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Abstract: Yersinia pseudotuberculosis is an extracellular foodborne pathogen and usually causes self-
limiting diarrhea in healthy humans. MgtC is known as a key subversion factor that contributes
to intramacrophage adaptation and intracellular survival in certain important pathogens. Whether
MgtC influences the fitness of Y. pseudotuberculosis is unclear. According to in silico analysis, MgtC in
Y. pseudotuberculosis might share similar functions with other bacterial pathogens, such as Salmonella.
Studies indicated that MgtC was clearly required for Y. pseudotuberculosis growth in vitro and bacterial
survival in macrophages under Mg2+ starvation. Transcriptome analysis by RNA-seq indicated that
127 differentially expressed genes (DEGs) (fold change > 2 and p < 0.001) were discovered between
wild-type PB1+ and mgtC mutant inside macrophages. However, a lack of MgtC only moderately,
albeit significantly, reduced the virulence of Y. pseudotuberculosis in mice. Overall, this study provides
additional insights for the role of MgtC in Y. pseudotuberculosis.
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1. Introduction

Yersinia pseudotuberculosis, a Gram-negative foodborne pathogen, has wide host spec-
trum and can circulate between human and animals [1–3]. Y. pseudotuberculosis causes
yersiniosis in humans, ranging from mild diarrhea, enterocolitis, and lymphatic adenitis
to persistent local inflammation [4]. Y. pseudotuberculosis is generally considered to be an
extracellular pathogen [5], but a growing body of evidence has shown that Y. pseudotubercu-
losis also survives and replicates inside macrophages, which may contribute to its initial
infection phase [6–8].

Bacterial pathogens have developed strategies to evade the innate immune system and
counteract the microbicidal action of macrophages [9]. Intracellular bacterial pathogens
use a broad range of molecular determinants to manipulate host cell processes and adapt
to the intracellular environment [10]. MgtC, an integral membrane protein, is a key sub-
version factor that contributes to intramacrophage adaptation and intracellular survival
of a variety of bacterial pathogens [11]. Salmonella enterica, Mycobacterium tuberculosis,
and other intracellular bacterial pathogens rely on the MgtC protein to survive within
acidic macrophage phagosomes and cause a lethal infection in mice [12–15]. Importantly,
MgtC has been shown to promote intramacrophage survival of extracellular pathogens
Pseudomonas aeruginosa and Yersinia pestis during the intracellular stage [13,16]. For the
intracellular pathogen Salmonella, MgtC inhibits the activity of the F1Fo ATP synthase by
direct interaction, hindering ATP-driven proton translocation and NADH-driven ATP
synthesis in inverted vesicles [17]. Moreover, MgtC promotes Salmonella virulence by
limiting cellulose production during infection [18] and phosphate uptake of Salmonella
inside macrophages [19].

In addition to its role in promoting intramacrophage survival, MgtC promotes the
growth of bacteria in acidic environments and under magnesium (Mg2+) starvation [20].

Pathogens 2023, 12, 1428. https://doi.org/10.3390/pathogens12121428 https://www.mdpi.com/journal/pathogens

https://doi.org/10.3390/pathogens12121428
https://doi.org/10.3390/pathogens12121428
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0002-0071-6987
https://doi.org/10.3390/pathogens12121428
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens12121428?type=check_update&version=2


Pathogens 2023, 12, 1428 2 of 14

Mg2+ is critical for bacterial survival and replication in vivo [21]. However, MgtC is not nec-
essary for Mg2+ transport [20,22]. In Salmonella, growth in low-Mg2+ media also promotes
mgtC expression, even when Salmonella experiences a neutral pH [23]. Increased MgtC
allows Salmonella to promote the transcription of Pho genes in response to the PhoP/PhoQ-
activating signals, such as low Mg2+, low phosphate, or under acidic conditions [19].
However, it is unclear whether the MgtC of Y. pseudotuberculosis has similar functions as
other pathogens in vitro and in vivo. Our results indicated that Y. pseudotuberculosis MgtC
promoted bacterial growth under Mg2+ starvation in vitro and was essential for bacterial
intramacrophage survival and replication. Disruption of MgtC diminished the fitness of Y.
pseudotuberculosis in mice to a moderate extent.

2. Material and Method
2.1. Strains, Plasmids, Macrophages and Culture Conditions

The bacterial strains and plasmids used in this study were described in Table 1.
Escherichia coli DH5α as a routine cloning strain and E. coli χ7213 as a suicide plasmid
donor strain were cultured at 37 ◦C in Luria Bertani (LB) broth or on LB agar plates
supplemented with 50 µg/mL diaminopimelic acid (DAP) or 25 µg/mL chloramphenicol
(Cm) as necessary. Y. pseudotuberculosis and its derivatives were grown on LB agar or LB
broth at 28 ◦C. LB plates containing 5% sucrose were used for sacB gene-based counter-
selection in allelic exchange experiments for construction of Y. pseudotuberculosis mutants.
When appropriate, 100 µg/mL ampicillin and/or 25 µg/mL chloramphenicol were added.
Murine macrophage RAW264.7 (ATCC, Manassas, VA, USA) was cultured at 37 ◦C with
5% CO2, in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% heat-
inactivated fetal bovine serum (Gibco, Grand Island, NY, USA).

Table 1. Strains and plasmids used in the present study.

Strains and Plasmids Characteristics Source of Reference

Strains
E. coli strain

DH5α F– ϕ80lacZ∆M15 ∆(lacZYA-argF)U169 recA1 endA1 hsdR17(rK
−, K

+)
phoA supE44 λ− thi-1 gyrA96 relA1 Invitrogen

χ7213 thi-1 thr-1 leuB6 fhuA21 lacY1 glnV44 ∆asdA4 recA1 RP4 2-Tc::Mu
[λpir]; Kmr [24]

Y. pseudotuberculosis strain
PB1+ Wild-type, serotype O:1b Lab collection

PB1+ pYV− Lack of virulence plasmid pYV This study
YPtbS33 ∆mgtC in PB1+ strain This study
YPtbS34 ∆mgtC in PB1+ pYV− strain This study
YPtbS35 ∆YPTS_2313 in PB1+ strain This study
YPtbS36 ∆YPTS_3071 in PB1+ strain This study
YPtbS37 ∆YPTS_2313∆YPTS_3071 in PB1+ strain This study

YPtbS33(C-mgtC) Ampr, ∆mgtC strain carrying the complementary plasmid
pYA4454-mgtC This study

YPtbS34 (C-mgtC) Ampr, ∆mgtC pYV− strain carrying the complementary plasmid
pYA4454-mgtC This study

YPtbS35 (C-YPTS_2313) Ampr, ∆YPTS_2313 strain carrying the complementary plasmid
pYA4454-YPTS_2313 This study

YPtbS36 (C-YPTS_2307) Ampr, ∆YPTS_3071 strain carrying the complementary plasmid
pYA4454-YPTS_3071 This study

Plasmids
pRE112 Suicide vector, Cmr, mob− (RP4)R6K ori, sacB [25]

pYA4454 Complemental plasmid, Ampr [26]
pSMV55 Cmr, pRE112 plasmid containing the ∆mgtC fragment This study
pSMV56 Cmr, pRE112 plasmid containing the ∆YPTS_2313 fragment This study
pSMV57 Cmr, pRE112 plasmid containing the ∆YPTS_3071 fragment This study
pSMV58 Ampr, pYA4454 plasmid containing the mgtC gene This study
pSMV59 Ampr, pYA4454 plasmid containing the YPTS_2313 gene This study
pSMV60 Ampr, pYA4454 plasmid containing the YPTS_3071gene This study

Cm, chloramphenicol; Amp, ampicillin.
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2.2. Plasmid Construction

All primers used in this study were listed in Table S1. Suicide plasmids were con-
structed using an overlap PCR as previously reported [27]. Briefly, the upstream and
downstream fragments of each target gene amplified by PCR and purified from agarose
gels as templates were spliced by an overlap PCR. The overlap PCR product containing the
flanking sequences of each target gene was purified by gel extraction Kit (Zymo Research,
CA, USA) and cloned into KpnI and XmaI sites of the pRE112 plasmid to generate a suicide
plasmid for deleting each corresponding gene. To complement the function of each deleted
gene, the target gene containing its native promoter was amplified by PCR using the cor-
responding primer set and then cloned into a low-copy plasmid pYA4454 (pSC101 ori) to
generate the corresponding complementary plasmid.

2.3. Strain Construction

The procedures for constructing Y. pseudotuberculosis mutant were described in pre-
vious studies [5,25]. Briefly, the suicide plasmid pSMV33 (∆mgtC) was conjugationally
transferred from E. coli χ7213 [28] to WT PB1+ and PB1+ pYV-strains, respectively. Single-
crossover insertion strains were isolated on LB agar plates containing Cm. Loss of the
suicide vector after the second recombination between homologous regions (i.e., allelic
exchange) was selected by using the sacB-based sucrose sensitivity counter-selection sys-
tem. The colonies were screened for Cms (chloramphenicol sensitive) and verified by PCR
using primers MgtC-1/MgtC-4. Also, the same method was followed to delete YPTS_2313
and/or YPTS_3071 from Y. pseudotuberculosis.

2.4. Determination of Bacterial Growth Curve in High or Low Mg2+ Minimal Medium

Y. pseudotuberculosis and its derived mutants were grown on 2 mL LB broth at 28 ◦C to
optical density 600 nm (OD600) ranging from 0.6 to 0.8, and then collected by centrifugation
at 8000× g for 5 min. M9 minimal salts medium supplemented with 0.4% (v/v) glucose as
a carbon source and 0.1% (v/v) casamino acid was used for analyzing bacterial responses
to Mg2+. The pellet of each strain was washed twice with M9 minimal medium and then
resuspended in 2 mL of the same medium supplemented with 10 µM Mg2+ or 10 mM
Mg2+. Each strain was incubated aerobically at 28 ◦C in an orbital shaker (200 rpm) for 24
h, and bacterial growth curves were recorded by measurement of OD600 over the course of
incubation period.

2.5. RNA Extraction and Real-Time PCR

Total RNA was extracted from bacteria using the Quick-RNA™ Miniprep Plus Kit
(Zymo Research) according to the manufacturer’s protocol. Genomic DNA contamination
was removed through treatment with a Turbo DNA-free kit (Ambion, Carlsbad, CA, USA).
The RNA quantity and quality were evaluated by calculation of RNA concentration and
OD260/OD280 ratio (1.8–2.0) using the NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA), and the RNA integrity was assessed by calculation
of RNA integrity number (RIN) using standard denaturing agarose gel electrophoresis.
RNA (1 µg) was then reversely transcribed into cDNA using the OneTaq@ RT-PCR Kit (New
England BioLabs, Beverly, MA, USA) according to the manufacturer’s instructions. Luna®

Universal qPCR Master Mix (New England BioLabs, Beverly, MA, USA) was used for
qRT-PCR, according to the manufacturer’s instruction: 10 µL Luna Universal qPCR Master
Mix, 1 µg cDNA, 0.5 µL forward or backward primer (10 µM), and 8 µL nuclease-free water
were added. The reaction system was incubated at 95 ◦C for 1 min, and then subjected to
40 cycles at 95 ◦C for 15 s, followed by 60 ◦C for 30 s, and then followed a melt curve using
a Mastercycler® ep Realplex system (Eppendorf, Hamburg, Germany). All samples were
analyzed in triplicate and relative transcription levels of each gene were determined by the
2−∆∆Ct method, using rpoD as an internal control for data normalization.
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2.6. Bacterial Intracellular Survival Assay

Bacterial intracellular survival was tested using RAW 264.7 cells. Infection assays
were performed as previously described [27]. Briefly, monolayers of cells (5 × 105 cells)
were cultured in 24-well plates and infected Y. pseudotuberculosis and its derivatives at a
multiplicity of infection (MOI) of 20 colony forming units (CFUs) per cell. To synchronize
the infection, infected plates were centrifuged at 400× g for 5 min followed by 37 ◦C with
5% CO2 for 1 h. Cells were washed twice with PBS to remove nonadherent bacteria, and
then incubated with DMEM containing 100 µg/mL gentamicin for 1 h to kill extracellular
bacteria. The time point after killing extracellular bacteria for 1 h was set as 0 h post-
infection (p.i.). To maintain survival of infected cells, monolayers were incubated with
DMEM containing 20 µg/mL gentamicin and 2% FBS after being washed thrice with PBS
followed by 37 ◦C with 5% CO2. At 0 h, 4 h, 8 h, and 24 h p.i., infected cells were washed
and incubated with 1 mL of 0.2% (v/v) Triton X-100 water solution for 10 min at 37 ◦C.
Then, cell suspension was serially diluted 10-fold with PBS and spread onto LB agar plates
to enumerate viable bacteria (CFUs).

2.7. Lactate Dehydrogenase (LDH) Activity Assay

RAW264.7 cells were infected with WT PB1+ or ∆mgtC mutant as described above.
Cell culture supernatant was harvested at 24 h p.i. LDH activity was measured in the cell
culture medium using the LDH Activity Assay Kit (Sigma-Aldrich, St. Louis, MO, USA;
Catalog Number: MAK066) according to the manufacturer’s instructions.

2.8. RNA-Seq

Total RNA was extracted from WT PB1+ or ∆mgtC mutant infecting RAW264.7 cells,
and then RNA-seq was performed. Briefly, RAW264.7 cells were infected with WT PB1+
and ∆mgtC mutant, respectively, as described above, and then at 2 h p.i., infected cells were
washed and lysed with 1 mL of 0.2% (v/v) Triton X-100 water solution for 10 min at 37 ◦C.
The lysis solution was centrifuged at 8000× g for 5 min to precipitate bacteria. Total RNA
was extracted from bacteria as described above. Ribosomal RNA was removed using the
RiboZero kit (Illumina, San Diego, CA, USA). RNA-seq libraries were prepared using the
ScriptSeq 2.0 Kit (Illumina, San Diego, CA, USA). Sequencing was performed using an
Illumina Next-Seq instrument (GENEWIZ, Suzhou, China). Differential RNA expression
analysis was performed using Rockhopper (version 2.03) with default parameters [29].
Differences in RNA levels were considered to indicate regulation for genes with false
discovery rate (q) values of ≤0.01 and fold-change values ≥2.

2.9. Animal Infection

Animal care and experimental protocols were in accordance with the NIH “Guide
for the Care and Use of the laboratory Animals” and were approved by the Institutional
Animal Care and Use Committee at Albany Medical College (IACUC protocol# 20-01001).

Six-week-old, female Balb/c mice were purchased from Charles River Laborato-
ries (Wilmington, MA, USA). Mice were acclimated for one week before experiments.
Overnight-grown cultures of WT PB1+ and its derived mutants were re-inoculated in
fresh LB broth, respectively. Bacterial cultures were grown at 28 ◦C with 180 rpm constant
agitation until exponential phase (OD600 0.8–0.9). Bacterial cells were pelleted at 4000× g
for 12 min and resuspended in sterile phosphate-buffered saline (PBS), pH 7.4, with an
appropriate volume. Groups of mice (10 mice each group) were deprived of food and water
for 6 h and then gavaged 0.2 mL bacterial suspension to each mouse with a single dose of
5.0 × 108 colony forming units (CFU) by using 20-gauge feeding needle. Mortality and
morbidity of infected mice were observed daily for the next 15 days.

The kinetics of bacterial burden in different vital organs including intestine, spleen,
liver, and lung were assessed at 2, 4, and 6 days p.i. Three mice from each group were
humanly euthanized and perfused with 5 mL sterile PBS before collecting lung, liver,
spleen, and Peyer’s patch, aseptically. Tissue samples were homogenized by bullet blender
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(Bullet Blender Blue; Averill Park, NY, USA) and serially diluted homogenates were spread
on Yersinia selective agar plates [Cefsulodin, Irgasan, Novobiocin (CIN) agar] in duplicates.
After 48 h incubation at 28 ◦C, CFU were counted and calculated according to the initial
weight (mg) and/or volume (mL) of the organ [5].

2.10. Statistical Analysis

Data were analyzed using GraphPad PRISM 8.0 software. Statistical analyses of data
were evaluated by two-way ANOVA using Tukey’s post hoc tests. The log-rank test was
used for analysis of the survival curves. All results are presented as means ± standard de-
viations (SD) for at least three independent experiments, and data represented significance
at * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3. Results
3.1. Phylogenetic Analysis of MgtC-like Proteins in Different Bacteria

In silico analysis showed that YPTS_2490 in Y. pseudotuberculosis belonged to the
MgtC/SapB family protein and the same phylogenetic subgroup as MgtC of Salmonella
typhimurium (Figure 1). A further phylogenetic analysis using the neighbor-joining tree
(NJ) method of molecular evolutionary genetics analysis (MEGA) Software revealed that
MgtC in Y. pseudotuberculosis had a close relationship with MgtC of other facultative intra-
cellular pathogens, namely Pseudomonas aeruginosa, Burkholderia cenocepacia, Mycobacterium
tuberculosis, and E. coli (Figure 1). To identify the molecular characteristics of MgtC in
Y. pseudotuberculosis and other intracellular pathogens, the deduced amino acid sequences
of each protein were analyzed and aligned using DNASTAR software (v7.1). The amino
acid sequence of Y. pseudotuberculosis MgtC is 63% identical to the MgtC of S. typhimurium,
45% identical to the MgtC of B. cenocepacia, 54% identical to the MgtC of P. aeruginosa,
and 39% identical to the MgtC of M. tuberculosis, respectively. Additionally, there is no
difference for the MgtC/SapB family protein sequence in the different strains of Y. pseudo-
tuberculosis, such as Y. pseudotuberculosis serotype O:1b (strain PB1/+), Y. pseudotuberculosis
serotype O:1b (strain IP 31758), Y. pseudotuberculosis serotype I (strain IP32953), and Y.
pseudotuberculosis serotype O:3 (strain YPIII). These results suggested that YPTS_2490 was
considered as MgtC in Y. pseudotuberculosis and might share similar functions as it in other
bacterial pathogens.
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in this analysis.
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3.2. MgtC Is Required for Y. pseudotuberculosis Growth under Mg2+ Starvation and mtgC
Transcription Is Strongly Induced under Mg2+ Starvation and Intracellular Conditions

A previous study showed that MgtC is essential for Salmonella growth under Mg2+

starvation [20]. To determine whether MgtC of Y. pseudotuberculosis is necessary for the
growth of bacteria under Mg2+ starvation, we constructed an in-frame deletion of mgtC
in Y. pseudotuberculosis to avoid any polar effect on downstream genes and complemented
the mgtC mutation with a very low-copy plasmid, pSMV58 constitutively expressing mgtC
(Table 1). Then, the growth of WT PB1+ and its derived ∆mgtC mutants were compared
under low and high Mg2+ conditions. Under in vitro growth conditions, we found that the
∆mgtC mutant was deficient in growth under the low-Mg2+ media and that the growth
defect in the ∆mgtC mutant was completely restored by MgtC complementation (Figure 2A).
However, the ∆mgtC mutant did not display a growth defect in the high-Mg2+ media
compared with the growth of WT PB1+ and the MgtC complementary strain (Figure 2B).
These results indicated that MgtC was required for optimal growth of Y. pseudotuberculosis
under Mg2+ starvation in vitro.
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and ∆mgtC(C-mgtC) in high-Mg2+ medium. (C) qPCR analysis for the mgtC gene expression of WT
PB1+ under a low-Mg2+ condition and a high-Mg2+ condition was detected. (D) qPCR analysis
for the mgtC gene expression of WT PB1+ under extracellular media and intracellular RAW264.7
macrophages. Mean value bars ± SD. Statistical significance among groups were analyzed by a
two-tailed t test. ** p ≤ 0.01; *** p ≤ 0.001.

To determine whether the Y. pseudotuberculosis mgtC is regulated by Mg2+ starvation,
we compared mgtC expression of WT PB1+ strain under low- and high-Mg2+ conditions
by qRT-PCR. The mgtC expression in WT PB1+ strain under the low-Mg2+ condition was
dramatically increased compared to that under the high-Mg2+ condition, suggesting that
Y. pseudotuberculosis mgtC expression is strongly induced under the low-Mg2+ condition
(Figure 2C).

Extracellular Y. pseudotuberculosis can survive and replicate inside macrophages [6,8].
Macrophages contain low cytosolic Mg2+ concentration and acidic environments [30]. To
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determine whether the Y. pseudotuberculosis mgtC is regulated under intracellular condition,
we compared the mgtC expression of WT PB1+ strain under extracellular and intracellular
conditions by qRT-PCR. The mgtC expression of WT PB1+ strain within macrophages was
significantly increased in comparison to that under extracellular condition, suggesting that
the Y. pseudotuberculosis mgtC expression is strongly induced under intracellular condition
(Figure 2D). Taken together, MgtC promoted growth of Y. pseudotuberculosis under Mg2+

starvation, and the mgtC expression was strongly induced within macrophages and under
low-Mg2+ conditions.

3.3. MgtC Plays a Critical Role for Y. pseudotuberculosis Replication in Macrophages

The MgtC of an intracellular pathogen, Salmonella enterica, is required for its intra-
macrophage survival [12]. To determine whether MgtC is involved in the intracellular
survival of extracellular pathogen Y. pseudotuberculosis, we compared the survival of WT
PB1+, a ∆mgtC mutant, and a mgtC complementary strain inside RAW264.7 macrophages.
RAW264.7 macrophages were infected with each strain, and then intracellular bacteria
were recovered from infected macrophages at different times post-infection (p.i.). Results
showed that three strains had similar bacterial titers at 0 h p.i., suggesting that the presence
or absence of MgtC does not affect the invasion of Y. pseudotuberculosis. The number of
∆mgtC mutant inside RAW264.7 cells dramatically decreased starting at 4 h p.i. in compari-
son to with WT PB1+ and ∆mgtC mutant complemented with mgtC (Figure 3A), suggesting
that MgtC facilitates the intracellular replication of the primarily extracellular Y. pseudo-
tuberculosis when it is engulfed by macrophages, as well as suggesting that the decreased
intracellular survival of the ∆mgtC mutant is caused by a lack of mgtC rather than an
eventual polar effect caused by the mutation. The number of intracellular WT PB1+ strains
increased over the course of the infection from 0 h to 8 h p.i., but significantly decreased
at 24 h p.i. (Figure 3A), suggesting that Y. pseudotuberculosis as a primarily extracellular
pathogen can replicate in the macrophages at an early stage, but cannot sustain for 24 h p.i.
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Figure 3. MgtC is required for Y. pseudotuberculosis replication in macrophages. (A) Intracellular
survival within RAW 264.7 macrophages. RAW264.7 cells were infected with WT PB1+, ∆mgtC, and
∆mgtC(C−mgtC) at a MOI of 20. The infected cells were incubated with 0.2% (v/v) Triton X-100 at
0 h, 4 h, 8 h, and 24 h p.i. Then, intracellular CFUs of bacteria were enumerated. (B) Intracellular
survival within RAW 264.7 macrophages. RAW264.7 cells were infected with each strain cured
virulence plasmid pYV: WT PB1+(pYV−), ∆mgtC(pYV−), and ∆mgtC(C−mgtC)(pYV−) at a MOI
of 20. The infected cells were incubated with 0.2% (v/v) Triton X-100 at 0 h, 4 h, 8 h, and 24 h p.i.
Then, intracellular CFUs of bacteria were enumerated. Mean value bars ± SD. Statistical significance
among groups were analyzed by two-way ANOVA multivariant applying Tukey’s post hoc test. ns,
no significant, **** p ≤ 0.0001.

Y. pseudotuberculosis contains virulence plasmid pYV that encodes the type three se-
cretion system (T3SS) [31], which is responsible for injecting a number of Yersinia outer
proteins (Yops) into host cells. Yops can inhibit bacterial phagocytosis, the respiratory burst,
and the host innate immune response, and trigger apoptosis [32,33]. Intriguingly, the Y.
pseudotuberculosis strains’ lack of virulence plasmid pYV did not change their survival pat-
terns in macrophages (Figure 3B), indicating that MgtC facilitates intracellular replication
of extracellular pathogen Y. pseudotuberculosis independent of the presence of pYV.
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To test the cytotoxicity of the ∆mgtC mutant on macrophages, the release of LDH
was determined for PB1±, ∆mgtC−, and ∆mgtC(C−mgtC) −infected macrophages. There
were no significant differences in levels of LDH released from the PB1±, ∆mgtC−, and
∆mgtC(C−mgtC) −infected macrophages at 24 h p.i. (Figure S1), indicating that the mgtC
deletion has no effect on cytotoxic action of Y. pseudotuberculosis towards macrophages.

3.4. Genes Analysis of mgtC Mutant within Macrophages by RNA-Seq

Given significant survival differences in macrophages, we attempted to explore how
MgtC regulated gene expression profiles of Y. pseudotuberculosis within macrophages. The
total RNA was extracted from PB1+ or the ∆mgtC mutant strain released from infected
RAW264.7 cells, and then RNA-seq was performed to characterize differentially expressed
genes (DEGs). We found 127 DEGs (fold-change > 2 and p < 0.001) under the intracellular
condition. Among them, 98 genes were significantly upregulated, and 29 genes were signif-
icantly downregulated, while the mgtC gene was not detected in the ∆mgtC mutant strain
(Table S2). The hierarchical clustering heatmap (Figure 4A), the volcano plot (Figure 4B),
principal component analysis (Figure 4C). and sample distance (Figure 4D) all displayed
clear DEGs between WT PB1+ and ∆mgtC.
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Figure 4. Transcriptome analyses of WT PB1+ and the ∆mgtC mutant within macrophages by
RNA−seq. RAW264.7 cells were infected with WT PB1+ and ∆mgtC, respectively, at a MOI of
20. The infected cells were incubated with 0.2% (v/v) Triton X-100 at 2 h p.i.. The solution was
centrifuged to precipitate bacteria. Total RNA was extracted from bacteria and the expression
of DEGs were performed by RNA−seq. (A) Heatmap and hierarchical clusters analysis of the
differentially expressed genes (DEGs) between WT PB1+ and ∆mgtC in macrophages (3 replicates
each). Each small box indicates the expression status of a certain gene in one sample, with red for
upregulated and blue for downregulated expression. (B) Volcano plot highlighting differentially
expressed genes between unexposed and exposed bacteria. The genes are colored if they pass the
thresholds for −log10 p value (p value = 0.05) and log−fold change |FC| ≥ 1.2, with red if they are
upregulated and blue if they are downregulated. (C) Principal component analysis was applied to
transcriptomic profiles of the WT PB1+ (pink circles) and ∆mgtC mutant (cyan-blue circles). Each
dot represents an independent biological replicate. (D) Heat map showing hierarchical clustering
of the Euclidean sample−to−sample distance between transcriptomic profiles of WT PB1+ and the
∆mgtC mutant. (E) Validation of RNA−seq data by RT−qPCR. The RNA-seq results of DEGs were
used as controls.
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Among 127 DEGs, the top 10 most significant DEGs are shown in Table 2. To confirm
the authenticity of RNA-seq, transcriptional levels of top 10 most significant DEGs were
measured in WT PB1+ and ∆mgtC mutant isolated from the infected RAW264.7 cells by
qRT-PCR. The results of qRT-PCR for those DEGs were consistent with the RNA-seq results
(Figure 4E). Among the 10 most significant DEGs, YPTS_2313 and YPTS_3071, encoding
acid shock proteins, were significantly downregulated in the ∆mgtC mutant isolated from
infected RAW264.7 cells compared with WT PB1+. Previous studies showed that acid shock
proteins were required for adaptive acid tolerance response in Salmonella and MgtC pro-
moted the growth of bacteria in acidic environments [20,34]. We speculated that MgtC dis-
ruption in Y. pseudotuberculosis might downregulate YPTS_2313 and YPTS_3071, resulting
in decreased intracellular survival. To confirm the roles of YPTS_2313 and YPTS_3071 for Y.
pseudotuberculosis intracellular survival, we constructed the following Y. pseudotuberculosis
mutant strains: ∆YPTS_2313, ∆YPTS_3071 and ∆YPTS_2313∆YPTS_3071, respectively, and
compared their survival rates inside RAW264.7 macrophages. However, results showed
that the ∆YPTS_2313, ∆YPTS_3071, and ∆YPTS_2313∆YPTS_3071 mutants had similar
survival rates to WT PB1+ (Figure S2), suggesting that ∆YPTS_2313 and/or ∆YPTS_3071
are not essential to the intracellular survival of Y. pseudotuberculosis.

Table 2. List of DEGs between PB1+ and the ∆mgtC mutant within macrophages.

Gene Number Gene Name Fold Change
∆mgtC/PB1+ p-Value

YPTS_0907 Transporter substrate-binding domain-containing protein 6.494781 1.04 × 10−8

YPTS_1642 Sugar ABC transporter substrate-binding protein 6.125791 1.59 × 10−6

YPTS_3843 Malate synthase A 5.255804 1.16 × 10−10

YPTS_2011 Aspartate aminotransferase family protein 5.083721 1.85 × 10−7

YPTS_3842 Isocitrate lyase 5.081315 4.39 × 10−9

YPTS_2313 Acid shock protein −3.712933 8.92 × 10−24

YPTS_0225 Glycerol-3-phosphate dehydrogenase subunit GlpB −3.838456 7.86 × 10−35

YPTS_0224 Anaerobic glycerol-3-phosphate dehydrogenase subunit A −4.235415 9.02 × 10−37

YPTS_0091 Aquaporin family protein −4.564323 1.58 × 10−31

YPTS_3071 Acid shock protein −5.886112 1.59 × 10−9

DEGs: differentially expressed genes.

3.5. Pathogenicity of the ∆mgtC Mutant In Vivo

For intracellular pathogens, MgtC is a key virulence factor and promotes their pathogenicity
in vivo [17,35,36]. Therefore, to evaluate the role of MgtC in Y. pseudotuberculosis pathogenic-
ity, Balb/C mice (10 mice per group) were infected with 5 × 108 CFUs of WT PB1+ and the
∆mgtC mutant by oral gavage, respectively. All mice infected with WT PB1+ succumbed
within 15 days post-administration, while mice infected with the ∆mgtC mutant had 40%
survival (Figure 5A), suggesting that the mgtC mutation results in moderate attenuation of
Y. pseudotuberculosis. The virulence of the ∆mgtC mutant was completely restored by the
mgtC complementary plasmid (Figure 5A).

Following this, we compared the burdens of the ∆mgtC mutant in the Peyer’s patches,
spleens, livers, and lungs at day 2, 4, and 6 p.i. with burdens of WT PB1+. Bacterial titers
of both WT PB1+ and the ∆mgtC mutant in Peyer’s patches, spleens, livers, and lungs
dramatically increased at day 4 p.i. compared with day 2 p.i. and was then maintained
at day 6 p.i. in Peyer’s patches (Figure 5B–E). Titers of both WT PB1+ and the ∆mgtC
mutant slightly increased at day 6 p.i. in comparison to day 4 p.i. Bacterial titers in the
spleens, livers, and lungs of mice infected with WT PB1+ or the ∆mgtC mutant showed
no significant differences, but titers of the ∆mgtC mutant in a few mice were obviously
lower than titers of WT PB1+ (Figure 5B–E). Taken together, the ∆mgtC mutant caused
a slight attenuation in mice, and MgtC had marginal effects on the dissemination of Y.
pseudotuberculosis in mice.
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of Balb/c mice (n = 5 per group) that were gavaged with 5 × 108 CFUs WT PB1+, ∆mgtC, and
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4. Discussion

Intracellular pathogens live inside host cells and require a myriad of factors to adapt
to the harsh environments in the host cells. MgtC, first described in S. typhimurium, is a key
player in bacterial intramacrophage survival, and is important for the virulence of diverse
intracellular pathogens [11,37]. Moreover, the role of MgtC for macrophage survival is
highly conserved in unrelated intracellular pathogens, such as S. typhimurium, B. ceno-
cepacia, and M. tuberculosis [14,15,20,23]. A study showed that genes encoding MgtC-like
proteins were found in a limited number of eubacterial genomes, and phylogenetic analysis
suggested that mgtC were acquired by horizontal gene transfer repeatedly throughout
bacterial evolution [38]. Based on sequence analysis, MgtC of Y. pseudotuberculosis had a
close relationship to those of intracellular pathogens, such as S. typhimurium (Figure 1).
As an extracellular pathogen, if Y. pseudotuberculosis were to acquire the mgtC gene via
horizontal transfer from S. typhimurium, it might adapt to different environmental cues in
mammalian hosts.

Mg2+ is involved in several cellular processes, such as the stabilization of membranes
and ribosomes, as well as nucleic acid neutralization [39], while several intracellular
pathogens require MgtC to grow in Mg2+-deprived environments [12,14,15,23]. In a sim-
ilar fashion, the extracellular pathogen Y. pseudotuberculosis required MgtC to grow in
Mg2+−deprived environments, and mgtC expression of Y. pseudotuberculosis was strongly
induced under Mg2+ starvation (Figure 2A,C), indicating that Y. pseudotuberculosis MgtC is
also involved in adaptation to low Mg2+ environments. Macrophages contain low cytosolic
Mg2+ concentrations and acidic environments [30]. MgtC promotes the survival of several
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pathogens inside the macrophages by supporting bacterial adaptation to the intracellular
environment [12,14,15,23]. Consistent with previous studies, Y. pseudotuberculosis mgtC
expression was highly induced inside macrophages (Figure 2D) and is critical to survival
of Y. pseudotuberculosis in macrophages (Figure 3A), suggesting that MgtC is required for
the adaption of Y. pseudotuberculosis to the conditions encountered in macrophages.

There are conflicting reports about the ability of Y. pseudotuberculosis to replicate in
macrophages. For example, YPIII, a serogroup O3 strain of Y. pseudotuberculosis, is unable
to survive in mouse J774A.1 macrophages [40]. However, a serogroup O4b Y. pseudotuber-
culosis strain [41] and a serogroup O1 isolate, IP2790 [8], replicated in mouse peritoneal
macrophages. Intriguingly, Y. pseudotuberculosis PB1+, a serogroup O1:b strain used in this
study, presented different survival profiles in murine RAW 264.7 macrophages (Figure 3A).
The number of viable intracellular WT PB1+ strains increased over the course of infection
from 0 h to 8 h p.i., but significantly decreased at 24 h p.i. (Figure 3A). The discrepancy
might be due to the different macrophages used in those studies. In addition, the pYV-cured
PB1+ strain showed similar patterns of bacterial survival in macrophages when compared
to WT PB1+ (Figure 3B), suggesting that the survival of the PB1+ strain in macrophages is
not dependent on the virulence plasmid pYV. Our observations were consistent with the sur-
vival of intracellular Y. pseudotuberculosis IP2790 [8], but contrary to a previous report that
the presence of a functional T3SS decreases the survival of intracellular Y. pseudotuberculosis
YPIII [42]. Previous study mentioned that the ability of Y. pseudotuberculosis to replicate in
macrophages might be a serogroup-specific property [8]. This explanation is also applicable
to our observations. Further studies are needed to uncover unknown mechanisms.

Our study found that cellular survival of Y. pseudotuberculosis in macrophages was
dependent on MgtC, but independent of the virulence plasmid pYV (Figure 3). The number
of ∆mgtC mutants significantly decreased at 4 h p.i. and maintained a lower number of
bacteria until 24 h p.i. (Figure 3). Interestingly, the ∆mgtC mutant with significantly lower
numbers in macrophages caused similar levels of cytotoxic action towards macrophages as
the WT PB1+ strain (Figure S1). The possible explanation is that some ∆mgtC mutant or
PB1+ may be released to extracellular media during bacterial intracellular replication in
macrophages, and extracellular replicated ∆mgtC mutant or PB1+ strains translocate Yops
to macrophages, causing cell apoptosis and death [43]. The exact reasons will be pursued
in a future study.

RNA-Seq and qRT-PCR analysis found that YPTS_2313 and YPTS_3071, encoding
acid shock proteins, were significantly downregulated in the mgtC mutant (Figure 4).
The acid tolerance response of S. typhimurium involves transient synthesis of key acid
shock proteins which are required for the adaptive acid tolerance response [34,44]. A low
pH-inducible, PhoPQ-dependent acid tolerance response protects S. typhimurium against
inorganic acid stress [45]. In Salmonella, the PhoP/PhoQ-activating signals, such as low
Mg2+, low phosphate, or acidic conditions, are associated with MgtC [19]. However,
our results showed that disruption acid shock protein (YPTS_2313 and/or YPTS_3071)
did not influence on survival of Y. pseudotuberculosis in microphages or impact bacterial
virulence in mice (Figure S2). One possible explanation is that Y. pseudotuberculosis might
prefer to use the extracellular life cycle during infection, rather the intracellular life cycle.
The ∆mgtC Y. pseudotuberculosis downregulated YPTS_2313, YPTS_3071, and other gene
expressions (Table 2 and Table S2), so moderate attenuation of the ∆mgtC mutant in mice
might be due to an additive effect of those downregulated genes. In conclusion, MgtC is
required for the in vitro growth and in vivo survival of Y. pseudotuberculosis under Mg2+

starvation, and disruption of MgtC diminished the fitness of Y. pseudotuberculosis in hosts
to a moderate extent. This study provides an additional insight into MgtC function in
extracellular pathogens.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/pathogens12121428/s1, Table S1. Primers used in the
present study; Table S2 List of DEGs between PB1+ and ∆mgtC mutant within macrophages; Figure
S1. LDH detection; Figure S2. Intracellular survival within RAW 264.7 macrophages.
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