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Abstract: Dengue fever remains a significant public health concern in many tropical and subtropical
countries, and there is still a need for a system that can effectively combine global risk assessment
with timely incidence forecasting. This research describes an integrated application called PIC-
TUREE—Aedes, which can collect and analyze dengue-related data, display simulation results, and
forecast outbreak incidence. PICTUREE—Aedes automatically updates global temperature and pre-
cipitation data and contains historical records of dengue incidence (1960–2012) and Aedes mosquito
occurrences (1960–2014) in its database. The application utilizes a mosquito population model to
estimate mosquito abundance, dengue reproduction number, and dengue risk. To predict future
dengue outbreak incidence, PICTUREE—Aedes applies various forecasting techniques, including
the ensemble Kalman filter, recurrent neural network, particle filter, and super ensemble forecast,
which are all based on user-entered case data. The PICTUREE—Aedes’ risk estimation identifies
favorable conditions for potential dengue outbreaks, and its forecasting accuracy is validated by
available outbreak data from Cambodia.

Keywords: web application; dengue transmission; mosquito population estimation; dengue risk
estimation; dengue incidence forecasts

1. Introduction

The PICTUREE—Aedes web application is an innovative system that integrates tools
for displaying dengue-related data, visualizing simulated results, and forecasting future
cases for an ongoing outbreak. This application is a product of the Predicting Insect Contact
and Transmission Using histoRical Entomological and Environmental data (PICTUREE)
project, which was initiated in 2019.

Dengue fever is an Aedes mosquito-borne viral infection that threatens the health
of over 3 billion people in numerous tropical and subtropical regions [1]. Aedes aegypti
mosquito is the primary carrier of dengue viruses, with the ability to bite multiple individ-
uals in a brief period, and its immature phase can be found in water containers near human
dwellings [2]. The proliferation, biting rates, infective rate, and survivability rate of Aedes
mosquitoes are substantially affected by climatic conditions such as rainfall, temperature,
and relative humidity, which, in turn, have a significant impact on the spread of the dengue
virus [3–5]. The breeding time and maturity period of Aedes mosquitoes are shortened
due to global warming, resulting in the accelerated growth of the vector population [6].
Furthermore, increasing human mobility and high population density have facilitated the
geographical spread of dengue viruses over long distances [7]. Therefore, an integrated

Pathogens 2023, 12, 771. https://doi.org/10.3390/pathogens12060771 https://www.mdpi.com/journal/pathogens

https://doi.org/10.3390/pathogens12060771
https://doi.org/10.3390/pathogens12060771
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0002-1050-9770
https://orcid.org/0000-0003-2847-3494
https://orcid.org/0000-0003-4486-9229
https://doi.org/10.3390/pathogens12060771
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens12060771?type=check_update&version=2


Pathogens 2023, 12, 771 2 of 18

system is needed to aggregate collected data, analyze them, estimate parameters, and
forecast future risks and incidence to proactively combat the spread of the virus.

Numerous research studies have been conducted to identify and quantify the temperature-
dependent variables that impact the life cycle of the mosquito vector, due to the susceptibil-
ity of the mosquito’s life cycle to temperature [8–11]. Mathematical equations can be used
to model the dynamics of the mosquito population and to estimate the parameters such
as mortality, transition rate, and oviposition rate at different temperatures [5]. Another
dengue transmission model, which took into account various temperatures, survival rates,
between-bite intervals, and extrinsic incubation periods, discovered that an increase in
mosquito longevity and temperature led to an augmentation in dengue transmission [12].

There has been an increasing number of approaches to predicting the incidence of in-
fectious diseases, including the use of statistical models [13,14], state-space compartmental
models [15–18], deep learning methods [19–21], etc. The state-space models coupled with
data assimilation algorithms can generate real-time forecasts and estimate key parameters.
The estimated model parameters can then be utilized to determine the basic reproduction
number of the disease, the carrying capacity of the vector population, and other relevant
metrics. A state-space compartmental disease model combined with an ensemble Kalman
filter (EnKF) was employed to estimate and predict future dengue incidence, infection
rates, and mosquito emergence rates in [16]. Deep learning approaches, especially the long
short-term memory (LSTM) recurrent neural network, are also widely used to generate
reliable epidemic forecasts [21]. Machine learning approaches have the advantage of being
able to handle nonlinearity and complex data structures. Another emerging technique is the
ensemble forecast that enhances the forecasting accuracy of individual models [22,23]. A
superensemble forecast was developed by combining three models—susceptible, infectious,
recovered, ensemble adjustment Kalman filter, Bayesian weighted outbreaks, and historical
likelihood—using the weighted average method [23]. The superensemble was used to
predict dengue cases in San Juan, and it was found to provide more accurate forecasts
compared to individual models. The use of ensemble forecasts, which combine multiple
forecasting models or techniques, can help reduce errors and biases that may be present in
individual forecasts.

The PICTUREE—Aedes web application aggregates dengue-related data from multi-
ple sources, including global daily temperature, global daily precipitation, Aedes mosquito
occurrence, and dengue case occurrence. These data are stored in an SQL database and
can be readily visualized through user-friendly displays. The PICTUREE—Aedes web
application also provides estimations of the Aedes mosquito population, the dengue trans-
mission reproduction number Rt, and the dengue risk globally, which can be viewed by
users in both space and time. Furthermore, the application employs several algorithms,
including the ensemble Kalman filter, the recurrent neural network, the particle filter, and
the super ensemble, to forecast dengue cases for an ongoing outbreak. To generate forecasts,
users must provide information about the cumulative reported cases in recent weeks, the
outbreak location, and the local population size. After processing this data, the application
outputs the statistics of the three-week forecasted cases.

2. Data

Table 1 presents a comprehensive list of the data sources. The daily global temper-
ature and precipitation data are obtained from the National Oceanic and Atmospheric
Administration (NOAA) weather stations [24]. The ERA5 hourly data provide hourly
estimates of atmospheric variables, such as temperature, pressure, and humidity, which
are used for simulation purposes [25]. The terrestrial ecoregions data are utilized to select
areas with similar climate conditions [26–28]. The Aedes mosquito occurrence dataset and
dengue occurrence dataset are geo-positioned occurrence records spanning from 1960 to
2012 [29,30]. Country-wise Google trend data for the keywords “dengue” and “fever” are
also collected. The aforementioned data are either directly displayed on the map or are
used for the simulations and forecasts [31].
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Table 1. Data sources.

Item Source Remark

Daily weather observation [24] Updated weekly
ERA5 hourly data [25] 2018–present

Terrestrial ecoregions [26–28] As of 14 December 2009
Aedes mosquito occurrence [29] 1960–2014

Dengue occurrence [30] 1960–2012
Country-wise Google trends [31] 2015–2022

3. Simulation Tools

The PICTUREE-Aedes simulations consist of two primary components: (1) the estima-
tions of dengue risk-related measures and (2) the forecasts of case number for an ongoing
outbreak. The tools graphically represent current and future risk of dengue transmission
for users based on the life history of the mosquito vector.

3.1. Estimating Dengue Risk-Related Measures

We developed a dengue transmission risk model by training a neural network classifier
over historical dengue outbreak data. The model uses the estimated vector population
and the Dengue transmission reproductive number as predictive variables. In order to
estimate the vector population and reproductive number, we developed a mechanistic
model to simulate the Ae. aegypti population. The mechanistic model incorporates the
mosquito’s temperature-dependent parameters in a system of integral equations to calculate
the mosquito population at various stages of development, including immature and adult
stages. A diagram of the mechanistic model is shown in Figure 1. The set of integral
equations precisely considers the temperature-dependent development time required
for mosquitoes to transform from an egg into adult form. Given that the development
period tends to be longer in seasons with cooler temperatures, such precise calculation is
especially crucial in estimating the mosquito population in areas that experience significant
temperature fluctuations throughout the year.

Figure 1. Life cycle of Aedes aegypti and the parameters influencing the transition between differ-
ent stages.

3.1.1. Vector Population

To accurately simulate the mosquito population fluctuations, the model accounts
for the time spent in each life history stage during the aquatic or immature portion of
the mosquito life cycle, as shown in Figure 1. The development rates of these stages are
temperature-dependent, with warmer temperatures resulting in faster development. The
temperature-dependent rates were determined from experimental data [5,8,10]. In addition
to temperature, the effect of precipitation on the mosquito population is increased through
the carrying capacity of the location: more rainfall equates to greater availability of habitats
or more containers filled with water. Alternatively, less rainfall in some urban areas results
in more irrigation or water storage, leading to an increase in filled containers, but this
is location dependent. The equations that describe the life cycle of the mosquitoes are
non-Markovian, meaning that transition times to new stages in the cycle are not exponential
random variables. The transition to a new stage happens when the development of a current
stage is complete. Moreover, the development rates are strongly temperature-dependent,
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and temperature changes throughout the year. Therefore, we use integral equations to
describe the life cycle of the mosquitoes accurately.

In order to estimate the impact of precipitation on carrying capacity, the life cycle
equations are extended to account for virus transmission and to subsequently fit the model
to various dengue outbreak data from around the world using particle filter smoothing. This
enables us to indirectly estimate the carrying capacity and its variation with precipitation.
For this process, we used 67 dengue epidemic curves from Brazil, Mexico [32], Malaysia [33],
Pakistan [34], Philippines [35], Singapore [36], Taiwan [16], Sri Lanka [37], Costa Rica [38]
and Vietnam [39]. Particle filtering is an estimation technique known as sequential Monte
Carlo, which involves iteratively updating the estimated parameters using a sequence of
observation. We used a number of new cases as observations, and the carrying capacity is
the unknown parameter that is sequentially estimated.

The local mosquito populations are calculated using the life cycle equations, daily
average temperature, and precipitation for each location around the globe with longitude
and latitude resolutions of 0.25 degrees. The result is the time-dependent profile of the
mosquito population. The calculated values are not the exact populations, rather they
reflect the variation of the mosquito population in that location through time.

3.1.2. Dengue Transmission Reproductive Number

The value of dengue’s basic reproductive number R0

R0 =
V

NH
α2φH→VφV→HγV

µVσH(µV + γV)
(1)

depends on the ratio of mosquito to human population V/NH , mosquito biting rate
α, human-to-vector and vector-to-human transmission probabilities per infectious bite
φH→V , φV→H , extrinsic incubation period in the mosquito γV , mosquito mortality rate µV ,
and infectious period of human σH . These parameters are temperature-dependent and
can be found in [40], except for V/NH . The R0 is derived assuming constant temperature
and using Markovian equations. When R0 < 1, the viral transmission will result in fewer
new cases than past cases, and the infection will burn out if maintained for sufficient time.
Conversely, interpretation that the infection is going to die out when R0 < 1 is only relevant
if this condition is satisfied for a long period. However, if the temperature is almost constant
for a period longer than the relevant periods in the transmission model, the R0 can be used
to quantify the severity of virus transmission. In other words, when R0 > 1, an infected
individual is expected to generate more infection in the population. For this reason, we
utilize the value of R0 to gauge the severity of virus transmission. The mosquito-to-human
population ratio V/NH is time-dependent and is affected by the carrying capacity of the
environment. To estimate the carrying capacity per human, we fit the transmission model
to epidemic dengue curves from different locations around the world with a given human
population. For each location, we obtain a constant component for the carrying capacity
and a parameter that determines the variation of the carrying capacity with precipitation.
We use the distribution of these parameters to find a statistical model for the carrying
capacity per human. Although this model may not give the exact value for the carrying
capacity, we use it as an approximate input in the calculation of R0. Our calculation shows
that R0 is almost proportional to the carrying capacity; therefore, the calculated R0 provides
a good approximation for the time-dependent profile of the exact reproductive number.
Higher R0 values indicate greater dengue virus transmission in an area; therefore, users
can quickly understand where control measures need to be initiated and evaluate if they
are working by observing changes in R0.

3.1.3. Dengue Transmission Risk

To estimate dengue transmission risk, we use the dengue transmission reproductive
number and vector population calculated using the mechanistic model as predictive vari-
ables. For each location, we calculate the one-week moving average of the variables and
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apply them in a trained neural network classifier to obtain a time-dependent transmission
risk. Assuming the historical presence of the mosquitoes and the virus, the risk factor is a
value between zero and one corresponding to the least and the most favorable environmen-
tal condition, respectively, for dengue transmission. To train the model, we used dengue
epidemic data from Brazil, Mexico, Malaysia, Pakistan, Philippines, Singapore, Taiwan, Sri
Lanka, Costa Rica and Vietnam. For each one of the epidemic curves, we manually tagged
periods of high and low transmission. If the number of new cases is small and comparable
to the baseline for the location, we tag that period as zero, otherwise as one. In addition,
we calculate the corresponding predictive variable as described above for each location
and period. Using the tag values as the target variable and the corresponding predictive
variables, we train the neural network classifier for risk evaluation.

In Figure 2, we show the data used for training as green and yellow dots, indicating
low (0) and high (1) transmission, respectively. The neural network classifier is a nonlinear
model that assigns a risk value between zero and one to points on the surface defined by
the predictive variables V/Nh and R0. Within the depicted image, regions displaying risk
values exceeding 0.5 are indicated by the color red, while those with values below 0.5 are
represented by the color blue.

Figure 2. Dengue transmission risk map. Green and yellow dots represent training data; red and
blue indicate the risk value above and below 0.5.

3.2. Forecasting Dengue Case Number

In this section, we outline the methodology we have developed for predicting the
future incidence of ongoing dengue outbreaks. Our approach entails analyzing user-
provided data, including reported incidence, location, and date, and extracting pertinent
environmental information from our extensive database. These data are then utilized to
generate forecasts, which are presented by the statistics including upper quantile, median,
and lower quantile values of the forecast distribution. Case forecasts help PICTUREE–
Aedes users understand how the dengue outbreak will change with time. Forecasts of
increasing cases suggest that allocating addition resources to an area is needed due to
continued transmission, whereas decreasing case forecasts suggest that resources can be
reallocated and that the outbreak is getting smaller.

3.2.1. SEIR-SEI-EnKF Forecast

The SEIR-SEI-EnKF forecasts are generated by employing the disease transition model
SEIR-SEI combined with the EnKF data-assimilation technique. The SEIR-SEI-EnKF model
is a new approach for estimating and forecasting dengue outbreak dynamics, which has
been detailed in [16]. The SEIR-SEI model is a compartmental model that describes the
transmission of the dengue virus between the host and vector population groups. This
model considers the compartments for the human population and vector population, such
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as susceptible (SHandSV), exposed (EHandEV), infectious (IHandIV), and removed (RH).
Transitions between compartments are described by the following difference equations

Xt+1 = f (Xt) =



SH
t + λH PH

t − βV→HSH
t IV

t − µHSH
t

EH
t + βV→HSH

t IV
t − (δH + µH)EH

t

IH
t + δHEH

t − (γH + µH)IH
t

RH
t + γH IH

t − µH RH
t

SV
t + λV PV

t − βH→VSV
t IH

t − µVSV
t

EV
t + βH→VSV

t IH
t − (δV + µV)EV

t

IV
t + δV EV

t − µV IV
t

(2)

where Xt = [SH
t , EH

t , IH
t , RH

t , SV
t , EV

t , IV
t ]ᵀ, P, λ, µ, β, δ, andγ represent the population, birth

rate, death rate, infection rate, incubation rate, and recovering rate, and upper note H for
host species, and V for vector species.

The Ensemble Kalman Filter (EnKF) is a data assimilation technique that can be used to
estimate both the states and parameters of a system simultaneously. The EnKF maintains an
ensemble of the state variables Xt and the time-varying parameters Φt = [βV→H βH→VλV ]ᵀ,
which can be put together in a matrix At ∈ R10×N where N is the number of ensembles

At =

[
X1

t X2
t . . . XN

t
Φ1

t Φ2
t . . . ΦN

t

]
. (3)

At each time step, the EnKF first uses the model simulations to predict the prior, which
is the expected state of the system

A−t+1 = F(At) =

{
f (Xt)

g(Φt)
+ qt (4)

where g(Φt) is the difference equation for the parameters, and qt is the model noise.
Therefore, the ensemble covariance for the prior is given by

σ
pri
t =

1
N − 1

(A−t − Ā−t )(A−t − Ā−t )
ᵀ, (5)

where Ā−t is the mean of ensemble members.
To update the estimated state and parameters of the system, the EnKF assimilates

new observations yt into the ensemble Ŷt = yt + εt, where εt is the perturbation vector.
The assimilation step involves comparing the predicted states of the ensemble with the
observed data and adjusting the estimated state and parameters of the system to better fit
the observations

At = A−t + Kt(Ŷt − Ht A−t ) (6)

where Kt = σ
pri
t Ht(Htσ

pri
t Hᵀ

t + σobs
t )−1 is the Kalman gain, and Ht is the measurement

index matrix, σobs
t =

εtε
ᵀ
t

N−1 . Finally, the EnKF generates a new ensemble of model simulations
by perturbing the updated estimated state and parameters of the system, and the process
repeats for the next time step. In summary, the EnKF utilizes a data assimilation approach
that combines real-time observations with mathematical models to accurately forecast
dengue epidemics, helping to inform proactive measures for disease control and prevention.

3.2.2. Neural Network Forecast

The second approach to predict weekly cases uses a recurrent neural network model,
as shown in Figure 3. Assuming that the index of the current week is represented by t,
the model uses a sequence of weekly new cases up to t, ct−4, ct−3, ct−2, ct−1, ct, as input
to predict new cases in the next three weeks. In addition to the sequence of new cases,
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the model uses the vector population and reproductive number sequences, calculated
independently using the model discussed in the previous section.

The vector population Vt+h−4, Vt+h−3, Vt+h−2, Vt+h−1, Vt+h and reproductive number
{Rt+h−4, Rt+h−3, Rt+h−2, Rt+h−1, Rt+h} include estimated vector population and repro-
ductive number in the weeks ahead. Since the calculation of these sequences requires
temperature as input, we use the average of temperature for the corresponding period in
the past years. In addition to the sequences we discussed, we feed the error of the latest
two predictions to the neural network model. We train this neural network model using
historical dengue epidemic curves from different locations around the world. Although
it is possible to train a neural network model that generates one, two, and three weeks
of predictions, we choose to train independent models for each one of these prediction
horizons. Here, the obtained output is a single value for each prediction time interval.

Figure 3. Neural network model for predicting dengue cases.

3.2.3. Particle Filter Forecast

As a third approach, we apply particle filter prediction to the transmission model, as
depicted in Figure 4. In the transmission model, we divide the adult female mosquitoes into
three compartments based on the virus development in the mosquitoes. We assume that all
the newly developed adult mosquitoes are virus-free, (Adult-S). During the gonotrophic
period, whose length is temperature-dependent, the mosquitoes may bite an infectious
human, acquire the virus, and remain in the adult-exposed (Adult-E) state until they
become infectious and are able to transmit the virus. The sojourn time for the Adult-E state
is temperature-dependent. After becoming infectious, the mosquitoes infect susceptible
humans during blood meals in their gonotrophic cycle until they die. We assume that the
number of infecting bites per cycle is constant, and the bites occur uniformly in each cycle
period. The human infection rate is AI B/(CN), where AI is the population of infectious
mosquitoes, B is the number of infecting bites per gonotrophic cycle, C is the cycle length,
and N is the human population. Similarly, the mosquitoes’ infection rate is HI B/(CN),
where HI is the infectious human population. In the particle filter estimation, we assume
two unknown parameters, which are carrying capacity and the number of infecting bites
per gonotrophic cycle. Like the mosquito life cycle model as shown in Figure 1, we
account for non-Markovian transitions in the virus transmission model. Particle filtering
is a sequential Monte Carlo approach that employs a group of samples to represent the
posterior distribution of the unknown parameters. In each step of the process, a weight is
assigned to each sample based on the observed data. During the resampling phase, particles
with low weights are substituted by new particles in close proximity to the particles with
higher weights. An advantage of the particle filter is its ability to handle observations from
any probability distribution. In our particle filter estimation, we provide the algorithm
with a sequence of weekly new human cases and estimate posterior distributions of new
human cases for the one-week up to three-week horizon.



Pathogens 2023, 12, 771 8 of 18

Figure 4. Particle filter transmission model for forecasting dengue cases.

3.2.4. Super Ensemble Forecast

Using the competing forecasts described above, a super-ensemble forecast can be
created by applying a weighted average of the individual forecasts. The weights of the
three individual forecasting methods is determined based on the root-mean-square error
(RMSE) of those forecasts over prior predictions. Specifically, the RMSE of the forecasts
made for time t− 3, t− 2, and t− 1 can be used to generate the super-ensemble forecast for
time T. The RMSE of each individual forecast ei(i = 1, 2, 3) can be calculated as follows:

ei
t =

√√√√1
3

t−1

∑
τ=t−3

( f i
τ −Oτ)2, (7)

where f i
t is the median forecast of method i at time t, and Ot is the observation at time t.

The weight of method i can be obtained by

wi
t =

1

ei
t

3
∑

k=1

1
ek

t

. (8)

The super-ensemble forecast is given by

f se
t = w1

t f 1
t + w2

t f 2
t + w3

t f 3
t . (9)

4. System Architecture

The web application consists of several components as shown in Figure 5, which we
broadly categorize into (1) the frontend client application and (2) the server backend.

Figure 5. Components and architecture of the application.
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4.1. Client Application

The web-based client is built on top of HTML and is accessible using any web browser.
The application’s graphical interface consists of an interactive map viewer and tools for
data selection, filtering, parameter inputs, and submission of on-demand analyses. The
map is displayed using the open-source JavaScript library leaflet.js [41]. The application
communicates directly with the server backend to load maps, results, and data.

4.2. Server Backend

• HTTP server: The backend system exposes multiple API (application programming
interface) endpoints to the client via an HTTP server. This HTTP server runs in the
Node.js environment [42].

• Database: The database service consists of PostgreSQL and PostGIS [43] extensions to
handle spatial queries. The database contains multiple tables to store data collected
from various sources and simulation results.

• Map tile service: When the client requests the home page of the map tool, the HTTP
server loads map tiles from a separate map tile service called MapTiler [44]. This
service helps with memory management by loading only the parts and zoom levels
required by the client. The service takes input from large tile files collected from
OpenStreetMap [45].

• Simulation tools: The system can deploy and run executable code to perform on-
demand analysis and simulations on selected data. The HTTP service directly commu-
nicates with the executables to pass arguments and to collect results.

• Scheduled updates: The system contains scripts that run regularly to update the
database tables with new weather data. The script connects to the NOAA-NCEI [24]
servers for daily weather observation data.

5. Results
5.1. Data Visualization

Figure 6 displays the graphical interface of the map tool, where the 2D projection map
of the Earth is centrally located and where users are able to pan and zoom to their areas of
interest. The interface’s left side features various tools that assist with data selection and
visualization. A comprehensive guide to the description and usage of each tool is available
in the PICTUREE–Aedes Users Guide in the Supplementary Material.

Figure 6. Graphical interface of the PICTUREE–Aedes.

The PICTUREE–Aedes enables users to identify weather stations and their recorded
data based on their preferences. Figure 7a illustrates the distribution of weather stations
in Central Indochina (Ecoregion). Users can select a station and plot its precipitation and
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temperature data. Figure 7b demonstrates the daily temperature and precipitation data of
station UBON RATCHATHANI throughout 2022.

Figure 7. Weather station data. (a) Locations of the weather stations in Central Indochina. (b) Tem-
perature and precipitation data of the selected station in 2022.

Figure 8 presents the occurrence records of dengue, Aedes aegypti, and Aedes albopictus,
marked, respectively, with red, blue, and purple dots in Central Indochina. Clicking on a
dot will generate a popup that displays the country name and the year of occurrence.
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Figure 8. Occurrence data of dengue, Aedes aegypti mosquito, and Aedes albopictus mosquito.

Additionally, the PICTUREE–Aedes supports the display of information on Google
Trends. Figure 9 illustrates the trend of “dengue” and “fever” in Cambodia during Jan-
uary 2018.

Figure 9. Google search trends of “dengue” and “fever”.

5.2. Simulation Results

The PICTUREE–Aedes offers four types of mosquito simulation results, including daily
average temperature, vector host ratio, reproduction number, and dengue risk, which can be
visualized spatially and temporally. To view the data spatially, users must select a specific
day, and a heat map of the selected area will display the selected data value. Figure 10
displays the average temperature (a), dengue transmission reproduction number (b), vector–
host ratio (c), and dengue transmission risk (d) of the Indochina peninsula on 15 September
2022. Visualizing data beyond the next six months from the current time is limited.

To visualize data temporally, users must select a location and a time range. Figure 11
displays mosquito simulation data from 1 January to 11 June 2022 at the user-specified
location. Please note that the query time frame is limited to a six-month horizon from the
current date.
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Figure 10. Mosquito simulation results visualized spatially. (a) Reanalyzed average temperature,
range [−10, 40]. (b) Dengue transmission reproduction number Rt, range [0, 7]. (c) Vector–host ratio,
range [0, 0.65]. (d) Dengue transmission risk, range [0, 1].

Figure 11. Cont.
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Figure 11. Mosquito simulation results visualized temporally. (a) Reanalyzed average temperature.
(b) Dengue transmission reproduction number. (c) Vector–host ratio. (d) Dengue transmission risk.

The PICTUREE–Aedes provides three types of predictive tools and their ensemble
forecast. Figure 12 illustrates the predicting results of the dengue outbreak in Cambodia
during 2022. The first 13 data points (before 27 April) represent weekly dengue cases, while
the remaining points (including/after 27 April) denote the predictions. Figure 12a displays
the distribution of SEIR-SEI-EnKF predictions for the next three weeks, including quantiles
and median. Figure 12b illustrates the neural network prediction for the next three weeks.
Figure 12c shows the results of the particle filter, presenting the distribution for the next
four weeks. Figure 12d displays the result of the super-ensemble, showcasing the median
prediction from each member, the average, and weighted average of the members.

Figure 12. Cont.
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Figure 12. Forecasts of the dengue cases in Cambodia. (a) Forecasts of the SEIR-SEI-EnKF model.
(b) Forecasts of the neural network model. (c) Forecasts of the particle filter model. (d) Forecasts of
the super-ensemble model.

Table 2 displays the outcome of the prediction as well as the reported cases. All of
the reported cases in the following weeks are situated within the prediction range, which
confirms the precision of the prediction tools.

Table 2. Number of predicted cumulative cases and relative absolute error in Cambodia.

27 April 2022 4 May 2022 11 May 2022

Reported cases 1379 1685 1995
Kalman filter

(Median) 1229/10.9% 1293/23.3% 1338/32.9%

Neural network 1414/2.5% 1795/6.5% 2243/12.4%
Particle filter

(Median) 1298/5.9% 1492/11.5% 1686/15.5%

Super ensemble
(weighted average) 1302/5.6% 1500/11.0% 1703/14.6%
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6. Discussion

Dengue fever is a viral mosquito-borne disease transmitted predominately by the
Aedes mosquitoes. It infects an estimated 400 million people annually, with nearly half
the world’s population at risk of infection [46]. Dengue cases are influenced by complex
interactions of ecology, environment, meteorological factors, and virus factors (serotype),
among many others [47].

The PICTUREE-Aedes is an innovative and unique system that serves as a valuable re-
source for both researchers and health officials in their efforts to advance scientific research
and to effectively manage dengue outbreaks. By collecting and aggregating a comprehen-
sive set of critical factors related to dengue transmission, such as reanalyzed temperature,
precipitation, occurrences of Aedes mosquitoes, and dengue cases, the PICTUREE-Aedes
provides researchers with a rich dataset for their investigations. This data-driven approach
allows researchers to gain deeper insights into the complex dynamics of dengue transmis-
sion and aids in the development of more effective prevention and control strategies. In
addition to its research-oriented features, the PICTUREE-Aedes offers essential informa-
tion to health officials, enabling them to proactively prepare and adapt to the changing
situation during dengue outbreaks. The system employs sophisticated algorithms to esti-
mate Aedes mosquito abundance, dengue transmission reproduction number, and dengue
risk, providing crucial insights into the intensity and geographical spread of the disease.
Armed with this knowledge, health officials can make informed decisions about when and
where to implement targeted vector control measures, effectively minimizing the risk of
dengue transmission and safeguarding public health. Moreover, the PICTUREE-Aedes
goes beyond monitoring and estimation by offering valuable and accurate forecasting
capabilities. By utilizing its advanced modeling techniques, the system can predict future
dengue case counts, empowering health officials and healthcare facilities to deploy medical
personnel and to allocate treatment resources more efficiently. This forecasting functionality
is instrumental in anticipating the potential impact of dengue outbreaks, enabling proactive
measures to be taken in terms of resource allocation, capacity planning, and public health
awareness campaigns.

The selection of a 6-month forecast horizon was made without a specific rationale.
The forecast horizon relies on the availability of dependable environmental variables for
the future. Presently, we employ the average temperatures from previous years for the
corresponding timeframe in the next six months. However, the current values of the
calculated variables are adjusted based on the most recent available environmental data.
The current levels will influence the future levels of the calculated variable. However, for
the dengue case number forecast horizon, we chose 3 weeks because human intervention
can change the underlying physical transmission process in the long term.

Concerning possible limitations of the proposed system, the temperatures displayed
are collected by the weather stations; thus, they do not always reflect temperature in areas
close to the weather station. For example, shaded and barren areas near the same weather
station will be considered at the same daily temperature. In contrast, the actual temperature
of those places can range significantly. There are many water sources beyond precipitation,
and Aedes mosquitoes are very efficient at finding these areas to lay eggs, such as domestic
or industrial wastewater, sprinkler systems, air conditioning units, etc. [48]. Therefore, the
accuracy of the local temperature and precipitation and the estimation results obtained
considering only temperature and precipitation can be erroneous in some areas, and local
data are needed to adjust the models. Furthermore, human behaviors cannot be accounted
for at this time [49]. Water collection during the dry seasons, litter accumulating water,
and irrigating lawns have all been demonstrated to impact Ae. aegytpi numbers, and
this global model cannot account for local behaviors at this time [50]. In the future, local
models can be generated and placed within the global model. Additionally,there is an
increasing significance of female mosquito vertical transmission through the dry quiescent
egg population. These infected eggs play a potential role in triggering dengue incidence
following periods of low mosquito activity, such as the dry season [51]. In our future work,
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we plan to explore the dynamics of female mosquito vertical transmission in greater depth.
This will involve investigating the factors influencing the rate of infected eggs, studying
the survival and viability of infected offspring, and analyzing the potential amplification
of dengue transmission through this mode. For the predictions, four different approaches
provide reasonably accurate forecasts. However, some manual calibrations of the tools are
needed to make the predictions more accurate at a local scale.

Future improvements include increasing the accuracy of the population abundance
estimation in areas where no data are available, exploring the dynamics of female mosquito
vertical transmission, optimizing the layout of the webpage, extrapolating the mosquito
population dynamics from surveyed areas to unknown regions, and extending the tool to
Culex mosquito genera.
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