signaling pathway and necroptosis are closely associated with candidiasis in
humans and are in accordance with the enrichment results of GO. The significance of KEGG
pathways and gene pathways was demonstrated with p-values of < 0.05. A SRplot was
used to analyze the first ten components (Figure 6D). Statistically, ten proteins were found
to have a significant frequency of participation in each of the first 10 pathways, which
served as an indication that these proteins played a key role in the enrichment pathway.
The ten core proteins are STAT3, IL2, PTPRC, STAT1, CASP1, ALB, TP53, TLR4, TNF
and PPARG.

3.4. Molecular Docking Analysis

As one of the most popular computational methods for finding potential leads against
predefined targets, virtual screening using molecular docking is an effective strategy. The
application of this method resulted in the identification of compounds with high binding
affinities and specific interactions with the target proteins. Molecular docking analysis was
conducted in order to understand how phytochemical constituents of Ajwa dates interact
with identified protein targets of humans that play a key role in the development of can-
didiasis. In a docking analysis, several compounds were found to significantly bind to the
target proteins of humans (Figure 7). The highest binding affinity was found between ALB–
rutin (−9.7 kJ/mol), STAT1–rutin (−9.2 kJ/mol), STAT3–isoquercetin (−8.7 kJ/mol), IL2–β-
carotene (−8.5 kJ/mol), CASP1–β-carotene (−8.2 kJ/mol), TP53–isoquercetin (−8.8 kJ/mol),
PPARG–luteolin (−8.3 kJ/mol), TNF–βcarotene (−7.7 kJ/mol), TLR4–rutin (−7.4 kJ/mol)
and PTPRC–rutin (−7.0 kJ/mol). The results of rutin showed good binding energy
towards ALB (−9.7 kcal/mol), showing four conventional hydrogen bonds (PRO110,
2*ASP108 and GLU425), two carbon–hydrogen bonds (ARG145 and GLU425), two pi-pi
t-shaped bond (2*HIS146), and three pi-alkyl bonds (2*ARG145 and ARG114), towards
STAT1 (−9.2 kcal/mol) with 14 conventional hydrogen bonds (LYS240, 2*ARG241, SER432,
SER434, 3*THR451, 3*ARG482, 2*GLN314, SER452 and VAL237) and one pi-sigma bond
(VAL237), towards PTPRC (−7.0 kcal/mol) with four conventional hydrogen bond (LYS291,
VAL235, ALA231 and ASN232), one pip-pi stacked bond (HIS374) and two pi-alkyl bonds
(2*LEU293), β-carotene showed good binding affinity towards IL2 (−8.5 kcal/mol) with
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ten alkyl bonds (LYS32, 2*LYS35, 2*ARG38, LYS43, VAL69, 2*LEU72, ALA73 and PHE42)
and one pi-alkyl bond (PHE42), towards CASP1 (−8.2 kcal/mol) with one pi-sigma bond
(TRP145), five alkyl bonds (2*ILE155, PRO277, VAL279 and ILE280) and five pi-alkyl
bonds (4*TRP145 and TYR153), towards TNF (−7.7 kcal/mol) with one pi-sigma bond
(TYR59), three alkyl bonds (LEU57, LEU63 and PRO117) and five pi-alkyl bonds (TYR59,
2*TYR115 and 2*TYR119), iso-quercetin showed good binding affinity towards TP53 (−8.8
kcal/mol) with five conventional hydrogen bonds (ARG10, ARG203, GLU89, GLN23 and
ILE21), and one pi-alkyl bond (LYS20), towards STAT3 (−8.7 kcal/mol) with three con-
ventional hydrogen bonds (ARG379, VAL375 and ASP374), four carbon hydrogen bonds
(GLY373, ARG417, GLY421 and LEU378) and one pi-alkyl bond (LYS383), and luteolin
showed good binding affinity towards PPARG (−8.3 kcal/mol) with three conventional
hydrogen bonds (LEU228, CYS285 and SER289), one carbon hydrogen bond (SER289),
one pi-cation bond (ARG288), one pi-anion bond (GLU295), one pi-donor hydrogen bond
(ARG288), one pi-sulfur bond (CYS285) and eight pi-alkyl bonds (2*ARG288, 2*ALA292,
ILE326, 2*LEU330 and MET329). As is shown in Figures 8–12 and Table 4, the compounds
were found to interact with target proteins of humans against candidiasis by occupying
different sites.
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Table 4. Interaction analysis of receptor ligand.

Sr. No. Protein Receptor-Ligand Interaction Type Distance

1 ALB

N:UNK1:H-A:PRO110:O Conventional Hydrogen Bond 2.41382

N:UNK1:H-A:ASP108:O Conventional Hydrogen Bond 1.97207

N:UNK1:H-A:GLU425:OE2 Conventional Hydrogen Bond 2.20851

N:UNK1:H-A:ASP108:O Conventional Hydrogen Bond 2.60039

A:ARG145:CD-N:UNK1:O Carbon Hydrogen Bond 3.09589

N:UNK1:C-A:GLU425:OE2 Carbon Hydrogen Bond 3.09465

A:HIS146-N:UNK1 Pi-Pi T-Shaped 5.79161

A:HIS146-N:UNK1 Pi-Pi T-Shaped 5.91519

N:UNK1-A:ARG145 Pi-Alkyl 5.23581

N:UNK1-A:ARG114 Pi-Alkyl 5.19604

N:UNK1-A:ARG145 Pi-Alkyl 5.49631

2 IL2

A:LYS32-N:UNK1 Alkyl 4.38514

A:LYS35-N:UNK1 Alkyl 4.59242

A:LYS35-N:UNK1 Alkyl 3.78304

A:ARG38-N:UNK1 Alkyl 4.70114

A:ARG38-N:UNK1 Alkyl 4.64384

A:LYS43-N:UNK1 Alkyl 5.14946

A:VAL69-N:UNK1 Alkyl 5.48053

A:LEU72-N:UNK1 Alkyl 4.86731

A:ALA73-N:UNK1 Alkyl 4.04445

N:UNK1-A:LEU72 Alkyl 4.75444

A:PHE42-N:UNK1 Pi-Alkyl 4.28876

3 PPARG

N:UNK1:H-A:LEU228:O Conventional Hydrogen Bond 3.05297

N:UNK1:H-A:CYS285:O Conventional Hydrogen Bond 2.84417

N:UNK1:H-A:SER289:OG Conventional Hydrogen Bond 2.46012

A:SER289:CA-N:UNK1:O Carbon Hydrogen Bond 3.46788

A:ARG288:NH2-N:UNK1 Pi-Cation 3.74404

A:GLU295:OE1-N:UNK1 Pi-Anion 4.02798

A:ARG288:NE-N:UNK1 Pi-Donor Hydrogen Bond 3.91198

A:CYS285:SG-N:UNK1 Pi-Sulfur 5.52645

N:UNK1-A:ARG288 Pi-Alkyl 4.10762

N:UNK1-A:ALA292 Pi-Alkyl 4.4279

N:UNK1-A:ILE326 Pi-Alkyl 5.37149

N:UNK1-A:LEU330 Pi-Alkyl 5.03093

N:UNK1-A:ARG288 Pi-Alkyl 3.59494

N:UNK1-A:LEU330 Pi-Alkyl 4.98253

N:UNK1-A:ALA292 Pi-Alkyl 5.35981

N:UNK1-A:MET329 Pi-Alkyl 4.6949



Pathogens 2023, 12, 1369 20 of 32

Table 4. Cont.

Sr. No. Protein Receptor-Ligand Interaction Type Distance

4 PTPRC

A:LYS291:HZ1-N:UNK1:O Conventional Hydrogen Bond 2.49711

N:UNK1:H-A:VAL235:O Conventional Hydrogen Bond 2.70571

N:UNK1:H-A:ALA231:O Conventional Hydrogen Bond 2.54842

N:UNK1:H-A:ASN232:O Conventional Hydrogen Bond 2.57383

A:HIS374-N:UNK1 Pi-Pi Stacked 4.36158

N:UNK1-A:LEU293 Pi-Alkyl 5.26513

N:UNK1-A:LEU293 Pi-Alkyl 5.26961

5 STAT1

A:LYS240:HZ3-N:UNK1:O Conventional Hydrogen Bond 2.11392

A:ARG241:HH11-N:UNK1:O Conventional Hydrogen Bond 2.78186

A:ARG241:HH21-N:UNK1:O Conventional Hydrogen Bond 1.92015

A:SER432:HG-N:UNK1:O Conventional Hydrogen Bond 2.58764

A:SER434:HG-N:UNK1:O Conventional Hydrogen Bond 2.76816

A:THR451:HG1-N:UNK1:O Conventional Hydrogen Bond 3.06789

A:ARG482:HH11-N:UNK1:O Conventional Hydrogen Bond 2.16428

A:ARG482:HH11-N:UNK1:O Conventional Hydrogen Bond 3.0504

A:ARG482:HH21-N:UNK1:O Conventional Hydrogen Bond 2.62021

N:UNK1:H-A:GLN314:O Conventional Hydrogen Bond 2.12922

N:UNK1:H-A:GLN314:O Conventional Hydrogen Bond 2.11387

N:UNK1:H-A:THR451:O Conventional Hydrogen Bond 2.07658

N:UNK1:H-A:THR451:OG1 Conventional Hydrogen Bond 2.24927

N:UNK1:H-A:SER452:O Conventional Hydrogen Bond 2.74446

A:VAL237:CG2-N:UNK1 Pi-Sigma 3.65444

6 STAT3

A:ARG379:NH1-N:UNK1:O Conventional Hydrogen Bond 3.33961

N:UNK1:H-A:VAL375:O Conventional Hydrogen Bond 2.64317

N:UNK1:H-A:ASP374:OD1 Conventional Hydrogen Bond 2.35408

A:GLY373:CA-N:UNK1:O Carbon Hydrogen Bond 3.45037

A:ARG417:CA-N:UNK1:O Carbon Hydrogen Bond 3.42956

A:GLY421:CA-N:UNK1:O Carbon Hydrogen Bond 3.39518

N:UNK1:C-A:LEU378:O Carbon Hydrogen Bond 3.29566

N:UNK1-A:LYS383 Pi-Alkyl 5.00243

7 TLR4

A:HIS68:ND1-N:UNK1:O Conventional Hydrogen Bond 3.03529

A:SER73:CA-N:UNK1:O Carbon Hydrogen Bond 2.94848

A:THR92:OG1-N:UNK1:O Conventional Hydrogen Bond 3.05155

N:UNK1-A:LYS47 Pi-Alkyl 5.33037

N:UNK1-A:LYS47 Pi-Alkyl 5.15142

N:UNK1:C-A:HIS68 Pi-Sigma 3.88961

N:UNK1:H-A:HIS68:O Conventional Hydrogen Bond 2.20639

N:UNK1:H-A:LEU66:O Conventional Hydrogen Bond 2.34857

N:UNK1:H-A:THR92:OG1 Conventional Hydrogen Bond 2.39563
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Table 4. Cont.

Sr. No. Protein Receptor-Ligand Interaction Type Distance

8 TNF

N:UNK1:C-A:TYR59 Pi-Sigma 3.73712

A:LEU57-N:UNK1 Alkyl 5.38917

A:LEU63-N:UNK1 Alkyl 5.26338

A:PRO117-N:UNK1 Alkyl 4.92982

A:TYR59-N:UNK1 Pi-Alkyl 4.35802

A:TYR115-N:UNK1 Pi-Alkyl 4.90592

A:TYR115-N:UNK1 Pi-Alkyl 4.49189

A:TYR119-N:UNK1 Pi-Alkyl 4.33167

A:TYR119-N:UNK1:C Pi-Alkyl 4.13411

9 TP53

A:ARG10:NH1-N:UNK1:O Conventional Hydrogen Bond 3.15168

A:ARG203:HH2-N:UNK1:O Conventional Hydrogen Bond 2.79577

N:UNK1:H-A:GLU89:OE2 Conventional Hydrogen Bond 2.30967

N:UNK1:H-A:GLN23:O Conventional Hydrogen Bond 2.28776

N:UNK1:H-A:ILE21:O Conventional Hydrogen Bond 2.7139

N:UNK1-A:LYS20 Pi-Alkyl 5.35537

10 CASP1

N:UNK1:C-A:TRP145 Pi-Sigma 3.79529

A:ILE155-N:UNK1 Alkyl 5.20732

A:ILE155-N:UNK1 Alkyl 4.76342

A:PRO277-N:UNK1 Alkyl 4.22891

A:VAL279-N:UNK1 Alkyl 4.21566

A:ILE280-N:UNK1 Alkyl 5.42589

A:TRP145-N:UNK1 Pi-Alkyl 5.22269

A:TRP145-N:UNK1 Pi-Alkyl 4.00488

A:TRP145-N:UNK1 Pi-Alkyl 4.62996

A:TRP145-N:UNK1 Pi-Alkyl 5.03064

A:TYR153-N:UNK1 Pi-Alkyl 5.27671

3.5. MD Simulation Analysis

To clarify the protein–ligand stability and protein structural flexibility between the
docked complex of rutin–ALB and rutin–STAT1, further MD simulation using GROMACS
software version 2019.4 was performed at 100 ns. Proteins and protein–ligand complexes
can be examined using RMSD analysis to determine structure deviations. During the
simulation, structural deviations of ALB, STAT1, ALB–rutin and STAT1–rutin complexes
were investigated in the solvent environment to determine their stability and movement.
As a result of the simulation, RMSD values of the backbone of ALB and the docked complex
with rutin showed a stable pattern (Figure 13A). ALB and the ALB–rutin complex showed
an average RMSD of 0.41 nm and 0.25 nm, respectively. As a result of the initial adjustments,
random fluctuations in the RMSD pattern were seen in ALB systems between 0 and 10 ns.
RMSD values of the backbone of STAT1 and the docked complex with rutin showed a stable
pattern (Figure 14A). STAT1 and the STAT1–rutin complex showed an average RMSD of
0.41 nm and 0.37 nm, respectively. Throughout the simulation, the distribution of the RMSD
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pattern did not show any significant shifts, which suggested that ALB was stable amid
a strong ligand binding strength during the simulation. The RMSF is an indicator of the
flexibility of each residue in a protein. There was an average fluctuation of 0.17 nm in
ALB–rutin (Figure 13B) and of 0.19 nm in the STAT1–rutin (Figure 14B) complex during the
simulation. Following rutin binding, the fluctuations appeared stable and were minimized.
Based on the graph, it appears that ALB and STAT1 with rutin interact with remarkable
constancy. Protein structures depend on H-bonds for stability and integrity. In order to
assess the structural integrity and stability of protein–ligand complexes, it is helpful to
examine the time evolution of the formation and breakdown of H-bonds in the duration
of the simulation. The intermolecular hydrogen bonds formed within the docked ALB–
rutin and STAT1–rutin complex promote the stability of the protein and its ligand. ALB–
rutin docked complex was maintained by six H-bonds (Figure 13C) and STAT1–rutin
was maintained by seven H-bonds (Figure 14C). The simulation was therefore carried
out in order to examine their time evolution during the simulation process. SASA refers
to the surface area of a protein molecule that is accessible to its neighboring solvent.
During simulations, SASA analysis is widely used to examine protein folding or unfolding
and structural stability. Based on the simulation, there were no major peaks in SASA
values, indicating that rutin binding affected ALB and STAT1 folding behavior. For ALB–
rutin (Figure 13D) and STAT1–rutin (Figure 14D), the average SASA value was 292.98
and 278.90 nm2. SASA values showed that ALB and STAT1 was remained stable in the
presence of rutin. Molecular stability can also be calculated from the compactness of protein
molecules. The compactness measure in MD simulations is called Rg. The compactness of
a protein structure is a useful parameter that can be used to examine the tertiary structure.
Rg values were used to assess the compactness of ALB and STAT1 after daidzein binding.
The ALB–rutin (Figure 13E) and STAT1–rutin (Figure 14E) complexes had an average Rg
value of 2.67 and 3.38 nm. The Rg plot indicates that the protein–ligand complex remained
compact throughout the simulation without significant changes.
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Figure 13. Molecular dynamics of ALB and its binding with rutin. (A) RMSD plot of ALB before
and after rutin binding, (B) RMSF plot of ALB–rutin complex, (C) time evolution of intermolecular
H-bonds formed within 0.35 nm in the ALB–rutin complex, (D) Rg distribution of ALB–rutin complex
and (E) SASA plot analysis of ALB–rutin complex.
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3.6. MMPBSA Binding Free Energy

From the MD trajectory analysis, the binding free energy of rutin was estimated. There
is an appreciable binding affinity of rutin for ALB and STAT1, i.e., −62.263 ± 45.849 and
−111.180 ± 17.610 kJ/mol, respectively. In the study of MMPBSA, the results confirmed
the observation that rutin was able to bind with ALB and STAT1 with an appreciable
binding affinity.

4. Discussion

Candidiasis, a fungal infection caused in humans by various species of the Candida
genus, represents a growing global health concern [1–3]. While conventional anti-fungal
therapies have been instrumental in managing candidiasis, emerging challenges such as
anti-fungal resistance, limited treatment options, and adverse effects have underscored
the urgent need for innovative and effective approaches [17,18,20]. In this context, the
exploration of natural compounds as potential candidates for candidiasis treatment has
received significant attention. The appeal of natural compounds lies in their rich chemical
diversity, often harboring complex bioactive molecules with distinctive mechanisms of
action [51,54,55]. These molecules have the potential to target fungal pathogens via various
routes, including disrupting cell membranes, inhibiting essential metabolic pathways, and
modulating host immune responses [56–58]. Their multifaceted nature offers a complemen-
tary approach to combatting candidiasis in humans, potentially circumventing resistance
mechanisms and broadening the spectrum of activity across various Candida species. Fur-
thermore, the safety profile of natural compounds is often favorable, particularly when
compared to that of synthetic anti-fungal agents that may carry risks of adverse effects. This
attribute is particularly advantageous for vulnerable populations, such as pregnant women,
children, and individuals with compromised immune systems, who require treatments
with minimal side effects [59,60].

Incorporating traditional knowledge and indigenous practices into modern research
adds a cultural dimension to the exploration of natural compounds [61]. Centuries of
traditional medicine have often harnessed the healing potential of these compounds for
various ailments, including fungal infections [62]. This accumulated information provides a
foundation for identifying potential candidates and refining strategies for candidiasis treat-



Pathogens 2023, 12, 1369 24 of 32

ment [63,64]. The present study employs an integrative network pharmacology approach to
unravel the multi-target pharmacological mechanism underlying the antimicrobial activity
of Ajwa dates against candidiasis in humans. This approach utilized different computa-
tional analyses to shed light on the complex interactions between bioactive compounds
of Ajwa dates and potential target proteins in humans against candidiasis. The findings
provide insights into the potential of Ajwa dates and their phytochemical constituents as
novel antimicrobials and offer a blueprint for future investigations into natural products
for combating fungal infections in humans.

We note that we have not found reports of interactions of the Ajwa date compounds
with the target proteins we have identified. Nevertheless, some studies have shown that
Ajwa dates and their seeds have anti-fungal properties against C. albicans. A study by
Hussain et al. (2019) [65] compared the phenolic composition and antimicrobial activity
of different Emirati date pits, including those of Ajwa. They found that Ajwa date pits
had high levels of total phenolic acids and flavonoids, which may contribute to their
antimicrobial properties. They also found that Ajwa dates pits inhibited C. albicans with an
inhibition zone diameter of 15 mm and a minimum inhibitory concentration of 7.5 mg/mL.
Selim et al. (2021) [66] isolated gallic acid from Ajwa dates pits and evaluated its activity
against C. albicans, finding that gallic acid inhibited C. albicans with an inhibition zone
diameter of 18 mm and a minimum inhibitory concentration of 5 mg/mL. In 2021, the
authors of [28] reported the inhibition of the growth of C. albicans and A. niger with MIC
values of less than 50 µg/mL by the polyphenol extract of Ajwa dates. In 2022, the authors
of [67] also reported the anti-fungal activity of Ajwa date seed extract against C. albicans,
where the former inhibited the latter’s growth and biofilm formation.

In this study, we applied an integrative network pharmacology approach to identify
the potential targets of the phytochemical constituents of Ajwa dates and their relevance to
candidiasis in humans. This comprehensive approach allows for the prediction of multiple
human targets for candidiasis, such as STAT3, IL-2, PTPRC, STAT1, CASP1, ALB, TP53,
TLR4, TNF and PPARG. STAT3 is a transcription factor that regulates the differentiation
and function of Th17 cells, which are essential for the defense against Candida infections
on mucosal surfaces. However, excessive STAT3 activation can also impair anti-fungal
immunity by suppressing other immune cells in humans. IL-2 is a cytokine that stimulates
the proliferation and activation of T cells and Tregs [68,69]. IL-2 enhances the anti-fungal
activity of T cells and macrophages, but also increases the number and function of Tregs,
which can inhibit anti-fungal immunity in humans [70]. PTPRC is a protein tyrosine phos-
phatase that dephosphorylates various signaling molecules on immune cells. PTPRC can
either enhance or inhibit anti-fungal immunity depending on the cell type and context.
For example, PTPRC enhances the activation and proliferation of T cells, but inhibits the
production of pro-inflammatory cytokines by macrophages [71,72]. STAT1 is another tran-
scription factor that mediates the signaling of various cytokines, such as IFN-gamma and
IL-27. STAT1 is essential for anti-fungal immunity, inducing genes involved in inflamma-
tion, cell-mediated immunity, and antimicrobial activity. STAT1 activates macrophages and
neutrophils to kill Candida and promotes the differentiation and function of Th1 cells [73].
CASP1 is a protease that cleaves pro-inflammatory cytokines such as IL-1beta and IL-18
into their active forms. CASP1 plays a key role in innate immunity to candidiasis by
inducing pyroptosis, which is a form of inflammatory cell death that releases cytokines
and alarmins. CASP1 also enhances adaptive immunity to candidiasis by promoting the
differentiation and function of Th17 cells [74]. ALB is the most abundant protein in blood
plasma, where it transports various substances and has immunomodulatory effects. ALB
can affect immunity to candidiasis in humans via different ways. On one hand, ALB can
enhance anti-fungal immunity by increasing the production of pro-inflammatory cytokines
by macrophages [75]. TP53 is a transcription factor that regulates various cellular processes,
such as the cell cycle, apoptosis, DNA repair and senescence. TP53 is best known for its role
in tumor suppression, but it is also involved in the immune response to candidiasis, modu-
lating genes related to inflammation, cell-mediated immunity, and antimicrobial activity.
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TP53 can enhances anti-fungal immunity by increasing the production of pro-inflammatory
cytokines by macrophages and promoting the activation and proliferation of T cells [76].
TLR4 is a transmembrane protein that recognizes LPS and other microbial or endogenous
ligands. TLR4 is important for innate immunity to candidiasis, inducing the production
of pro-inflammatory cytokines by macrophages and dendritic cells. TLR4 also enhances
adaptive immunity to candidiasis by promoting the differentiation and function of Th17
cells [77]. TNF is a cytokine that mediates inflammation and immunity. TNF is essential
for anti-fungal immunity, activating macrophages and neutrophils to kill Candida and
stimulating the recruitment and extravasation of immune cells to the site of infection. TNF
also regulates the differentiation and function of Th1 and Th17 cells. PPARG is a nuclear
receptor that regulates various metabolic processes and has anti-inflammatory effects [78].
PPARG can modulate immunity to candidiasis in different ways. On one hand, PPARG
can impair anti-fungal immunity by suppressing the activation and effector function of
macrophages and T cells. On the other hand, PPARG can also protect against excessive
inflammation and tissue damage caused by an uncontrolled immune response to Candida
infection in humans [79].

Based on the GO analysis, possible targets of phytochemical constituents of Ajwa dates
against candidiasis in humans are involved in multiple important GO processes, such as
the regulation of the response to a cytokine stimulus, regulation of inflammatory responses,
regulation of the cellular response to an external stimulus, etc, whereas according to the
KEGG pathway analysis, potential targets of phytochemical constituents of Ajwa dates
against candidiasis are significantly enriched in several important pathways, such as Th17
cell differentiation, the Toll-like receptor signaling pathway, the C-type lectin receptor
signaling pathway and necroptosis. Th17 cell differentiation is a process by which naive
CD4+ T cells develop into Th17 cells, a subset of T helper cells that produce interleukin-17
(IL-17) and other pro-inflammatory cytokines. Th17 cells play an important role in the host
defense against fungal infections, such as candidiasis, by stimulating the production of other
cytokines, such as TNF-α, IL-6, and IL-1β, and enhancing the recruitment and activation
of neutrophils, which are essential for killing Candida cells [80]. Th17 cell differentiation
is triggered by various cytokines and transcription factors that regulate the expression of
RORγt (RAR-related orphan receptor gamma), the master regulator of Th17 cell fate. Some
of the key cytokines involved in this pathway are IL-6, IL-21, IL-23, IL-1β and TGF-β [81].

The Toll-like receptor (TLR) signaling pathway is a mechanism by which the innate
immune system recognizes and responds to microbial pathogens, such as Candida species.
TLRs are a family of transmembrane proteins that can recognize specific molecular pat-
terns derived from microbes, such as lipopolysaccharide (LPS), lipoteichoic acid (LTA),
peptidoglycan (PGN), flagellin, zymosan and nucleic acids. These patterns are called
microbe-associated molecular patterns (MAMPs) or pathogen-associated molecular pat-
terns (PAMPs) [82]. The binding of ligands to TLRs activates specific intracellular signaling
cascades that initiate host defense reactions. Depending on the type of TLR and ligand,
different signaling adaptors are recruited to the TIR domain of TLRs. The most common
adaptor is myeloid differentiation primary response gene 88 (MyD88), which is used by all
TLRs except TLR3. MyD88-dependent signaling leads to the activation of nuclear factor
kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs), which are transcription
factors that regulate the expression of pro-inflammatory cytokines [83]. Another adaptor
is TIR-domain-containing adapter-inducing interferon-β (TRIF), which is used by TLR3
and TLR4. TRIF-dependent signaling leads to the activation of interferon regulatory factor
3 (IRF3) and IRF7, which are transcription factors that regulate the expression of type I
interferons [83].

The C-type lectin receptor (CLR) signaling pathway is another mechanism by which
the innate immune system recognizes and responds to fungal pathogens, such as Candida
species. CLRs are a group of PRRs that have a carbohydrate recognition domain that can
bind to specific sugar moieties on the surface of microbes. Some of the CLRs involved in
anti-fungal immunity are Dectin-1, Dectin-2, Mincle, DC-SIGN and MBL [84]. The binding
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of ligands to CLRs activates various intracellular signaling pathways that modulate the
immune responses. For example, Dectin-1 signaling leads to the activation of NF-κB
and MAPKs through the Syk–CARD9–Bcl10–Malt1 complex [85]. Dectin-1 signaling also
induces the production of reactive oxygen species (ROS) through the NADPH oxidase
complex [86]. Moreover, Dectin-1 signaling cooperates with TLR2 signaling to enhance
the production of pro-inflammatory cytokines and type I interferons [86]. Necroptosis is a
type of programmed cell death that is mediated by the receptor-interacting protein kinases
RIPK1 and RIPK3, and the mixed lineage kinase domain-like protein MLKL. Necroptosis is
characterized by cell swelling, plasma membrane rupture and the release of intracellular
contents, which can trigger inflammation and immune responses. Necroptosis can be
induced by various stimuli, such as tumor necrosis factor (TNF), Toll-like receptors (TLRs),
interferons, and intracellular RNA and DNA sensors [87]. Candida species can activate
different TLRs and induce necroptosis in macrophages and dendritic cells [88]. Necroptosis
can enhance anti-fungal immunity by releasing damage-associated molecular patterns
(DAMPs) that stimulate the adaptive immune system and promote the clearance of Candida
cells [89]. Therefore, it is found from the present study that Ajwa dates’ phytochemical
constituents can fight against candidiasis through different pathways and mechanisms in
humans (Table 5).

Table 5. Biochemical pathways targeted by Ajwa date extract and its potential against fungal infection
and virulence factors.

Biochemical Pathway Effect on Fungus or
Virulence Factor Explanation References

STAT3 (signal
transducer and activator

of transcription 3)

Suppresses
inflammation and

tissue damage caused
by fungal infection

STAT3 is a transcription factor that can modulate the
immune response and prevent excessive inflammation

and tissue damage. STAT3 can also inhibit the growth and
invasion of C. albicans by regulating the expression of
anti-fungal genes and enhancing the phagocytosis of

fungal cells. Ajwa date extract may stimulate the release
of STAT3 and enhance its anti-fungal activity.

[90,91]

IL-2 (interleukin-2)

Promotes T cell
activation and

proliferation against
fungal infection

IL-2 is a cytokine that can stimulate the activation and
proliferation of T cells, which are immune cells that can

recognize and kill infected cells. IL-2 can also enhance the
production of other cytokines that have anti-fungal effects,

such as IFN-gamma and TNF-alpha. Ajwa date extract
may stimulate the release of IL-2 and increase its

anti-fungal function.

[69,70]

PTPRC (protein tyrosine
phosphatase receptor

type C)

Regulates T cell
receptor signaling and

immune response
against fungal

infection

PTPRC, also known as CD45, is a protein that can regulate
the signaling of T cell receptor (TCR), which is a molecule

that recognizes antigens presented by infected cells.
PTPRC can modulate the activation and differentiation of
T cells and their anti-fungal effector functions. Ajwa date
extract may stimulate the release of PTPRC and improve

its anti-fungal function.

[71,72]

STAT1 (signal
transducer and activator

of transcription 1)

Activates anti-fungal
genes and enhances
the phagocytosis of

fungal cells

STAT1 is a transcription factor that can activate the
expression of genes that are involved in anti-fungal
responses, such as IFN-gamma, NOS2 and CXCL10.

STAT1 can also enhance the phagocytosis of fungal cells
by macrophages, which are immune cells that can engulf

and destroy foreign particles. Ajwa date extract may
stimulate the release of STAT1 and increase its

anti-fungal function.

[90,92]
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Table 5. Cont.

Biochemical Pathway Effect on Fungus or
Virulence Factor Explanation References

CASP1 (caspase-1)

Induces the pyroptosis
(inflammatory cell

death) of infected cells
and prevents fungal

dissemination

CASP1 is a protein that can trigger pyroptosis, which is a
process of inflammatory cell death, in the response to

fungal infection. Pyroptosis can help eliminate infected
cells and prevent the spread of fungal pathogens.

Pyroptosis can also release cytokines, such as IL-1beta and
IL-18, that have anti-fungal effects. Ajwa date extract may

stimulate the release of CASP1 and increase its
pyroptotic function.

[74]

ALB (albumin)
Binds to fungal toxins

and neutralizes
their effects

ALB is a protein that can bind to various substances in the
blood, including fungal toxins such as gliotoxin and

fumagillin. ALB can neutralize the effects of these toxins
on immune cells and tissues. Ajwa date extract may

stimulate the release of ALB and enhance its
anti-toxin activity.

[75]

TP53 (tumor
protein p53)

Induces the apoptosis
(cell death) of infected

cells and prevents
fungal dissemination

TP53 is a protein that can trigger apoptosis, which is a
process of programmed cell death, in response to DNA
damage or stress. Apoptosis can help eliminate infected
cells and prevent the spread of fungal pathogens. Ajwa

date extract may stimulate the release of TP53 and
increase its apoptotic function.

[93]

TLR4 (Toll-like
receptor 4)

Recognizes fungal
components and

activates the
inflammatory response

against fungal
infection

TLR4 is a protein that can recognize fungal components
such as lipopolysaccharide and beta-glucan. TLR4 can

activate the inflammatory response against fungal
infection by inducing the expression of cytokines such as

TNF-alpha, IL-1beta, IL-6, IL-12 and IL-23. Ajwa date
extract may stimulate the release of TLR4 and increase its

anti-fungal function.

[77]

TNF (tumor necrosis
factor)

Induces inflammation
and cell death against

fungal infection

TNF is a cytokine that can induce inflammation and cell
death against fungal infection by activating the expression

of genes such as NOS2, CXCL10 and ICAM1. TNF can
also enhance the phagocytosis of fungal cells by

macrophages and neutrophils. Ajwa date extract may
stimulate the release of TNF and increase its

anti-fungal function.

[78]

PPARG (peroxisome
proliferator-activated

receptor gamma)

Inhibits fungal growth
and biofilm formation

PPARG is a protein that can inhibit the growth and
biofilm formation of C. albicans by regulating the

expression of genes such as EFG1, NRG1 and HWP1.
PPARG can also modulate the immune response and

inflammation against fungal infection by influencing the
production of cytokines such as IL-10, IL-17 and TGF-beta.
Ajwa date extract may stimulate the release of PPARG and

increase its anti-fungal function.

[79]

Moreover, the results of molecular docking analysis confirmed that phytochemical
constituents of Ajwa dates can bind stably to the active pockets of identified target proteins.
Therefore, these compounds could be considered for use as a potential treatment for
candidiasis in humans via modulating proteins such as, STAT3, IL-2, PTPRC, STAT1,
CASP1, ALB, TP53, TLR4, TNF and PPARG. The further binding stability of the protein–
ligand complex confirmed via molecular dynamics analysis revealed that these complexes
display a stable conformation in solvation in water at a temperature of 300 K and at an
atmosphere pressure of 1. This is in line with what was shown in the docking analysis.
During the MD simulation, hydrogen bonds were found to be formed in protein–ligand
complexes, which indicates that the interaction has a high level of affinity. As a result of
this consideration of the importance of network pharmacology, the present study examines
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the phytochemical constituents of Ajwa dates, as well as their potential targets, pathways,
and effects, as they relate to the treatment of candidiasis, thereby providing a theoretical
foundation for further research in the future. Considering that network pharmacology has
certain limitations, it is only through data mining that it is possible to identify the basic
pharmacological mechanisms that are responsible for the treatment of candidiasis. The
analysis of the bioactive properties of molecules in the context of network pharmacology is
currently supported by a variety of databases. It is inevitable that there will be discrepancies
between the information sources in a database since there are many different sources of
information and experimental data. It is important to note that although we have presented
some interesting results, the potential of Ajwa dates to serve as a preventive measure
against candidiasis and other fungal diseases in humans still needs to be evaluated in
further research and clinical trials.

5. Conclusions

In the present study, a multifaceted approach was used to investigate the anti-candidiasis
potential of phytochemicals derived from Ajwa dates (Phoenix dactylifera L.) in humans
through the integration of network pharmacology, molecular docking and dynamics sim-
ulations. The findings collectively shed light on the promising attributes of Ajwa date
phytoconstituents as potential anti-fungal agents against Candida infections in humans.
Through network pharmacology analysis, a complex interaction between Ajwa dates’
phytochemicals and Candida-associated molecular targets was identified. This approach
allowed us to identify key compounds that may exert significant modulatory effects on
fungal pathways. Subsequent molecular docking studies reinforced these interactions, high-
lighting the binding affinities of specific phytochemicals towards selected Candida protein
targets of humans. The dynamics simulations provided deeper insights into the stability
and dynamics of the ligand–target complexes, offering a comprehensive understanding
of the binding mechanisms and intermolecular interactions governing the efficacy of the
identified compounds. Overall, the present study underscores the potential of Ajwa dates’
phytochemicals as a source of anti-fungal agents for candidiasis treatment. By integrating
computational techniques, the present study accelerated the process of identifying and
characterizing potential therapeutic candidates. While findings of the present study build a
promising foundation, further experimental validation and in vitro studies are essential to
confirm the efficacy and safety of these compounds.
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