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Abstract: Identification of a cellular biomarker of latent HIV infection will facilitate the latent reservoir
detection, quantification, and targeting for elimination. Unfortunately, the latency biomarkers
reported in the literature define only a fraction of the entire reservoir. The latent HIV reservoir
may be established in dividing cells that subsequently return to quiescence and in resting cells.
The strength of the T cell receptor (TCR) signaling at the time of infection affects characteristics of
the established reservoir, such as the ability to reactivate with latency reversing agents. To better
understand the cellular environments before latency establishment, we characterized transcriptomic
remodeling induced by the initial HIV infection in cells with differential proliferative responses to
the TCR stimulus. Cell proliferation was monitored using the viable dye carboxyfluorescein diacetate
succinimidyl ester. Cells that divided many times, a few times, or remained non-dividing were
subjected to single-cell RNA sequencing. A subset of identified transcriptional changes induced
by HIV infection was independent of the number of cell divisions; however, responses unique to
different cell subsets were also detected. Some of these early gene expression changes were consistent
with reported markers of latently infected cells. We pose that the latency biomarkers may depend on
the cellular proliferative state at the time of infection.

Keywords: HIV infection; response to T cell receptor stimulus; transcriptomic remodeling; single-cell
RNA-Seq; biomarkers of HIV latency

1. Introduction

The main roadblock to eliminating HIV infection is the persistence of the cell reservoir
bearing the latent provirus [1]. Identification of the molecular signature, or a “biomarker”,
of this latent reservoir will facilitate its detection, quantification, and targeting of these cells
for elimination. So far, the identification of universal molecular signatures of cells latently
infected with HIV has been unsuccessful. Several latency biomarkers have been reported in
the literature, but each of them defines only a fraction of the entire reservoir. The proposed
candidate HIV latency biomarkers are CD2 [2], Fc fragment of IgG receptor IIa (FCGR2A,
also known as CD32a) [3,4], lymphocyte activating 3 (LAG3), T cell immunoreceptor with
Ig and ITIM domains (TIGIT), programmed cell death 1 (PD-1) [5], CEA cell adhesion
molecule 1 (CEACAM1), and plexin B2 (PLXNB2) [6]. Each of these biomarkers facilitated
up to 10-fold enrichment for latently infected cells from persons with HIV but could not
capture the entire latent reservoir. These results were consistent with the idea that different
latently infected cells likely express different sets of markers. Thus, to define all the cellular
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subsets of the latent HIV reservoir, a much more complex molecular panel is likely needed.
Indeed, a more successful biomarker panel identified by the cytometry by time of flight
(CyTOF) analysis, was comprised of eight molecules, both up- and downregulated [7].

The outstanding question that remains is what cellular and viral factors contribute to
the variation of markers on different latently infected cells. Several mechanisms of the latent
reservoir establishment have been proposed, including infection of activated, dividing cells
that subsequently return to quiescence [8–10], and direct infection of resting cells [11–14].
Remarkably, the latent reservoir was established preferentially in minimally activated,
non-dividing CD4+ T cells [15]. While evidence suggests that in resting CD4+ T cells, HIV
provirus is more likely to be inactive [16], other studies demonstrated that depending on the
environment, productive HIV infection is possible in these resting cells [17,18]. The strength
of T cell receptor (TCR) signaling at the time of infection affects characteristics of the latent
reservoir, such as the ability to reactivate with various latency reversing agents [19]. We
hypothesize that such reservoirs may differ by their molecular signatures. Consistent with
this idea, the biomarker panel proposed by Neidleman and colleagues was able to enrich
for cells with inducible provirus from people with HIV [7].

To better understand how early responses to HIV infection contribute to the variation
in signatures of the latent reservoir later in time, the present study aimed to comprehen-
sively characterize transcriptomic remodeling induced by HIV infection in CD4+ T cells
with variable proliferative responses to the TCR stimulus. To conduct gene expression
profiling, we took the advantage of the single-cell RNA sequencing (scRNA-Seq) technol-
ogy developed by 10X Genomics, Inc. (Pleasanton, CA, USA). This platform allows for
sequencing of up to 10,000 cells in one experiment and uses antibodies against cell surface
proteins to hash cells based on their desired characteristics. The desired characteristic in our
experiment was the number of cell divisions undergone by cells following TCR stimulation:
cells that responded well to the TCR stimulus and proliferated the most (referred to as
“cells that divided many times”), cells that had a moderate proliferative response to the
TCR stimulus (referred to as “cells that divided a few times”), and cells with no induced
proliferation (referred to as “non-dividing cells”). Different cell subsets were hashed with
antibodies designed to recognize the same proteins ubiquitously expressed on all lym-
phocytes (β2-microglobulin and β3 Na+/K+ ATPase CD298) but conjugated to different
oligonucleotides (Biolegend, Inc., San Diego, CA, USA). A comparison of transcriptomic
remodeling induced by HIV infection revealed both common and unique signatures for
CD4+ T cell subsets with differential proliferative responses to the TCR stimulus. Some
of these early gene expression changes were consistent with reported markers of latently
infected cells, identified using in vitro models of HIV latency and cells from persons with
HIV. Thus, it appears that certain molecular reprogramming in response to HIV infection is
common for different stages of HIV infection, including long-term latency. The presence
of transcriptomic changes that were unique for cells with different responses to the TCR
stimulus is consistent with the idea that the latency biomarkers may depend on the cellular
proliferative state at the time of infection.

2. Materials and Methods
2.1. Samples

Primary CD4+ T cells were isolated from the whole blood of three different HIV-
seronegative donor volunteers and kept viably frozen until the beginning of the experiment.
Following the thaw (day −2), cells were cultured overnight in RPMI medium containing
5% human serum, L-glutamate, penicillin, and streptomycin (RPMI) and then stained with
a viable dye carboxyfluorescein diacetate succinimidyl ester (CFSE, day −1). The following
day, cells were infected with wild-type HIV virus NL4-3 for 4–6 h and then stimulated in
6-well plates coated with αCD3/αCD28 antibodies (day 0). On day 4, cells were removed
from plates and incubated for 3 additional days in RPMI medium that contained IL-2 and
IL-15 to allow for propagation of the virus. On day 7, at the peak of viral infection as
assessed using antibodies against Gag/p24 [15], cells were prepared for scRNA-Seq.
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2.2. Preparation of Cells for scRNA-Seq and Sequencing

Cells were stained with Aqua live/dead stain (Thermo Fisher, Inc., Waltham, MA,
USA), and live cells were sorted using FACS Aria or the Sony MA900 Multi-Application cell
sorter to separate live cells with robust (CFSElow), moderate (CFSEmed), and no proliferative
response (CFSEhigh) to the TCR stimulus (Figure 1A). CFSElow, CFSEmed, and CFSEhigh

cells were incubated with cell hashing antibodies (Biolegend, Inc., San Diego, CA, USA)
TotalSeq™-B0252, TotalSeq™-B0253, and TotalSeq™-B0254, respectively (please refer to
Supplementary Methods for details). After staining, cells were mixed back together, 10,000
from each population, and 12,000 total cells were loaded into the Chromium Controller,
aiming to achieve the targeted recovery of 10,000 cells in the scRNA-Seq experiment.
Reverse transcription to generate cDNA and library preparation for scRNA-Seq were
conducted per the manufacturer’s instructions (10X Genomics, Inc., Pleasanton, CA, USA)
using v3 kits. Sequencing was conducted using the NovaSeq 6000 instrument (Illumina,
Inc., San Diego, CA, USA) at the Institute of Genomics Medicine (IGM) Genomics Center,
University of California San Diego. The data were provided in the form of paired .fastq files.
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Figure 1. Cell sorting and phenotyping using scRNA-Seq data. (A) Gating strategy to sort cells that 
divided many times (CFSElow), few times (CFSEmed), and non-dividing cells (CFSEhigh). For CFSElow 
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Figure 1. Cell sorting and phenotyping using scRNA-Seq data. (A) Gating strategy to sort cells that
divided many times (CFSElow), few times (CFSEmed), and non-dividing cells (CFSEhigh). For CFSElow

and CFSEhigh populations, extreme cases were selected excluding cell populations in between. (B) Cell
clustering following integration procedure demonstrating that phenotypically similar cells were
present in each of the three experiments. Each dot represents an individual cell; X- and Y-axes
represent the two-dimensional coordinates of each cell following the reduction of dimensionality of
gene expression space using principal component analysis and uniform manifold approximation
and projection (UMAP). (C) Cluster markers were identified using the FindMarkers function in the
library Seurat, and the top 10 markers for each cluster (with the greatest absolute fold change in
expression) were visualized using the DotPlot function. A number of genes were markers for more
than one cluster (e.g., upregulated in one cluster while downregulated in another). Red boxes indicate
gene markers for each of the clusters. The size of the circle indicates the percentage of cells where
each marker is expressed; the color indicates the average level of expression (log normalized scaled
UMI). (D) Visualization of HIV expression in cells. HIV expression exhibits bimodal distribution
as shown for all cells in the integrated dataset (histogram on the left) and cells split by experiment
(violin plot on the right). The red dotted line (left) and the black horizontal line (right) represent the
identified threshold to separate the cells with high and low levels of HIV RNA.
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2.3. ScRNA-Seq Read Mapping and Counting

Raw sequencing .fastq files were used as input into the read mapping and counting
software, CellRanger v4.0, developed by 10X Genomics, Inc. (Pleasanton, CA, USA). The
Genome Reference Consortium Human Reference 38 combined with the HIV genome
reference was used for mapping with default parameters for CellRanger that account for
MAPQ adjustment, examination of compatibility with the transcriptome, unique molecular
identifiers (UMI) counting, and cell-calling. The output filtered_feature_bc_matrix folder,
which contains the barcodes after cell-calling filtration, was used for downstream analyses.
The raw and mapped data are available through the Gene Expression Omnibus (GEO)
database, accession number GSE223756.

2.4. ScRNA-Seq Data Pre-Processing

All the data were pre-processed in Bioconductor R (version 4.1.0), using libraries
Seurat (version 4.0.3) for scRNA-Seq data and ggplot2 (version 3.3.4) for graphs. First,
the filtered_feature_bc_matrix data generated by the CellRanger were read in using the
Read10X function in the library Seurat. To ensure that cell clustering occurs based on
host gene expression and that differential gene analysis is not affected by HIV, HIV UMIs
were removed from the gene expression matrix prior to creating the Seurat objects. HIV
UMI, natural log-transformed HIV UMI, percent reads mapping to mitochondria genes,
and UMI for all antibodies and their natural log-transformed values were added to the
object metadata.

Next, we used a data-driven approach to exclude cells of poor quality (dead cells
and multiplets) from the dataset. To determine filtering thresholds, either the interquartile
range (IQR) or the Gaussian mixture model was used based on the data (see Supplementary
Methods for details). Briefly, thresholds for filtering based on percent reads mapping to
mitochondria genes were identified first. Next, thresholds for identifying cells positive
for each of the three hashes—TotalSeq™-B0252, TotalSeq™-B0253, and TotalSeq™-B0254—
were identified, and the information about the number of cell divisions based on these
thresholds was added to the metadata. Cells with high percent reads mapping to mitochon-
dria genes were removed, resulting in the removal of cells with a low number of detected
genes (see Supplementary Methods). Next, cells representing true multiplets (positive for
more than one hash) were removed from the objects.

2.5. Integrating Triplicate Experiments into One Dataset and Phenotypic Assessment of Cells

Since our experiment was conducted in triplicate, using cells from three different
donors, we next integrated the data together using the anchoring procedure in the library
Seurat [20]. Genes that were not expressed in any of the cells in any of the experiments
were removed (23,171 genes were retained); data were normalized for library size and
log-transformed. Two thousand genes with the most variation in expression were used to
find integration anchors. Expression of these anchor genes was used to align phenotypically
similar cells from the three experiments during the data integration process. Data were
then scaled, and dimensionality reduction was first performed using principal component
analysis (PCA), followed by finding neighbors for each cell (FindNeighbors function in the
library Seurat) and identifying cell clusters (FindClusters function in the library Seurat). Our
goal was to be able to distinguish the cells with differential responses to the TCR stimulus
based on gene expression profiles; thus, we expected to identify only three major clusters,
corresponding to the cells that divided many times, a few times, or remained non-dividing.
Therefore, the resolution parameter in the FindClusters function was set to a relatively small
value, 0.15. Following cluster identification, clusters were visualized via the implementa-
tion of the t-distributed stochastic neighborhood embedding (tSNE) or uniform manifold
approximation and projection (UMAP) algorithms. This analysis verified that cells from the
three experiments contained clusters of phenotypically similar cells (Figure 1B), suggesting
the absence of much unexpected technical or biological variation between replicates. The
markers of each cell cluster were then identified using the FindMarker function in the library
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Seurat to conduct unsupervised phenotypic characterization of these cells (Figure 1C and
Table S1). Default parameters were used for this function, except min.pct was set to 0.25.
The integrated dataset was used for all analyses going forward.

2.6. Identification of Genes Modulated by HIV Infection

HIV expression in individual cells was normalized to the total library size for that
cell before the assessment of HIV expression levels in cells using the Gaussian mixture
model described above and in the Supplementary Methods. Three distinct cell popu-
lations were identified: cells with no detectable HIV expression (HIV UMI = 0), cells
with low HIV expression, and cells with high HIV expression, which formed two distinct
peaks in the data (Figure 1D). Differential expression analysis between groups (e.g., HIV-
negative cells vs. cells with high levels of HIV RNA) was conducted using the FindMarkers
function in the library Seurat; the default parameters were used. These analyses were
conducted independently for CFSElow (hashed with TotalSeq™-B0252), CFSEmed (hashed
with TotalSeq™-B0253), and CFSEhigh (hashed with TotalSeq™-B0254) cells. The identified
differentially expressed genes were compared between cell subsets. To ensure that the
differences between the biomarkers identified for different cell subsets (i.e., cell division
status) were not due to random chance, the permutation technique was used to randomly
permute cell division status labels 100 times. Differential gene expression analysis between
HIV-negative cells and cells with high levels of HIV RNA was conducted on each of the
permuted datasets to construct the null distribution; empirical p-values were calculated
using this null distribution (see Supplementary Methods for details).

2.7. Identification of Gene Ontology (GO) Terms and Pathways Over-Represented for Differentially
Expressed Genes

We employed the over-representation-based enrichment analysis using a one-sided
Fisher’s exact test (using hypergeometric distribution) and the pathways included in
Molecular Signatures Database (MSigDB) v 7.5, Kyoto Encyclopedia of Genes and Genomes
(KEGG), Reactome, and Gene Ontology (GO) databases using the R library msigdbr [21].

3. Results
3.1. Cell Filtering and Phenotypic Assessement

Despite taking extra care to ensure that cells in samples designated for scRNA-Seq are
viable, some cells may become apoptotic during the sort for viable cells or shortly after the
sort. These cells can be detected in scRNA-Seq data as those that have a high percentage
of reads mapping to mitochondrial genes, or cells with a small number of genes detected.
Filtering out cells of poor quality is an important step to facilitate data analysis.

In three replicate experiments, conducted using cells from three different blood donors,
scRNA-Seq data were generated for 8715, 2913, and 6174 cells, respectively, for a total of
17,802 cells in all three experiments. Table 1 shows the summary of the read coverage in
each experiment.

Table 1. Summary of read coverage in the three replicate experiments.

Experiment 1 Experiment 2 Experiment 3

Total number of cells 8715 2913 6174
Mean reads per cells 23,219 62,097 32,774

Median genes per cell 1689 2859 2050

Following the removal of cells with a high percentage of reads mapping to the mito-
chondria genes and having a small number of genes detected, the final datasets contained
6436, 2139, and 5334 cells, respectively. To reduce the number of tests during differential
gene expression analysis, non-informative genes (not expressed in any of the cells) were
removed, resulting in a total of 23,171 genes available for further analyses. Following the
integration of the three datasets, the final set contained 13,909 cells, of which 4264 cells



Pathogens 2023, 12, 511 6 of 19

divided many times, 4136 cells divided a few times, and 4047 were non-dividing cells
(Figure 2A). The remaining 1462 cells did not have any hashes. We first conducted the anal-
ysis of cell phenotypes based on unsupervised clustering (Figure 1B). The four identified
clusters had distinct markers. Clusters 0 and 1 were characterized by the downregulation
of genes involved in cell proliferation, while cells in cluster 2 had elevated expression
of genes involved in cell proliferation (Figure 1C). Markers with the highest levels of ex-
pression in cluster 3 were markers of the effector cell subset with cytotoxic properties [22]
(Figure 1C and Table S1). Clusters 0 and 3 overlapped with non-dividing cells (hashed
with TotalSeq™-B0254), while clusters 1 and 2 were enriched for cells that divided a few or
many times (hashed with TotalSeq™-B0253 and TotalSeq™-B0252, respectively) (Figure 1B
vs. Figure 2A).
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Figure 2. Characterization of cells by cell division status and the levels of HIV RNA. The cells that
divided many or few times, or cells that remained non-dividing, were extracted from the integrated
Seurat object. (A) Log-transformed UMIs of each of the antibody hashes were pasted on top of
cell clusters produced by the unsupervised clustering based on cell transcriptomes (Figure 1B).
(B) Log-transformed HIV UMIs were plotted for each cell subset.

3.2. Evaluation of HIV Expression Levels in Different Cell Subsets

HIV expression levels (UMI) exhibited a bimodal distribution (Figure 1D). We used the
Gaussian mixture model to identify a threshold to distinguish the two populations of cells,
with high and low HIV RNA expression (threshold = 5.030465 log HIV UMI) (Figure 1D).
Table 2 presents cell counts by the level of HIV expression and the number of cell divisions.

Table 2. Cell counts by the level of HIV expression and the number of cell divisions.

Cell Subset High HIV RNA Low HIV RNA HIV-Negative

Divided many times 406 3314 544
Divided a few times 1471 2351 314

Non-dividing 838 2779 430

Total 2715 8444 1288

Cells with high expression of HIV RNA represented around 22% of all cells in the
experiment. This number is comparable to the percentages of cells with p24 expression
on day 7 post-infection, detectable by flow cytometry [15]. It is, therefore, possible that
cells with high levels of HIV RNA expression observed in this dataset are the ones that
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actively produce infectious particles. The cells with low levels of HIV RNA may represent
cells with low levels of protein production not detectable by flow cytometry or cells with
transcriptionally active but translationally inactive proviruses. It is also possible that cells
with particularly low HIV UMI (UMI = 1 or 2) represent infected cells in which integration
has not yet occurred.

The majority of cells that expressed HIV RNA at high levels was found in the popula-
tion of cells that divided a few times (Table 3 and Figure 2B). This observation is consistent
with the idea that cells with moderate proliferative response to the TCR stimulus best
support productive HIV infection. In non-dividing cells, HIV provirus might be less active.
Cells that divided many times with active HIV infection might be more prone to death,
while HIV provirus in the surviving cells might be less active.

Table 3. Percentages of cells with high, low, and no HIV RNA by cell division status.

Cell Subset High HIV RNA Low HIV RNA HIV-Negative

% cells that divided many times 15.0 39.2 42.2
% cells that divided a few times 54.2 27.8 24.4

% non-dividing cells 30.9 32.9 33.4

Total 100 100 100

3.3. Identification of Genes Modulated by Productive HIV Infection in Different CD4+ T
Cell Subsets

Because HIV RNA expression exhibited bimodal distribution, and the percentage of
cells with high levels of HIV RNA coincided with previously observed proportions of cells
expressing the p24 protein, we decided to characterize transcriptomic remodeling in cells
with high and low levels of HIV RNA separately. We first compared gene expression in cells
with high levels of HIV RNA (that is, greater than the identified threshold) to that in HIV-
negative cells separately for each of the cell subsets with varia- ble proliferative responses
to the TCR stimulus. For cells that divided many times, 326 differentially expressed genes
were identifed; for cells that divided a few times—431 genes were identified; and for
non-dividing cells—252 genes were identified (Table S2). One hundred and one genes
(16.1%) were differentially expressed in common (Figure 3A).

Despite some commonalities in transcriptomic remodeling induced by HIV in different
cell subsets, the degree of modulation of some genes by HIV varied. To focus on more
biologically relevant differences, we thresholded any difference in modulation to 1.5 to
identify five such genes: Jun proto-oncogene, AP-1 transcription factor subunit (JUN),
MX dynamin like GTPase 1 (MX1), ribosomal protein S26 (RPS26), GTPase, IMAP family
member 7 (GIMAP7), and S100 calcium-binding protein A11 (S100A11) (Figure 3B). JUN
was upregulated, and GIMAP7 and S100A11 were downregulated the most in cells that
divided a few times; MX1 was upregulated the most in cells that divided many times; and
RPS26 was downregulated the most in non-dividing cells (Figure 3B,C).

Further, some genes were found to be differentially expressed only in one of the cell
subsets: cells that divided many times, cells that divided a few times, or non-dividing
cells. To test whether these differences were not due to random chance, we have randomly
permuted (reassigned) cell division status for each cell and repeated the analysis 100 times
(please see Supplementary Methods for details). This analysis demonstrated that the
identified differences in transcriptomic remodeling between cell subsets were not random.
To focus on stronger biological differences, we selected genes with absolute fold change
in expression of greater than 1.5 between cells with high levels of HIV RNA expression
and HIV-negative cells. With this additional criterion, 7 genes were uniquely modulated in
non-dividing cells; 15 genes were uniquely modulated in cells that divided a few times;
and 4 genes were uniquely modulated in cells that divided many times (Figure 3C). The
highest negative fold changes (greater than 2- and up to 12.5-fold) were observed for genes
identified for the non-dividing cell subset (Table S2 and Figure 3C). Interestingly, when
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the expression of these genes was visualized on unsupervised cell clusters, it was evident
that they were highly expressed on non-dividing cells phenotypically similar to cytotoxic
effector cells (Figure 3D). This cluster was also dys-enriched for cells infected with HIV.
Therefore, the most likely explanation for these results is the reduced susceptibility of non-
dividing cytotoxic effector cells to HIV infection compared to other non-dividing cells. To
test this hypothesis, we conducted the Pearson’s Chi-squared test for count data (chisq.test
function in R) for cytotoxic (cluster 3) vs. non-cytotoxic non-dividing cells. This analysis
demonstrated statistically significant dys-enrichment (p < 0.001) for cells with high levels of
HIV RNA among the non-dividing cells from the cytotoxic cell cluster (3.8%, compared to
21.4% among non-cytotoxic cells), and enrichment of HIV-negative cells (30.6%, compared
to 9.8% among non-cytotoxic cells). The proportions of cells with low levels of HIV RNA
were similar (66% in cytotoxic cells vs. 69% in non-cytotoxic cells, p = 0.45). These results are
consistent with the idea that the cytotoxic non-dividing cells may indeed be less susceptible
to HIV infection, and in particular, do not support productive HIV infection to the same
level as the non-cytotoxic cells.
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subsets that divided many times, a few times, or remained non-dividing. (B) A heatmap of fold
changes in gene expression modulation by HIV for genes that were identified as differentially
expressed for each of the cell subsets, with absolute differences between the subsets greater than
1.5-fold. (C) Expression of genes that were identified as differentially expressed in common or
uniquely for different cell subsets was visualized using the DotPlot function. The size of the circle
indicates the percentage of cells where each marker is expressed; the color indicates the average
level of expression (log normalized scaled UMI). The red boxes emphasize cases where genes were
significantly differentially expressed between HIV-negative cells and cells with high levels of HIV
RNA (Bonferroni-corrected p-value less than 0.05). (D) Non-dividing cells were extracted from the
Seurat object. Log-transformed UMIs of selected genes differentially expressed between HIV-negative
cells and cells with high levels of HIV RNA were plotted for the subset of non-dividing cells according
to their position in phenotypic clusters (Figure 1B). Expression of these genes was enriched in cells
from cluster 3 (red circle), which phenotypically represent cytotoxic effector cells. Cells infected with
HIV were dys-enriched in this cluster (red circle). Each dot represents an individual cell; X- and Y-axes
represent the two-dimensional coordinates of each cell following the reduction of dimensionality of
gene expression space using principal component analysis and uniform manifold approximation and
projection (UMAP).

3.4. Functional Analysis of Genes Modulated by HIV during Productive Infection

To better understand the biology of response to HIV infection, we next conducted
GO term and pathway gene set enrichment analyses for differentially expressed genes
identified for each cell subset. Eleven GO terms were enriched for differentially expressed
genes in common, with many terms related to ribosome and translation (Table S3). Thirty-
five Reactome pathways were enriched for differentially expressed genes in common,
with terms related to translation highly represented in this category. Among KEGG and
MSigDB pathways, a lot of terms were found in common that were related to viral infection
and interferon response (Table S3). These data indicate that regardless of the strength of
proliferative responses to the TCR stimulus, HIV infection induces similar transcriptomic
remodeling, common to infection with other viruses, such as influenza, cytomegalovirus,
and SARS-CoV2 (see terms related to these infections in Table S3). Interestingly, even
though the same processes were enriched for differentially expressed genes, specific genes
involved and/or the magnitude of change of their expression in some cases was cell
subset-dependent (Figure 4).

In addition to common responses, some biological processes were enriched for dif-
ferentially expressed genes uniquely for each of the cell subsets: cells that divided many
times, cells that divided a few times, or non-dividing cells. To focus on stronger biological
differences, we considered terms that were found enriched in more than one category.
For example, estrogen signaling terms were enriched for cells that divided many times in
both KEGG (estrogen signaling pathway) and Reactome (ESR-mediated signaling) databases
(Table S3). For cells that divided a few times, cellular senescence pathways were enriched in
both KEGG and Reactome databases. Terms related to the cell division process were found
both among GO terms (spindle and spindle pole) and in the MSigDB database (G2M checkpoint)
(Table S3). Non-dividing cells shared terms related to immune responses in KEGG (antigen
processing and presentation) and Reactome (antigen presentation: folding, assembly, and peptide
loading of class I MHC) databases (Table S3).

To gain a better understanding of the nature of the observed unique responses, we
viewed the expression of individual genes across cells from the different cell subsets
(Figure 5). Despite a GO term or pathway being enriched for differentially expressed genes
in the case of a single cell subset, some genes from this GO term or pathway might be
significantly differentially expressed in all three cell subsets (Figure 5). In other cases,
the difference in gene expression was significant in two out of three cell subsets. Yet for
other genes, the difference in expression did not reach statistical significance for more
than one cell subset. These observations explain why a pathway or a GO term might be
identified for one, but not other cell subsets as enriched for differentially expressed genes.
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Although in the majority of cases genes were modulated in the same direction in all cell
subsets, sometimes it was not the case. For example, cathepsin B (CTSB) was significantly
upregulated in response to HIV infection in non-dividing cells but was downregulated in
dividing cells (Figure 5, KEGG+Reactome: antigen presentation). Overall, these results are
consistent with the idea that the identified pathways are indeed modulated in a unique
manner based on cellular proliferative responses to the TCR stimulus.
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Figure 4. Expression of genes from pathways common for different CD4+ T cell subsets. Gene
expression from each common pathway was visualized using the DotPlot function. All genes found
at least for one cell subset were included. The size of the circle indicates the percentage of cells
where each marker is expressed; the color indicates the average level of expression (log-normalized
scaled UMI). The red squares emphasize cases when genes were significantly differentially expressed
between HIV-negative cells and cells with high levels of HIV RNA (Bonferroni-corrected p-value less
than 0.05).
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Figure 5. Expression of genes from pathways unique for different CD4+ T cell subsets. Genes from
pathways related to the same process found in different databases were combined, and expression
was visualized using the DotPlot function. The size of the circle indicates the percentage of cells
where each marker is expressed; the color indicates the average level of expression (log-normalized
scaled UMI). The red squares emphasize subsets for which pathways were significantly enriched
for differentially expressed genes. The asterisks indicate individual genes that were significantly
differentially expressed; in the case of cell subsets where pathway enrichment was not achieved, only
some but not all genes were expressed differentially.

3.5. Identification of Genes Differentially Expressed in Cells with Low Levels of HIV RNA in
Different CD4+ T Cell Subsets

Next, transcriptome remodeling was assessed in cells with low levels of HIV RNA
expression: 245 differentially expressed genes were identified for cells that divided many
times, 182 genes for cells that divided a few times, and 73 genes for non-dividing cells
(Table S4). Twenty genes (5.6%) were modulated in common (Figure 6A). Similar to the
observations with productively infected cells, genes modulated by HIV infection uniquely
in cells with differential proliferative responses to the TCR stimulus were also present
(Table S4). When genes were filtered based on the fold change in expression (absolute fold
change greater than 1.5), three genes were uniquely modulated in non-dividing cells and
eight genes were uniquely modulated in cells that divided many times (Figure 6B). The
majority of these genes (except family with sequence similarity 8 member A, FAM118A)
were downregulated in response to HIV infection. Six genes with the highest negative fold
changes overlapped with the gene set identified for productively infected cells: C-C motif
chemokine ligand 3 (CCL3), granulysin (GNLY), killer cell lectin like receptor D1 (KLRD1),
granzyme B (GZMB), HOP homeobox (HOXP), and cystatin F (CST7), mapping to the
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cluster of cells with cytotoxic effector phenotype. Because the proportions of cells with low
levels of HIV RNA were similar between non-dividing cells in the cytotoxic cell cluster
and the rest of the non-dividing cells (see Section 3.3), this observation cannot be explained
by the resistance of cytotoxic cells to low levels of HIV infection. We therefore accessed
transcriptomic remodeling of these genes by HIV infection separately in cytotoxic and non-
cytotoxic cells. As expected, only a small percentage of non-dividing HIV-negative cells
found outside of the cytotoxic cell cluster expressed these genes, while expression of these
genes was high in the majority of the cells in the cytotoxic cluster (Figure 6C). These genes
were downregulated in the presence of HIV infection; the reduction of expression was
the most pronounced in cytotoxic cells that expressed high levels of HIV RNA, although
even low levels of HIV expression caused the reduction of expression of these genes in
cytotoxic cells (Figure 6C). Overall, these results are consistent with the idea that even low
levels of HIV infection induce the downregulation of cytotoxic genes, possibly reflecting
the inhibition of antiviral responses by the incoming virus.
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Figure 6. Identification of genes differentially expressed in cells with low levels of HIV RNA in
different CD4+ T cell subsets. (A) A Venn diagram comparing genes expressed differentially between
HIV-negative cells and cells with low levels of HIV RNA for cell subsets that divided many times,
a few times, or remained non-dividing. (B) Expression of genes identified as differentially expressed
uniquely for different cell subsets was visualized using the DotPlot function. The size of the circle
indicates the percentage of cells where each marker is expressed; the color indicates the average
level of expression (log-normalized scaled UMI). The red boxes emphasize cases where genes were
significantly differentially expressed between HIV-negative cells and cells with low levels of HIV RNA
(Bonferroni-corrected p-value less than 0.05). (C) Expression of cytotoxic genes in non-dividing cells
from the cytotoxic cell cluster (cluster 3 in Figure 1) and non-cytotoxic cells. The general trend is the
downregulation of the cytotoxic genes by HIV. The size of the circle indicates the percentage of cells
where each marker is expressed; the color indicates the average level of expression (log-normalized
scaled UMI).

3.6. Functional Analysis of Genes Modulated by HIV in Cells with Low Levels of HIV RNA

The analysis described for productively infected cells was conducted using cells
that had low levels of HIV RNA. Among categories enriched for differentially expressed
genes in common for dividing and non-dividing cells, there were multiple GO terms
and Reactome pathways related to ribosome and translation, and Reactome and KEGG
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pathways related to viral infection (Table S5). Even though overall fewer terms were
enriched for genes modulated in cells with low levels of HIV RNA compared to cells with
high levels of HIV RNA, a total of 39 GO terms and pathways (67.2%) were shared between
the datasets. Seventeen (29.3%) were unique for cells with productive HIV infection, and
two (3.4%) for cells with low levels of HIV RNA. These data indicate that regardless of
the strength of proliferative responses to the TCR stimulus and the activity of the HIV
provirus, HIV infection induces similar transcriptomic remodeling. The terms unique for
productive infection included additional terms related to translation and viral infection.
The unique terms identified for cells with low levels of HIV RNA were endosomal/vacuolar
pathway and downregulation of SMAD2/3:SMAD4 transcriptional activity (both from the
Reactome database).

In addition to common responses, some GO terms and pathways were uniquely
enriched for differentially expressed genes for some, but not all cell subsets. Terms related
to the cell division process prevailed among GO terms, KEGG, and Reactome pathways
for cells that divided many or few times (Table S5). Pathways related to senescence were
enriched for genes modulated in cells that divided a few times; pathways related to antigen
processing and presentation were enriched for genes modulated in non-dividing cells
(Table S5). As similar results were obtained with productively infected cells; it appears
that some transcriptomic changes that vary across cell subsets with different proliferative
responses to the TCR stimulus are independent of the activity of the HIV provirus. However,
other responses appear to also depend on the HIV transcriptional activity (Table S5).

4. Discussion

ScRNA-Seq is a powerful method to conduct gene expression profiling in individual
cells. Combined with the ability to hash cells using antibodies conjugated to different
oligonucleotides enabled our study, which, for the first time, profiled gene expression in
individual cells that differed by their proliferative responses to the TCR stimulus. Unsu-
pervised transcriptomic analysis of CD4+ T cells in the present study identified four major
clusters (Figure 1B), two of which were enriched for non-dividing cells, while the other
two contained a mixture of cells that divided a few or many times (Figures 1C and 2A).
Thus, hashing the cells based on the number of cell divisions facilitated a better separation
of these cells in our experiments, as opposed to solely relying on unsupervised phenotypic
clustering following the exposure to the TCR stimulus.

The main objective of this study was to identify gene expression signatures associated
with HIV infection in CD4+ T cell subsets with differential proliferative responses to the
TCR stimulus. This objective was inspired by the ultimate goal of understanding how
markers of latently infected cells are developed, and the fact that the strength of the TCR
signaling at the time of infection affects the characteristics of the latent reservoir [19].

Multiple transcriptomic studies used either microarrays or RNA-Seq, and most re-
cently scRNA-Seq aiming to identify signatures of active HIV infection [23–33]. While our
study corroborated many of the results from these prior studies, it provided additional
in-depth information regarding which cells, dividing or non-dividing, displayed certain
transcriptomic responses to HIV infection. For example, interferon response was a com-
mon signature identified in multiple studies, including in vitro infection [23,32,33], in vivo
responses of activated CD4+ T cells [25], and total CD4+ T cells obtained from viremic
people with HIV [24,29–31]. Consistent with these observations, terms related to interferon
signaling were enriched for differentially expressed genes in our study. However, our
study design allowed us to determine that a number of interferon-stimulated genes were
differentially modulated in non-dividing and dividing cells. For example, some of the HIV
restriction factors induced by interferons, such as interferon-induced transmembrane pro-
tein 1 (IFITM1) and ISG15 ubiquitin-like modifier (ISG15), were induced by HIV infection
in all cells; however, bone marrow stromal cell antigen 2 (BST2, also known as tetherin)
and IFITM2 were upregulated only in dividing cells, particularly cells that divided many
times (Figure 4). Other genes, involved in interferon gamma response, AT-Rich Interaction
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Domain 5B (ARID5B), and major histocompatibility complex class I, A (HLA-A), exhibited
unique modulation in non-dividing cells (Figure 4).

Responses to HIV infection specific to non-dividing and dividing cells were also
observed in prior studies that were conducted without separating the cell subsets. For
example, the antigen processing and presentation pathway was identified by Langer and
colleagues [27], and oxidative stress by Shytaj et al. [28]. Our present study demonstrated that
antigen processing and presentation was the most pronounced response in non-dividing cells
(Figure 5 and Table S3), while the Reactome pathway oxidative stress-induced senescence was
enriched for differentially expressed genes only for cells that divided a few times (Table S3).
It is likely that when cells are experimentally activated to facilitate infection with HIV, such
as was done in the Shytaj et al. study, signatures of dividing cells overwhelm any signal
that comes from the non-dividing cells, which represent the minority. A signature of non-
dividing cells (antigen processing and presentation) identified by Langer and colleagues [27]
is likely explained by spinoculation being their method of cell infection. In our study, we
were able to profile signatures of all cell subsets because sorted cells were added to each
sequencing sample in equal proportions.

The identified differentially expressed genes in any transcriptomic profiling study may
represent the result of certain cell types being preferentially infected by HIV, or a specific
cellular response to HIV infection. ScRNA-Seq offers a unique opportunity to differentiate
between these two scenarios. For example, we have determined that the cluster of non-
dividing, cytotoxic effector cells was enriched for uninfected cells and dys-enriched for
cells with high levels of HIV RNA (Figures 1B and 2B). We observed that cytotoxic genes
had a higher expression on HIV-negative non-dividing, but not dividing cells (Figure 3C).
Thus, the apparent downregulation of these genes in non-dividing HIV-infected cells could,
in part, be the result of the cytotoxic effector cells being less permissive to HIV infection.
Interestingly, the proportions of cells with low levels of HIV RNA were similar between the
cytotoxic and non-cytotoxic cells, suggesting that cytotoxic cells do not support productive
HIV infection, rather than being less permissive to HIV infection in general. Assessment
of cytotoxic gene expression separately in cytotoxic and the rest of the non-dividing cells
demonstrated that HIV infection did result in downregulation of the cytotoxic genes
(Figure 6C), which may be reflective of inhibition of antiviral responses by the incoming
virus. Thus, the downregulation of cytotoxic genes by HIV infection in the present study
represents both the result of the specificity of cells not supporting productive HIV infection
and the cellular responses to HIV. The cytotoxic effector memory cell clones were enriched
for HIV-positive cells in people with HIV during viremia and after viral suppression on
antiretroviral therapy [34]. It is possible that due to low levels of HIV gene expression
in cytotoxic cells, they survive and expand preferentially. Surprisingly, upregulation of
cytotoxic genes, and in particular GZMB in people with HIV, was reported [34], which
could be the result of the host immune response that developed over longer-term infection
(20–48 days, compared to 7 days in the present study). The majority of other genes in
the present study were modulated in cells within the major clusters of dividing and non-
dividing cells; therefore, we conclude that, in most cases, they were modulated in response
to HIV and did not reflect preferential support of HIV infection.

The limitation of our study is the short-term culture. It cannot, therefore, be concluded,
solely from our results, that the observed signatures during productive infection have
relevance to HIV latency. It is not known how long a certain gene expression change may
persist. The time course conducted by Bauby and colleagues indicates that some genes
are modulated as early as 4 h post-infection, and a subset of these transcriptomic changes
remain in effect for 48 h [32]. When we compared these data to results obtained from our
study 7 days post-infection, we found that some of these transcriptomic changes remain.
For example, GIMAP7 was consistently down- and BCL6 transcription repressor (BCL6)
upregulated from 4 h to 7 days post-infection ([32] and the present study), regardless of
the cellular proliferative response to the TCR stimulus (Figure 7A). Upregulation of G
protein-coupled receptor 65 (GPR65) persisted until day 7 post-infection, but only in the
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subset of cells that divided many times (Figure 7A). Other long-term cell subset-dependent
signatures included upregulation of chromosome 11 open reading frame 71 (C11ORF71)
and downregulation of diacylglycerol kinase alpha (DGKA) and SEC62 homolog preprotein
translocation factor (SEC62) in cells that divided a few times (Figure 7A). CD44 molecule
was downregulated from 4 to 48 h in the Bauby et al. study [32], but was insignificantly
downregulated only in cells that divided many times in our study (Figure 7A). In contrast,
it was significantly upregulated in non-dividing cells (Figure 7A). This result could be
missed in the Bauby et al. study, since they activated the cells prior to infection, with the
majority of cells being dividing. Further, estrogen-induced osteoclastogenesis regulator 1
(EEIG1, previously known as FAM102A), sphingosine-1-phosphate receptor 4 (S1PR4), and
ring finger protein 213 (RNF213) were downregulated up to 7 days post-infection solely
in dividing cells, while H3.3 Histone B (H3-3B, also known as H3F3B) was downregu-
lated in cells that divided many times and non-dividing cells ([32] and the present study,
Figure 7A). A subset of these genes was also modulated in cells with low levels of HIV
RNA (Figure 7A), consistent with the idea that some signatures are shared in cells with
different proviral activity.

To further evaluate whether signatures of productive infection may be relevant to
latency, we conducted the comparison of differentially expressed genes identified in the
present study to genes that were found associated with in vitro latency established fol-
lowing productive infection [35] or in resting cells via cell-to-cell virus transmission from
productively infected cells [36]. Thirty-five genes that were found differentially expressed
in cells that divided many times and had high levels of HIV RNA were found to overlap
with genes that were associated with latency established after productive infection [35]
(Figure 7B). Twenty-nine genes that were found differentially expressed in non-dividing
cells with a high level of HIV RNA were found to overlap with genes that were associated
with latency established after infection of resting cells [36] (Figure 7B). These results are
consistent with the idea that some markers of latently infected cells originate from the time
when the virus in these cells was active. Furthermore, only six genes from these two lists
were common: zinc finger matrin-type 3 (ZMAT3), growth arrest and DNA damage in-
ducible alpha (GADD45A), MDM2 proto-oncogene (MDM2), alipoprotein B mRNA editing
enzyme catalytic subunit 3H (APOBEC3H), phosphohistidine phosphatase 1 (PHPT1), and
XPC complex subunit, DNA damage recognition and repair factor (XPC) (Figure 7B). Such
a small overlap suggests that at least some of the transcriptomic responses to the initial
HIV infection in dividing and resting cells are consistent with the signatures of HIV latency
established in activated cells returning to quiescence and resting cells, respectively. Of note,
we also detected unexpected overlaps in gene expression signatures between dividing cells
in this study and latency established in resting cells [36] as well as non-dividing cells in this
study and latency established in activated cells returning to quiescence [35]. These prior
studies were conducted using the in vitro models of HIV latency comprised of mixtures of
latently infected and uninfected cells, where the latter represent the majority. It is, therefore,
not entirely possible to distinguish between signatures of latency and the effects of the
exposure of the uninfected cells to the virus during culture. We suspect that some of these
unexpected overlapping signatures may be the result of exposure of cells to the virus in
these prior studies. The present study conducted at the single-cell level overcomes this
limitation and allows for the profiling of transcriptomic signatures of cells that are infected.

Lastly, some of the latency biomarkers that enriched for latently infected cells from
persons with HIV [2,3,5–7], were modulated on productively infected cells in our study
(Figure 7C). Furthermore, some of these differences in gene expression were dependent
on the strength of the cellular proliferative response to the TCR stimulus (Figure 7C). For
example, integrin subunit alpha 4 (ITGA4, also known as CD49d) was upregulated in
cells with low levels of HIV RNA in non-dividing cells and cells that divided a few times,
and in all HIV-positive cells that divided many times. Selectin L (SELL, also known as
CD62L) had a significantly lower expression and CD7 had a significantly higher expression
on cells with high levels of HIV RNA that divided a few times. CD38 was upregulated
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in non-dividing cells with high levels of HIV RNA and all HIV-positive dividing cells
(Figure 7C). ITGA4+SELL- markers were part of the panel developed by Neidleman et al.
to enrich for latently infected cells [7]. Upregulation of ITGA4 and downregulation of SELL
in HIV-infected cells in this study are consistent with the idea that at least some of the
initial responses to HIV infection may continue to persist into the latency stage long-term
after infection. Thus, the identification of biomarkers using short-term in vitro systems and
high-throughput sequencing with subsequent validation in individual latently infected
cells from persons with HIV at the protein level is warranted as a viable approach to the
identification of latency biomarkers.
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Figure 7. Evaluation of the identified differentially expressed genes as long-term markers of HIV
infection, including latent infection. (A) Expression of genes modulated in the time course experiment
conducted by Bauby et al., 2021 [32] was evaluated 7 h post-infection in our study using dot plots.
(B) Differentially expressed genes identified in this study were compared to transcriptomic signatures
of HIV latency reported previously in the literature. Genes modulated in cells that divided many times
and had high levels of HIV RNA were compared to genes associated with latency established in vitro
in productively infected cells that subsequently returned to quiescence [35]; genes modulated in



Pathogens 2023, 12, 511 17 of 19

non-dividing cells with high levels of HIV RNA were compared to genes modulated in latency
established in vitro directly in resting cells [36]. The dot plot shows the expression of genes that
were identified in common for these two comparisons. (C) Expression of latency biomarkers that
were previously reported to enrich for latently infected cells from people with HIV was evaluated
in different cell subsets from our study. A subset of markers associated with latency was shown
to be modulated during initial HIV infection. In all dot plots, the size of the circle indicates the
percentage of cells where each marker is expressed; the color indicates the average level of expression
(log-normalized scaled UMI). Descours et al. [3]; Beliakova-Bethell et al. [6]; Fromentin et al. [5];
Iglesias-Ussel et al. [2]; Neidleman et al. [7]. Asterisks in (A,C) indicate significant modulation of
genes in the present study (Bonferroni-corrected p-value less than 0.05); all genes used for comparison
in (B) were significant.

5. Conclusions

In summary, our study demonstrated variable transcriptomic remodeling by HIV
infection in cells with differential responses to the TCR stimulus. By further evaluating
the existing literature on biomarkers of HIV latency, we conclude that some of the initial
transcriptomic responses to infection may persist in cells for a long time and remain on
latently infected cells. Despite the potential lack of specificity of a subset of latency markers,
using these biomarkers for targeting the latent HIV reservoir would still be a viable strategy,
with a caveat that productively infected cells will be also targeted.

The observed differential responses of dividing and non-dividing cells to initial HIV
infection, which may continue into the latency stage, may explain, at least in part, the
absence of a suitable biomarker, comprised of even more than a single molecule, that can
define the entire cellular reservoir of the latent HIV provirus. The results from this study
indicate the importance of considering different cell subsets that contribute to the latent
reservoir when biomarkers of latency are identified. It is possible that other phenotypic
differences in infected cells, such as the maturation stage, contribute to the biomarker
heterogeneity. Further studies will be needed to dissect the complete molecular signatures
of the different subsets of the latent HIV reservoir.
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