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Abstract: Two prevalent bacterial diseases in catfish aquaculture are enteric septicemia of catfish and
columnaris disease caused by Edwardsiella ictaluri and Flavobacterium covae, respectively. Chronic and
recurring outbreaks of these bacterial pathogens result in significant economic losses for producers
annually. Determining if these pathogens can persist within sediments of commercial ponds is
paramount. Experimental persistence trials (PT) were conducted to evaluate the persistence of
E. ictaluri and F. covae in pond sediments. Twelve test chambers containing 120 g of sterilized sediment
from four commercial catfish ponds were inoculated with either E. ictaluri (S97-773) or F. covae (ALG-
00-530) and filled with 8 L of disinfected water. At 1, 2, 4-, 6-, 8-, and 15-days post-inoculation, 1 g
of sediment was removed, and colony-forming units (CFU) were enumerated on selective media
using 6 × 6 drop plate methods. E. ictaluri population peaked on Day 3 at 6.4 ± 0.5 log10 CFU g−1.
Correlation analysis revealed no correlation between the sediment physicochemical parameters and
E. ictaluri log10 CFU g−1. However, no viable F. covae colonies were recovered after two PT attempts.
Future studies to improve understanding of E. ictaluri pathogenesis and persistence, and potential
F. covae persistence in pond bottom sediments are needed.

Keywords: bacterial diseases; catfish; commercial aquaculture; soil microbiology; environmental
adaptations

1. Introduction

The commercial catfish industry is one of the largest aquaculture industries in the
United States and has consistently led all aquatic species in sales from 1988 to 2018 [1].
The professionals responsible for channel catfish (Ictalurus punctatus) and hybrid catfish
[♀channel catfish (I. punctatus) × ♂blue catfish (I. furcatus)] production have experienced
exceptional progress in the industry but have also had to deal with numerous and recurring
challenges. One of the most costly and consistent issues that commercial catfish produc-
ers face are bacterial diseases [2], namely enteric septicemia of catfish (ESC) caused by
Edwardsiella ictaluri [3] and columnaris disease (CD) caused by Flavobacterium covae [4].

1.1. Edwardsiella ictaluri

Edwardsiella ictaluri is a Gram-negative, facultative, rod-shaped, weakly motile, per-
itrichous bacterium [2,5,6] and has been one of the causative agents for ESC outbreaks
in the commercial catfish industry for nearly 50 years [7–9]. In 2002, instances of light
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(<90.7 kg), medium (90.7–907 kg), or severe (>907 kg) E. ictaluri outbreaks in commercial
catfish species were reported to be present on 50.5%, 39.5%, and 10.0% of United States
farms, respectively [10]. In east Mississippi, Peterman and Posadas [11] reported that
1.2 million catfish and 0.7 million USD were lost due to E. ictaluri outbreaks during the
2016 production season alone. Abdelrahman et al. [2] reported that western Alabama
catfish operations have lost 3.6 million USD in foregone sales from 2015−2021 due to
Edwardsiella spp. Infections. One reason losses due to E. ictaluri are not as devastating as
other bacterial infections such as motile Aeromonas septicemia (MAS) and CD [2] could
be because fingerlings more often than market-size channel fish succumb to ESC [12].
Fish that have been exposed to and recovered from an Edwarsiella spp. infection will
have a greater immunological response and become more resistant to latent or recurrent
infections [13]. The development and implementation of a live attenuated oral vaccine
in 2015 [14] has dramatically reduced losses of channel and hybrid catfish fingerlings in
production settings [15,16]. It has been reported that blue catfish and genetically selective
strains of channel catfish can exhibit resistance to ESC infections [17–19]. Hybrid catfish
are moderately susceptible to ESC [13,19] but are more susceptible than channel catfish
when Edwardsiella piscicida is the causative agent [15,20]. Although notable progress has
been made in managing and mitigating losses due to ESC, the disease remains to be an
annual issue for catfish producers in west Alabama.

Chronic or recurring ESC outbreaks in commercial catfish ponds are commonplace [9,21–23]
and can occur due to numerous factors. For example, the pathogenesis of E. ictaluri is
distinct compared to other warm-water bacterial infections because it is considered an intra-
cellular pathogen and can replicate within channel catfish macrophages [24]. Pathogenesis
typically occurs horizontally when an uninfected fish cannibalizes an infected fish, as it has
been known to survive the head kidney and forebrain of channel catfish [24–27]. Mqolomba
and Plumb [25] reported that the head kidney, brain, blood, liver, trunk kidney, spleen,
gonad, gall bladder, and muscle of fish still contained >104 bacterial cells g−1 65 days
post-exposure to E. ictaluri. Surviving fish can remain carriers for E. ictaluri even after
antibiotic treatment [28].

Another explanation for these recurring infections could be the ability of E. ictaluri to
persist within commercial catfish ponds. In addition to E. ictaluri, bacterial species E. tarda,
F. columnare, Streptococcus iniae, and Yersinia ruckeri, and many strains of A. hydrophila have
been found in aquaculture pond waters and soils [29–32]. Genetic research has revealed
adaptations that would allow the bacterium to survive in stressful environments. Biofilm
formation by E. ictaluri has been reported on multiple substrates commonly found in
aquaculture operations [31]. The genome of this pathogen contains sequences for six
different heat shock proteins and 13 universal stress proteins that can be upregulated
when exposed to oxidative stress, thermal stress, acid stress, and catfish serum stress [33].
The TonB energy transducing system and TonB-dependent transporters within E. ictaluri
allow the pathogen to compete for and actively transport essential scarce nutrients [22].
Due to the pathogen’s ability to infect diverse fish species, E. ictaluri has been reported to
express a high level of biochemical heterogeneity, mainly resulting in differing activities
from ornithine decarboxylase, cytochrome oxidase, H2S production, and production of
gas and acid from glucose metabolism [34–36]. Plumb and Quinlan [37] reported direct
evidence of E. ictaluri surviving within the pond water for a short period and within the
mud of commercial catfish pond bottom for several days. While numerous professional and
academic contemporaries have widely accepted this, it remains unclear how long E. ictaluri
would persist in a production environment more analogous to a commercial catfish pond.

1.2. Flavobacterium covae

Historically, the causative agent of CD in catfish aquaculture has been turbulent. In
1917, the bacterial pathogen was first named Bacillus columnaris due to its tendency to form
haystack-like masses when sourced from external catfish lesions [38]. After successful cul-
ture conditions were determined, the bacterium was renamed Chondrococcus columnaris [39].



Pathogens 2023, 12, 871 3 of 20

The pathogen was reclassified again in 1945 as Cytophaga columnaris [40], then Flexibacter
columnaris [41], then Flavobacterium columnare in 1996 [42]. Recent studies have revealed
genetic heterogeneity of F. columnare isolates worldwide [43,44], which warranted further
differentiation into four distinct genomovars [45] and finally, four different species [4].
Today, and throughout this study, the primary bacterial pathogen responsible for CD
outbreaks in channel and hybrid catfish aquaculture is F. covae [4,45].

Explanatorily, F. covae is a Gram-negative, aerobic, long filamentous rod-shaped,
gliding, non-halophilic, yellow-pigmented, opportunistic pathogenic bacterium [4,46–49].
Outbreaks of CD in commercial catfish species can occur via direct fish-to-fish transmission
when a carrier sheds the bacterium or through the water column [50]. Pathogenesis of
CD occurs during periods of high fish stress when temperatures and organic loads in
ponds are high, fish are overstocked, and exposed to excessive handling [51]. While the
specifics of pathogenesis are not fully understood, generally, the pathogenic bacterium first
colonizes the host via attraction, adhesion, and aggregation mechanisms. This is followed
by the production of endotoxins, exotoxins, and bacteriocins, which eventually lead to
the pathogen overwhelming the host fish’s immune system and causing the disease [52].
In addition, the mucus that naturally covers the gills and skin of catfish causes a more
robust chemotactic response in F. covae (formerly F. columnare genomovar II) compared
to F. columnare (formerly F. columnare genomovar I), indicating a potential relationship
involving adhesion [53].

Economically, the CD has caused severe losses to the commercial catfish industry
since 1922 [54]. It has been reported to be the second-highest disease observed on catfish
farms in the United States [29]. Losses are estimated to be 30 million USD annually [55].
While average mortality due to CD is between 50–60%, ponds containing channel catfish
fingerlings can experience up to 90% mortality [54]. In west Alabama, the highest number
of fish losses were due to CD outbreaks, which equaled an estimated 14.6 million USD in
foregone sales from 2015 to 2021 [2]. This discrepancy in economic loss and fish number loss
is likely because fingerlings and young fish are the most susceptible to CD [56]. In similarity
to E. ictaluri and virulent A. hydrophila (vAh) diseases, CD outbreaks and infections caused
by F. covae can be chronic and recurring [48,50–52,56,57]. Additionally, F. covae has several
adaptations for the bacterium to survive and potentially persist in harsh environments.

Historically, F. covae growth has been most successful by using low-nutrient me-
dia [39,58]. Concerning growth and prevalence, CD can be influenced by increasing
temperature, organic matter, and nitrite concentration in the water [52]. Like other aquatic
pathogens, F. covae can form biofilms in aquaculture systems, with factors such as calcium
concentration, temperature, hardness, salinity, and the presence of certain carbohydrates
can impact the formation of biofilm and growth [4,31,46]. Cai et al. [46] reported that the
optimal conditions for F. covae biofilm formation are at 28 ◦C, 360 ppm hardness, 5 ppt
salinity, and when mannose is present. Shoemaker and LaFrentz [59] have reported the
capability of F. covae to utilize fish mucus as a nutrient source, which may alter virulence
and protein expression. Some Flavobacterium spp. can grow at temperatures as high as
45 ◦C, while most are considered psychrophilic or psychrotolerant [60]. Flavobacterium
spp. have been found in numerous environments, including bodies of freshwater and
seawater, sediments, soils, glaciers, ice, and freshwater shrimp and catfish ponds [60–62].
Adaptations for dealing with environmental stressors such as peroxide resistance, iron
metabolism, heat shock proteins, and multiple stress response mechanisms have been
found within F. columnare and F. covae genomes [44,63]. The bacterium can also cope with
oxidative stress and prolonged starvation, and bacterial cells can be revived following
starvation while expressing less virulence [64,65].

With the ability of the opportunistic pathogens E. ictaluri and F. covae to handle
harsh environments, it is plausible that they may potentially be able to persist within
commercial catfish ponds over extended periods. Sediments accumulate most rapidly in
the first years of pond use and, on average, can accumulate as much as 40 cm of sediment
over 15 years [66]. Sediments consist of inorganic and organic matter originating from
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biological sources, primarily phytoplankton, catfish wastes, and uneaten feed [66,67].
Because sediment and organic materials continue to accumulate on the pond bottoms, and
the drastic changes within the pond during a production season allow many opportunities
for E. ictaluri and F. covae to infect stressed fish [30] and, more importantly, provide a
viable environment for the pathogens to persist. The primary focus of this study was
to determine if E. ictaluri and F. covae can persist within submerged pond sediments
while simultaneously observing how their populations change over time. Additionally,
physiochemical components of the sediments were examined to determine if they correlated
with observed population trends. We hypothesized that both E. ictaluri and F. covae would
successfully propagate within this environment and that differences in population growth
would occur between different sediment types.

2. Materials and Methods
2.1. Previous Study

Persistence trials (PTs) using isolates of E. ictaluri and F. covae were subjected to the
same experimental conditions described [68]. The PTs’ sediment samples, water, bacterial
inoculum, and aquaria systems were prepared using the methods described below.

2.2. Experimental Design and System Preparation

All methods utilized for sediment sample collection, sediment, water disinfection
techniques, and PT system preparation were the same as those described by Tuttle et al. [68].
In addition, the systems were in temperature-controlled lab spaces set to a targeted 27.5
and 27.0 ◦C for the E. ictaluri PT (EIPT) and F. covae PT (FCPT), respectively.

2.3. Bacterial Culture and Trial Preparation

The wild-type E. ictaluri isolate S97-773 (recovered from diseased channel catfish at
the Thad Cochran National Warmwater Aquaculture Center in Stoneville, Mississippi;
accession number: JX867005) was utilized for this study [14,69]. Cryopreserved S97-773
stocks were revived on brain-heart infusion (BHI) agar and incubated for 48 h at 28 ◦C.
Next, a pure E. ictaluri colony was placed in 1 L of BHI broth and incubated at 28 ◦C
and 115 revolutions per minute (RPM) for approximately 48 h. The broth culture was
centrifuged at 4000× g for 10 min in a 5810 R benchtop centrifuge (Eppendorf North
America Inc., Enfield, CT, USA), washed in cold 1X phosphate-buffered saline solution
(PBS) with an adjusted pH of 7.4. Bacterial cells were resuspended and adjusted to an optical
density of 0.200 ± 0.005 at 550 nm using an Eppendorf Biospectrometer® Basic (Eppendorf
North America Inc.), resulting in an average inoculum concentration of 8.33 × 107 colony
forming units (CFU) mL−1.

Preparation of the F. covae inoculum, using isolate ALG-00-530 (recovered from a
diseased channel catfish at the Alabama Fish Farming Center in Greensboro, Alabama;
accession number: MG516971), followed a similar procedure [70,71]. However, the culture
media was modified by Shieh [58] containing the antibiotic tobramycin at a concentration of
1 mg L−1 of media (MST) resulting in a more selective media [72]. The F. covae was passed
over the selective MST agar five times to ensure the bacterium had grown accustomed to
the antibiotic. After the fifth pass, a pure colony of F. covae was placed into 1 L of Modified
Shieh broth and incubated for 24 h at 28 ◦C and 115 RPM. Once the broth culture had grown,
the bacterial cells were spun down, as mentioned previously, and instead washed with a
0.1X PBS solution with an adjusted pH of 7.0. Bacterial cells were resuspended and adjusted
to an optical density of 0.200 ± 0.005 at 550 nm using a DR3900 visible spectrophotometer
(Hach Company, Loveland, CO, USA) to determine bacterial concentration [73]. The final
F. covae inoculum concentration in PBS was 1.78 × 107 CFU mL−1.

A randomized block design was used for each PT to assign the four sediment types
to the 12 total chambers. In each chamber, 20 mL of either E. ictaluri or F. covae optically
adjusted bacterial inoculum was added to 200 g of sterilized sediment and 500 mL of
disinfected dechlorinated city water. The sediment mixture was vigorously stirred with a
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sterile stainless-steel spatula for 1 min durations every 5 min over 1 h. After the mixing
period, water volume within each chamber was increased to a total of 8 L. To simulate
production pond aeration, a 3.5 cm × 1 cm × 1 cm cuboid Pawfly air stone at a fixed
location within each chamber would expel air supplied via a Whitewater Silent Air Pump™
v201 (Pentair Aquatic Eco-Systems™, Apopka, FL, USA) for 12 h beginning at 18:00 h and
stopping at 06:00 h the following day.

2.4. Sampling and Bacterial Enumeration

Sediment in each chamber was collected and bacterial populations were evaluated,
with sampling times as follows: 24 h post-inoculation (designated as Day 0), 48 h post
(Day 1), four days post (Day 3), six days post (Day 5) and eight days post (Day 7), then
every seven days following the fifth sampling. Cai et al. [32] described the methodology
used to extract sediment and enumerate live colonies of S97-773 and ALG-00-530 for their
respective trials. Approximately 1 g of sediment was collected from each chamber using a
sterile 10-mL serological pipette, placed in a sterile 15-mL centrifuge tube, and centrifuged
for 10 min at 667× g. Liquid supernatant was removed and the remaining sediment pellet
(~1 g) was resuspended entirely in 0.1X PBS, creating a 1:10 mixture, and vortexed until
the pellet was homogenized. Next, 250 µL of homogenized sediment solution was placed
into six wells of the leftmost column of a 96-well plate and serially diluted (10-fold), as
Chen et al. [74] described. Four serial dilutions of six 10 µL replicates were each plated
onto E. ictaluri Medium (EIM) as the selective media [75].

The spread plate method [76] and MST media were utilized to enumerate ALG-00-530
colonies. Two technical replicate MST agar plates were used for the four targeted 10-fold
serial dilutions [58]. The EIM and MST plates were incubated at 28 ◦C for 24 h. The plate
counts of E. ictaluri and F. covae were recorded, and the final counts of CFU g−1 of sediment
were determined using the appropriate correction factors. On each sampling day, viable
E. ictaluri and F. covae colonies were picked, and both were cryopreserved in a 50% glycerol
stock at −80 ◦C. Additionally, a representative colony underwent genomic DNA extraction
for later polymerase chain reaction (PCR) confirmation. Any bacteria not confirmed to be
the isolates of interest were designated as “unknown” and labeled as such, followed by
their respective chamber name, sampling day, and PT.

2.5. DNA Extraction and PCR Confirmation

After colony enumeration, the colonies of the bacterial species of interest were picked
and confirmed via polymerase chain reaction (PCR) protocols. Genomic DNA (gDNA)
from all bacterial colonies was extracted using the EZNAâ Bacterial DNA Kit (Omega Bio-
tek Inc., Norcross, GA, USA). Finally, all concentrations and gDNA purity measurements
were assessed using a NanoDrop™ OneC spectrophotometer (Thermo Fisher Scientific Inc.,
Waltham, MA, USA).

For the E. ictaluri colonies, a 25 µL PCR reaction was constructed using 12.5 µL of Hot-
Start Taq Master Mix 2X (Amresco LLC, Solon, OH, USA), 1 µL of ESCF and ESCR primers
from an initial 10 µM stock solution [77], 75 ng of template gDNA, and nuclease-free (NF)
H2O to volume. Thermal cycling was conducted using an Eppendorf Mastercycler® X50s
(Eppendorf North America Inc.). After optimization, thermal cycling parameters consisted
of an initial denaturation at 94 ◦C for 3 min followed by 35 cycles of 94 ◦C for 30 s, 58 ◦C for
30 s, and 72 ◦C for 1 min, with a final extension at 72 ◦C for 5 min. Positive and negative
controls were run in a thermal cycler with test isolates. Then, 5 µL of PCR product was
separated on a 2.0% agarose gel, stained with SYBR Safe DNA Stain (Edvotekâ, Washington,
DC, USA), in a 1.0X Tris-acetate-EDTA running buffer using electrophoresis. All gels were
run containing a positive control (S97-773), negative control (NF H2O), and a 50 bp DNA
Step Ladder (Promega, Madison, WI, USA). PCR products were visualized using a VWR®

Real-Time Electrophoresis Systems LED transilluminator (VWR International, Radnor,
PA, USA).
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To confirm F. covae colonies, 25 µL PCR reactions were constructed using 12.5 µL of
Hot-Start Taq Master Mix 2X (Amresco LLC, Solon, OH, USA), 1.25 µL of FcFp and FcRp
primers from an initial 10 µM stock solution [78], 75 ng of template gDNA, and NF H2O
to volume. Optimized thermal cycling runs began with an initial denaturation of 95 ◦C
for 5 min followed by 40 cycles of 94 ◦C for 30 s, 56 ◦C for 20 s, and 72 ◦C for 1 min,
with a final extension at 72 ◦C for 10 min. Gel electrophoresis protocols were followed, as
mentioned above.

Any colonies not PCR-confirmed as E. ictaluri or F. covae in their respective trials were
designated as unknowns and labeled with the sampling day, chamber name, and PT. To
accurately identify unknown bacterial colonies via the 16s rRNA gene, PCR products, and
primers 63F and 1387R [79] were sent to Eurofins Genomics LLC (Louisville, KY, USA).
After nucleotide base-pair results were trimmed and aligned in the Molecular Evolutionary
Genetics Analysis (MEGA) software version 11 [80], base-pair sequences were inputted into
the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search
Tool (BLAST) database [81].

2.6. Sediment, Water, and Statistical Analysis

All procedures for conducting water quality and sediment physiochemical analyses
were the same as those described by Tuttle et al. [68].

A t-test was used to evaluate variances in sediment chemistry parameters. Changes
in bacterial populations (log10 CFU g−1) over time among four sediment types collected
from two farms were determined using a two-way repeated measures analysis of variance
test, with sediment type treated as a random blocking factor. Differences between overall
populations within the two PTs were measured with a paired t-test. Significant differences
were identified via a post hoc Tukey’s Studentized Range—HSD. A correlation analysis
was used to link soil chemistry parameters and bacterial populations (log10 CFU g−1).
Data from each physicochemical sediment variable were analyzed for normality using a
Shapiro-Wilk test. If the results did not follow the normality assumption, Spearman’s rank
correlation was used. To control the false discovery rate, all multiple testing p-values for
correlation analyses alone were adjusted using the Benjamini–Hochberg procedure [82]. A
p < 0.05 was considered to be statistically significant.

Additionally, bacterial persistence curves (BPC) were created for each farm and each
overall PT by fitting a smoothing spline (SS) model to the E. ictaluri and F. covae populations
(log10 CFU g−1; y-axis) at sampling days (x-axis) as previously described by Hussain
et al. [83]. The smoothing parameter (λ) was selected based on the restricted maximum
likelihood (REML) method [84] to balance both function smoothness and lack of fit. The
fitted SS models were used to predict E. ictaluri and F. covae populations using an x-axis
scale from 0–14 d with an interval of 0.001. For each BPC, 95% confidence intervals (95%
CI) of predicted bacterial population curves were created via bootstrapping [85] using
the boot package, version 1.3-28; [86]. Data were resampled with replacement 1000 times,
with the SS model re-fitted to both the EIPT and FCPT population data. The 95% CIs were
determined from the 2.5 and 97.5th percentiles. We considered the BPC descriptors to differ
significantly between farms if their 95% CIs did not overlap. The G*Power 3.1.9.4 software
was used for sample size calculations [87]. BPC analyses were conducted using R software,
version 4.1.1 [88]. All other statistical analyses were performed with SAS® version 9.4 [89].
All figures were plotted using SigmaPlot version 14.5 (Systat Software Inc., San Jose, CA,
USA). All data were presented as the mean ± standard error of the mean (SE).

3. Results
3.1. Edwardsiella ictaluri Persistence Trail

The temperature during this persistence trial remained at 27.5 ± 0.3 ◦C throughout
the 14-day trial. Colonies of E. ictaluri began appearing on the selective EIM media on
Day 0 (24 h post-inoculation). However, some E. ictaluri growth across different replicates
experienced a lag period and did not begin appearing on the EIM agar until Day 1 (48 h
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post-inoculation). All test chambers were inoculated and mixed within the same period
of 60 min, and there was congruent growth in all sediment types but not all replicates.
Despite this, populations of E. ictaluri initially experienced a steady increase, followed by a
moderate decline and plateauing pattern over 14 days (Figure 1).
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Figure 1. Persistence of Edwardsiella ictaluri S97-773 population (log10 CFU g−1) in sediment samples
collected from 12 study chambers (2 farms × 2 ponds/farm × 3 replicate tanks per pond). Within
each box plot, the horizontal line indicates the median, symbols indicate the mean and error bars
around the symbol represent the standard error of the mean. Box plots with different lowercase
letters are significantly different at p < 0.05.

3.1.1. Sampling and Bacterial Enumeration

Across all 12 test chambers, population numbers on Day 3 were significantly higher
than those on all other days (t60 = 3.55, p = 0.0011), except for Day 5 (t60 = 2.93, p = 0.0516).
On Days 5, 7, and 14, the E. ictaluri total population was not different according to the
pairwise comparisons among those respective sampling days (p > 0.05; Figure 1). When
comparing the sediment types from the two farms, the overall population of E. ictaluri
in farm B sediment was similar to the total population of E. ictaluri in farm A sediments
(Figure 2). On the smoothing splines encompassed by 95% CIs, containing the raw values
of CFU g−1 and log10 transformed CFU g−1 values (Figure 3), there are no differences in
any population peak, breadth, or range values between farm A and farm B sediments, or
overall sediment counts (Table 1).

Table 1. Mean, standard error (SE), and 95% confidence intervals (95% C.I.) for descriptors of
smoothing spline models are presented in Figure 3.

Curve Descriptor
Overall Farm A Farm B

Mean ± SE 95% C.I. Mean ± SE 95% C.I. Mean ± SE 95% C.I.

C
FU

g−
1

Peak CFU g−1 (× 106) 3.63 ± 1.31 1.08–6.19 1.29 ± 1.78 −2.20–4.78 2.85 ± 1.97 −1.01–6.71
Time (day) at peak CFU g−1 2.93 ± 0.90 1.17–4.69 0.00 ± 2.21 −4.32–4.32 0.00 ± 1.63 −3.19–3.19

Time (day) at 90% of peak CFU g−1—lower 2.17 ± 0.72 0.76–3.57 0.00 ± 1.38 −2.70–2.70 0.00 ± 1.18 −2.32–2.32
Time (day) at 90% of Peak CFU g−1—upper 3.68 ± 0.72 2.27–5.08 2.41 ± 2.42 −2.33–7.15 1.71 ± 1.5 −1.23–4.64

Breadth at 90% of peak CFU g−1 1.51 ± 0.55 0.44–2.58 2.41 ± 2.36 −2.21–7.03 1.71 ± 0.96 −0.17–3.59
Time (day) at 80% of peak CFU g−1—lower 1.81 ± 0.64 0.55–3.07 0.00 ± 1.16 −2.28–2.28 0.00 ± 0.98 −1.93–1.93
Time (day) at 80% of peak CFU g−1—upper 4.04 ± 0.65 2.76–5.32 4.83 ± 2.71 −0.48–10.13 3.42 ± 1.39 0.70–6.14

Breadth at 80% of peak CFU g−1 2.23 ± 0.87 0.53–3.93 4.83 ± 3.08 −1.22–10.87 3.42 ± 1.44 0.60–6.24
Time (day) at 5% of peak CFU g−1—min 0.00 ± 0.20 −0.39–0.39 0.00 ± 0.22 −0.43–0.43 0.00 ± 0.20 −0.39–0.39
Time (day) at 5% of peak CFU g−1—max 14.00 ± 0.47 13.08–14.92 14.00 ± 0.80 12.43–15.57 14.00 ± 1.77 10.52–17.48

Range at 5% of peak CFU g−1 14.00 ± 0.51 13.00–15.00 14.00 ± 0.83 12.37–15.63 14.00 ± 1.78 10.51–17.49
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Table 1. Cont.

Curve Descriptor
Overall Farm A Farm B

Mean ± SE 95% C.I. Mean ± SE 95% C.I. Mean ± SE 95% C.I.

Lo
g 1

0
C

FU
g−

1

Peak log10 CFU g−1 6.32 ± 0.19 5.95–6.68 5.89 ± 1.46 3.04–8.75 6.23 ± 0.32 5.59–6.86
Time (day) at peak log10 CFU g−1 3.27 ± 0.68 1.93–4.61 3.77 ± 3.11 −2.32–9.87 3.31 ± 2.62 −1.81–8.44

Time (day) at 90% of peak log10 CFU g−1—lower 1.85 ± 0.50 0.86–2.83 1.32 ± 0.97 −0.58–3.21 1.20 ± 0.78 −0.33–2.73
Time (day) at 90% of peak log10 CFU g−1—upper 5.37 ± 3.8 −2.08–12.81 14.00 ± 3.63 6.88–21.12 6.66 ± 4.12 −1.41–14.73

Breadth at 90% of peak log10 CFU g−1 3.52 ± 4.03 −4.37–11.42 12.68 ± 4.08 4.69–20.67 5.46 ± 4.61 −3.58–14.50
Time (day) at 80% of peak log10 CFU g−1—lower 0.61 ± 0.65 −0.66–1.87 0.00 ± 0.92 −1.81–1.81 0.00 ± 0.55 −1.09–1.09
Time (day) at 80% of peak log10 CFU g−1—upper 14.00 ± 0.00 14.00–14.00 14.00 ± 0.31 13.39–14.61 14.00 ± 0.89 12.26–15.74

Breadth at 80% of peak log10 CFU g−1 13.40 ± 0.65 12.13–14.66 14.00 ± 1.00 12.04–15.96 14.00 ± 1.11 11.83–16.17
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Figure 2. Comparison of Edwardsiella ictaluri population (log10 CFU g−1) in sediment samples col-
lected from two farms (2 ponds/farm × 3 replicate tanks per pond). Within each box plot, the hori-
zontal line indicates the median, symbols indicate the mean and error bars around the symbol rep-
resent the standard error of the mean.

Figure 2. Comparison of Edwardsiella ictaluri population (log10 CFU g−1) in sediment samples
collected from two farms (2 ponds/farm × 3 replicate tanks per pond). Within each box plot, the
horizontal line indicates the median, symbols indicate the mean and error bars around the symbol
represent the standard error of the mean.

3.1.2. Bacterial Isolate Genetic Confirmation

Unknown bacterial colonies first appeared in the sediment sourced from farm B on Day
1 (48 h post-inoculation) and were present in all sediment types by Day 3. The morphology
and phenotypic expression of unknown bacterial colonies were more varied and diverse
(Figure 4). The first colony that appeared in the selective EIM (designated as colony type A)
was confirmed to be S97-773 via PCR and 16s rRNA sequencing procedures. Colony type
A was present on all sampling days throughout the trial (Figure 4). On sampling Day 3,
other colonies appeared to have the same color and shape but were small punctiform and
pulvinate (colony type C) or intermediate-sized (colony type E). Some colonies appeared
to have nearly the same morphology as ones designated as colonies A and C but began
to exhibit a translucent and erose margin at both large (colony type B) and smaller sizes
(colony type D). On sampling Day 7, there were large colonies that expressed white/opaque
(colony type G), dark green (colony type I), and yellow (colony type J) color morphologies.
Finally, on sampling Day 14, colonies that exhibited a curled and seemingly dehydrated
margin (colony type H) and a noticeably larger colony size with a lobate margin (colony
type F) began appearing.
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Figure 3. Relationship between Edwardsiella ictaluri population in sediment (CFU g−1: (A–C); log10 CFU g−1: (D–F)) and time (Days) using a smoothing spline (SS)
model and 95% confidence intervals (green shadow). (A,D) represent all samples; (B,E) represent farm A; (C,F) represent farm B. Estimates of SS model descriptors
are summarized in Table 1.
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Table 2. Results from the NCBI BLAST database for nucleotide 16s rRNA sequences from isolates
collected during EIPT and the sampling day durations the unique colonies were present. Bacterial
species were determined to have the highest probability under percent maximum identity (Max
Ident.), highest total score, and highest maximum query cover to show the percentage of query
DNA covered.

Colony
Morphology

Sampling
Day(s)

Confirmation

Total
Score a

Query
Cover b

Max
Ident. c Species ID

D 5, 7 1762 100 99.37 Burkholderia contaminans
F 14 639 98 97.62 Uncultured bacterium
H 14 1954 100 99.53 Bacillus spp.
I 14 1599 100 98.84 Pseudomonas aeruginosa
C 1−14 1882 94 81.48 Clostridium hydrogeniformans
G 7, 14 1792 100 99.59 Stenotrophomonas pavanii
A 0−14 1677 100 99.61 Edwardsiella ictaluri
B 5−14 1628 100 98.13 Edwardsiella ictaluri
E 5, 7 1988 100 99.27 Edwardsiella ictaluri
J 7, 14 1831 100 98.90 Edwardsiella ictaluri

a Sum of alignment scores of all segments from the same subject sequence. b Percent of the query length
that is included in the aligned segments. c Highest percent identity for a set of aligned segments to the same
subject sequence.
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Figure 4. Unique bacterial colonies were visually identified on selective EIM during the EIPT. All
colonies expressing different sizes, morphologies, and colors were accounted for. All blue lines next
to each distinct colony represent 1000 µm. Sampling days of first appearance and identities of colony
types A (A), B (B), C (C), D (D), E (E), F (F), G (G), H (H), I (I), and J (J) are listed in Table 2.

Although colonies more phenotypically varied in this PT, PCR product bands using
the ESCF and ESCR primers resulted in all isolated colonies producing the same amplicon
region (177 bp) consistent with the positive control, indicating no apparent differentia-
tion between the isolated bacterial colonies (Figure 5). A more robust confirmation was
conducted, and the 16s rRNA sequencing revealed six different species not identified as
E. ictaluri (Table 2). Additionally, it would appear that three distinct bacterial colonies that
initially appeared to be different from the species of interest were identified as E. ictaluri.



Pathogens 2023, 12, 871 11 of 20

Pathogens 2023, 12, x FOR PEER REVIEW 11 of 21 
 

 

G 7, 14 1792 100 99.59 Stenotrophomonas pavanii 
A 0−14 1677 100 99.61 Edwardsiella ictaluri 
B  5−14 1628 100 98.13 Edwardsiella ictaluri 
E 5, 7 1988 100 99.27 Edwardsiella ictaluri 
J 7, 14 1831 100 98.90 Edwardsiella ictaluri 

a Sum of alignment scores of all segments from the same subject sequence. b Percent of the query 
length that is included in the aligned segments. c Highest percent identity for a set of aligned seg-
ments to the same subject sequence. 

Although colonies more phenotypically varied in this PT, PCR product bands using 
the ESCF and ESCR primers resulted in all isolated colonies producing the same amplicon 
region (177 bp) consistent with the positive control, indicating no apparent differentiation 
between the isolated bacterial colonies (Figure 5). A more robust confirmation was con-
ducted, and the 16s rRNA sequencing revealed six different species not identified as E. 
ictaluri (Table 2). Additionally, it would appear that three distinct bacterial colonies that 
initially appeared to be different from the species of interest were identified as E. ictaluri. 

 
Figure 5. Gel electrophoresis image with visualized products of conventional polymerase chain re-
action using ESCF and ESCR primers specific to Edwardsiella ictaluri. Bacterial isolates (arranged in 
the order in lanes 1–19); 1, positive control (S97-773); 2–4, colony type A (Days 0, 7, and 14); 5−7, 
colony type B (Days 5, 7, and 14); 8-9, colony type C (Days 1 and 7); 10−11, colony type D (Days 5 
and 7); 12−13, colony type E (Days 5 and 7); 14, colony type F (Day 14); 15, colony type G (Day 7); 
16, colony type H (Day 14); 17, colony type I (Day 14); 18–19, colony type J (Days 5 and 7); 20, no 
template, negative control; M = 50 bp DNA ladder. 

3.1.3. Sediment and Water Analysis 
The water quality parameters did not noticeably fluctuate throughout the PT (Table 

3). The sediments used in this PT are the same as the four sediment types used in a previ-
ous study, and all physical and chemical parameters between the two farms were not dif-
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relation analysis indicated no correlation between E. ictaluri populations over time and 
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determine the statistically significant correlations between E. ictaluri populations and each 

Figure 5. Gel electrophoresis image with visualized products of conventional polymerase chain
reaction using ESCF and ESCR primers specific to Edwardsiella ictaluri. Bacterial isolates (arranged
in the order in lanes 1–19); 1, positive control (S97-773); 2–4, colony type A (Days 0, 7, and 14); 5–7,
colony type B (Days 5, 7, and 14); 8–9, colony type C (Days 1 and 7); 10–11, colony type D (Days 5
and 7); 12–13, colony type E (Days 5 and 7); 14, colony type F (Day 14); 15, colony type G (Day 7);
16, colony type H (Day 14); 17, colony type I (Day 14); 18–19, colony type J (Days 5 and 7); 20, no
template, negative control; M = 50 bp DNA ladder.

3.1.3. Sediment and Water Analysis

The water quality parameters did not noticeably fluctuate throughout the PT (Table 3).
The sediments used in this PT are the same as the four sediment types used in a previ-
ous study, and all physical and chemical parameters between the two farms were not
different [68]. Due to the small sample size of sediment physiochemical properties, the
correlation analysis indicated no correlation between E. ictaluri populations over time and
the sediment parameters (Table 4). Power analysis revealed the sample size required to
determine the statistically significant correlations between E. ictaluri populations and each
sediment parameter (Table 4). After the bacterial enumeration procedure was complete, all
sediment samples were frozen.

Table 3. Water quality parameters [mean, standard error (SE), minimum measurement (min), and
maximum measurement (max)] measured in 12 study tanks containing sediment samples collected
from two farms (2 ponds per farm; 3 replicate tanks per pond) for 14 d EIPT.

Water Quality Parameter
Overall Farm A Farm B

Mean ± SE Min–Max Mean ± SE Min–Max Mean ± SE Min–Max

Total alkalinity (ppm) 116.72 ± 3.60 87–174 109.50 ± 4.30 87–157 123.94 ± 5.37 90–174
Total hardness (ppm) 123.78 ± 5.03 67–191 105.44 ± 4.92 67–138 142.11 ± 6.36 99–191

pH 7.62 ± 0.02 7.3–7.9 7.57 ± 0.03 7.3–7.8 7.67 ± 0.03 7.4–7.9
Phosphate (ppm) 1.28 ± 0.20 0.0–4.0 1.62 ± 0.32 0.0–4.0 0.94 ± 0.21 0.0–2.8

Total ammonia nitrogen (ppm) 0.60 ± 0.11 0.0–2.2 0.32 ± 0.08 0.0–1.3 0.88 ± 0.18 0.1–2.2
Nitrite (ppm) 0.11 ± 0.04 0.0–1.0 0.16 ± 0.08 0.0–1.0 0.06 ± 0.02 0.0–0.3
Nitrate (ppm) 0.15 ± 0.06 0.0–1.0 0.0 ± 0.0 0.0–0.0 0.31 ± 0.11 0.0–1.0
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Table 4. Results from correlation analysis tests between log10 CFU g−1 of Edwardsiella ictaluri
and sediment physicochemical variables. Based on bivariate normality testing, Spearman’s rank
correlation (coefficient = ρ) was used. All raw p-values were adjusted using the Benjamini-Hochberg
procedure to control the false discovery rate (FDR). Significant results at p < 0.05. The sample size (n)
is required to reveal statistically significant correlations.

Variable ρ
p-Value

n/Farm
Raw FDR

Alkalinity (% CaCO3 Equivalence) 0.05 0.6740 0.2800 2728
Aluminum (ppm) −0.04 0.7617 0.9694 5249

Calcium (ppm) −0.04 0.7317 0.9694 5249
CEC (meq 100 g−1) −0.04 0.7414 0.9694 5249

Copper (ppm) 0.08 0.5447 0.9694 1224
Iron (ppm) 0.02 0.8857 0.9694 19,260

Magnesium (ppm) 0.09 0.4627 0.9694 896
Manganese (ppm) <0.01 0.9730 0.9694 422,523
Organic Matter (%) 0.03 0.8450 0.9694 12,627

pH −0.02 0.9080 0.9694 36,124
Phosphorus (ppm) 0.07 0.6006 0.9694 1763
Potassium (ppm) 0.08 0.5315 0.9730 1234

Sodium (ppm) −0.13 0.3089 0.9730 467
Zinc (ppm) 0.10 0.4373 0.9730 801

3.2. Flavobacterium covae Persistence Trial

This PT was conducted on two separate occasions following all procedures described
above. The water temperatures for the first and second attempts were approximately
27.2 ± 1.2 and 27.0 ± 0.4 ◦C, respectively. In both instances, no colonies of F. covae were
recovered from the sediment over seven days. Incubation times were increased to 72 h
to ensure that F. covae colonies were given ample media contact and propagation time,
however, no colonies of F. covae propagated. Due to the lack of F. covae colonies being
recovered in either PT, none of the statistical analyses described previously were conducted.
In both FCPT attempts, viable colonies of unknown bacteria appeared on sampling Day
1 (48 h post-inoculation), displaying various unique colony morphologies. However,
16s rRNA sequencing outputs revealed that none of the colonies were F. covae or any
Flavobacterium spp., revealing 12 distinct species (Table 5). Similar to the EIPT, all sediment
samples were frozen after sampling.

Table 5. Results from the NCBI Blast database for nucleotide 16s rRNA sequences from isolates
collected during FCPT and the sampling day durations the unique colonies were present. Bacterial
species were determined to have the highest probability under percent max identity, highest total
score, and highest max query cover to show the percentage of query DNA covered.

Colony
Morphology

Sampling
Day(s) (FPT

Attempt)

Confirmation
Species IDTotal

Score a
Query

Cover b
Max

Ident. c

A 3–7 (1, 2) 1783 100 99.90 Brevibacterium sediminis
B 1–5 (1, 2) 1670 100 100.00 Micrococcus luteus
C 1–7 (1, 2) 2021 100 99.91 Micrococcus sp.
D 3–7 (1, 2) 1599 100 98.74 Sphingobium yanoikuyae
E 3, 5 (1) 1916 99 97.10 Acinetobacter schindleri
F 7 (2) 1286 99 89.88 Uncultured Bacterium
G 3–7 (1) 1982 100 98.57 Massilia neuiana
H 3–7 (1, 2) 1857 100 100.00 Stutzerimonas stutzeri
I 5, 7 (2) 1988 100 99.81 Bacillus pseudomucoides
J 7 (2) 1607 100 99.41 Azospirillum brasilense
K 7 (1,2) 1700 100 100.00 Achromobacter marplate
L 7 (1, 2) 1825 100 99.50 Cytiolbacillus sp.
M 7 (1, 2) 1858 98 95.99 Bacillus firmus

a Sum of alignment scores of all segments from the same subject sequence. b Percent of the query length that is included
in the aligned segments. c Highest percent identity for a set of aligned segments to the same subject sequence.
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4. Discussion

The results of the EIPT indicate that E. ictaluri can persist within the submerged
sediments of commercial catfish ponds in a controlled laboratory setting. The bacterial
growth curve illustrated by the data indicated that E. ictaluri populations began to plateau
by Day 5 and did not change throughout the remainder of the trial. The highest average
population across all sediments were log10 6.4 CFU g−1. Due to no overall difference
between sediments sourced from the two different farms, this suggests that sediment has no
apparent influence on the growth and maintenance of pathogen populations. These findings
are consistent with those Plumb and Quinlan [37] reported and displayed similarities
to how vAh behaves under similar experimental conditions [68]. Like vAh, E. ictaluri
populations experienced a growth period, followed by reaching the stationary phase, and
then plateaued to remain at a consistent population. However, unlike vAh, the bacterial
populations in the EIPT began plateauing by the fifth sampling day, compared to a vAh
persistence trial when bacterial populations began to plateau by the fourteenth sampling
day [68]. The implications of this study provide valuable insight into the ability of these
pathogenic bacterial species to survive in atypical environments. These findings, as well as
Tuttle et al. [68], indicate the plausibility of E. ictaluri and virulent A. hydrophila to survive
within the sediments of operating commercial catfish ponds as well as potentially other
aquatic environments. This study adds another layer of understanding and prompts future
research to better understand bacterial pathogenesis within catfish species.

Aside from this study, there are very few publications with direct evidence regarding
the ability of Edwardsiella spp., let alone E. ictaluri, to survive or persist within sediments or
soils of aquatic environments. E. ictaluri-specific phages found in water and sediments in a
river in Hiroshima Prefecture, Japan [90], have been linked to an individual forktail bullhead
(Pelteobagrus nudiceps). Viable E. tarda colonies have been found in the sediments and water
of aquaculture ponds, and genetic differentiation exists between isolates found exclusively
in sediments versus isolates collected from other sources [91,92]. In addition, E. tarda found
in the soils of Owerri, Nigeria, displayed potential as a species for bioremediation of crude
oil [93]. Regarding sediment, the correlation analysis could not distinguish significant
physical and chemical factors of the sediment that influenced the population of the bacterial
pathogen. The power analysis revealed a larger sample size is necessary to determine
statistical significance with high power. These sample size numbers, which were in the
thousands, would be unrealistic and cost prohibitive within the scope of this study but
would be worth future investigation. It is also necessary to determine which cellular
mechanisms and virulence factors allow for the persistence of E. ictaluri in the sediments of
catfish ponds.

It has been established that species of Edwardsiella are naturally resistant to colistin [75];
however, it is notable that the bacteria identified in this study exhibited colistin resistance
consistent with previous research findings. Genera from the family Enterobacteriaceae, such
as Salmonella spp., Klebsiella spp., Aeromonas spp., Citrobacter spp., Shigella spp., Enterobacter
spp., and Escherichia spp. contain mobilized colistin resistance genes [94]. Clostridium per-
fringens, Bacillus subtilus, Neisseria meningitides, Burkholderia spp., Proteus mirabilis, Kluyvera
spp., Cronobacter sakazakii, Raoultella ornithinolytica, and Pseudomonas aeruginosa have all
shown some level of resistance to colistin [95–98]. The most interesting finding from this
study comes from verifying the identities of diverse colonies that grew on the selective EIM.

Based on the results of the 16s sequencing, it is apparent that four bacterial colonies
were expressing different pigmentation and sizes that were all determined to be E. ictaluri.
One reason E. ictaluri was chosen for this study, as opposed to E. tarda or E. piscicida, is
due to the reported high phenotypic and biophysical homogeneity among isolates [99,100].
During the beginning of the persistence trial, E. ictaluri colonies produced a green pigment
on the EIM; however, some apparent E. ictaluri colonies began expressing a yellow pigment
by the fifth sampling day. One study reported that E. tarda colony pigmentation was black
when grown on Salmonella-Shigella agar [101]. Bacterial pigmentation is quite diverse, and
all unique pigments have a specific function essential for bacterial survival and ecological
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success [102]. Different bacterial genera, including Pseudomonas spp., Janthinobacterium spp.,
Streptomyces spp., Nocardia spp., Thermomonospora spp., Microbispora spp., Streptosporangium
spp., Rhodococcus spp., and Kitasatospora spp., have diverse pigmentation [103]; however,
there have been no studies reporting one species or genus of bacteria being capable of
expressing two different pigments. Johansen et al. [104] demonstrated through genetic
modification of the motility, cell shape, stringent response, and tRNA modification genes of
a Flavobacterium spp. strain Iridescent 1, which could alter the nanostructure, which resulted
in multiple colors observed among the same bacterial colonies. They also suggested that the
structural color of bacterial colonies may be linked to cellular functions and gene activity,
which may have significant implications for natural populations of pathogenic bacteria. To
date, no studies have determined the natural pigments produced by E. ictaluri or if there is
a linkage between cellular functions and pigmentation. Whole genome sequencing of the
isolates collected during the EIPT would reveal what pigments these bacteria can produce
and add another level of confirmation to the identity of these bacteria.

Even though both attempts to propagate F. covae colonies within this experimental de-
sign were unsuccessful, these findings are intriguing. Multiple factors may have influenced
the lack of F. covae in these laboratory persistence trials. Environmental conditions such as
water hardness, high temperature, organic matter, and nitrite concentration can increase
the adhesion and virulence of the bacterial pathogen [105–107]. The biofilm formation is
most effective between 25–28 ◦C and can be inhibited when salinity is as low as 3 ppt and
significantly reduced at salinities over 7.5 ppt [46,107]. Another factor could be due to
ecological interactions and interspecific competition. Bacterial species including Bacillus
subtilis, Luteimonas aestuarii, Rhodococcus qingshengii, Leucobacter luti, and Dietzia maris were
antagonistic towards F. covae and F. psychrophilum [30,108,109]. Additionally, tannic acid
can act as an effective bactericide for F. columnare and E. ictaluri [110]. It could be possible
that some of the other bacteria that appeared in the FCPT and some natural compounds or
ions in the sediment prevented the establishment of F. covae.

The culture conditions necessary for successful F. covae growth can be sensitive. Al-
though previous studies have reported that the best growth of F. covae is on low nutrient
media [58,73,111], and the bacteria are slow growing [112,113]. While Shieh media has
typically allowed for fast and effective growth of Flavobacertium spp. [114], a recent study
indicated that G media provides effective and uniform distribution of F. covae colonies
within 24 h [113]. Other media, such as tryptone yeast extract salt media [112] and antibi-
otics such as polymyxin-neomycin have been utilized to create selective media [73] for
successful F. covae growth. Media type and culture considerations for future persistence
studies may yield more favorable results.

Since we know the pathogen F. covae and other members of the Flavobacterium genus
have been found in aquatic environments outside of a host [50,115–118], it is plausible
that F. covae may have the ability to persist within the environment. In addition to biofilm
formation, a recent study by Abdelhamed et al. [119] revealed that F. covae could grow
under anaerobic conditions via denitrification genes and nitrite reduction. However, at
this time, we were unable to verify the ability of the pathogen F. covae to persist within the
sediments of commercial catfish ponds under the conditions outlined in this study.

5. Conclusions

Understanding the mechanisms that allow these pathogenic bacteria to persist within
sediments is vital for effective disease management strategies for commercial catfish pro-
ducers. E. ictaluri has been confirmed to be able to persist within aquatic sediments based
on the results of this study, however, this may have profound implications. Further gene
expression analyses such as those conducted on vAh [120] may reveal that cell origins
of E. ictaluri may result in different virulence factor expressions. Additionally, E. ictaluri
persisting within sediments may be more susceptible to developing anti-microbial resis-
tance [121], as has been reported in previous studies [36,122–124]. Conversely, since F. covae
propagation was unsuccessful, modifications to this experimental design will be necessary
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for future studies. While F. covae can form biofilms, other environmental and experimental
factors within the aquatic environment may contribute to them not being recovered in
this study.
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