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Abstract: Onchocerciasis is a neglected tropical disease targeted for elimination using ivermectin mass
administration. Ivermectin kills the microfilariae and temporarily arrests microfilariae production
by the macrofilariae. We genotyped 436 microfilariae from 10 people each in Ituri, Democratic
Republic of the Congo (DRC), and Maridi County, South Sudan, collected before and 4–5 months
after ivermectin treatment. Population genetic analyses identified 52 and 103 mitochondrial DNA
haplotypes among the microfilariae from DRC and South Sudan, respectively, with few haplotypes
shared between people. The percentage of genotype-based correct assignment to person within
DRC was ~88% and within South Sudan ~64%. Rarefaction and extrapolation analysis showed that
the genetic diversity in DRC, and even more so in South Sudan, was captured incompletely. The
results indicate that the per-person adult worm burden is likely higher in South Sudan than DRC.
Analyses of haplotype data from a subsample (n = 4) did not discriminate genetically between pre-
and post-treatment microfilariae, confirming that post-treatment microfilariae are not the result of
new infections. With appropriate sampling, mitochondrial haplotype analysis could help monitor
changes in the number of macrofilariae in a population as a result of treatment, identify cases of
potential treatment failure, and detect new infections as an indicator of continuing transmission.

Keywords: onchocerciasis; population genetics; microfilariae; epidemiology; macrofilariae; elimina-
tion; monitoring; drug studies

Pathogens 2023, 12, 971. https://doi.org/10.3390/pathogens12070971 https://www.mdpi.com/journal/pathogens

https://doi.org/10.3390/pathogens12070971
https://doi.org/10.3390/pathogens12070971
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0002-7499-7662
https://orcid.org/0009-0004-5831-4720
https://orcid.org/0000-0003-3356-4032
https://orcid.org/0000-0003-3544-1239
https://orcid.org/0000-0002-1919-1340
https://orcid.org/0000-0001-9572-3436
https://doi.org/10.3390/pathogens12070971
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens12070971?type=check_update&version=1


Pathogens 2023, 12, 971 2 of 20

1. Introduction

Over 120 million people are at risk of contracting onchocerciasis, a neglected tropical
disease (NTD) caused by the filarial nematode Onchocerca volvulus and transmitted by black-
flies in the genus Simulium, primarily in sub-Saharan Africa [1]. Onchocerciasis pathology
includes skin depigmentation and lesions, ocular damage that can lead to blindness, and
neurological–endocrine disorders such as epilepsy and Nakalanga syndrome [2–4]. The
World Health Organization (WHO), in conjunction with government and non-government
agencies, are targeting the elimination of O. volvulus transmission in endemic countries [5].
The strategy for interrupting transmission is the mass drug administration of ivermectin
(MDAi). Ivermectin kills the larval stages (microfilariae) found in the skin of infected
persons (microfilaricidal effect), and temporarily stops female adult worm reproduction
(embryostatic effect). It is distributed to affected communities annually, biannually, or
even quarterly. With each subsequent exposure to ivermectin, the fertility of female worms
may be reduced, although the estimated degree of this cumulative effect ranges across
studies [6–9]. The effects of long-term MDAi on skin microfilariae density and macrofilariae
fertility have resulted in the WHO-verified elimination of transmission in most endemic
areas in the Americas and may have also resulted in elimination in several endemic areas
in sub-Saharan Africa [10–14]. These successes motivated shifting the goal from control as
a public health problem to the elimination of onchocerciasis transmission [5,15].

One challenge facing the elimination of the transmission of O. volvulus with MDAi in
sub-Saharan Africa is the variable response of adult worms to the embryostatic effect of
ivermectin, with increases in skin microfilariae density post treatment beginning as early as
a few weeks or as late as >1 year [16–25]. Repopulation of the skin with microfilariae 80 days
post treatment, or the observation of stretched microfilariae in the uteri of adult female
worms 80–90 days post treatment, has been referred to as a sub-optimal response (SOR) to
ivermectin [16–24,26]. In addition, a sub-optimal microfilariae response (SOMR) has been
described, in which the rate or extent of the initial reduction in skin microfilariae following
ivermectin treatment is reduced [24,25,27]. The microfilaricidal and embryostatic effect of
ivermectin may differ between geographic areas [20,24]. Thus, tracking community-specific
changes in microfilaridermia and worm fertility is useful for the quantitative assessment of
the effect of MDAi and/or for parameterizing models used to predict the optimal timing
and duration of MDA for the successful elimination of transmission [28,29].

Current parasitological methods for assessing the effect of MDAi on an individual or
community level [16,17,21,22] do not allow the estimation of the number of fertile adult
worms in a host or in a community. Palpable subcutaneous nodules containing adult
worms can be excised for analysis, but an unknown (and significant) number of worms are
inaccessible deep in the body [30–34], and the number of individuals who can be sampled
is limited by the fact that minor surgery is required. Estimates of the number of live
female adult worms per person living in the West African savannah based on the statistical
analyses of macrofilariae in excised nodules indicate high variability among hosts within
the same community, ranging from approximately 4 to 177 [35,36] worms per person.

Our goal is to develop a tool that can quantitively measure progress towards reducing
the number of fertile worms during MDAi (and complementary interventions). Because
maternal sibling microfilariae sampled from the same person will have identical mitochon-
drial DNA sequences (or haplotypes) due to the strictly maternal nature of mitochondrial
inheritance, we can estimate how many adult females (macrofilariae) are reproductively
active by counting the number of unique mitochondrial haplotypes identified in the micro-
filariae sampled from the skin, assuming sister nematodes rarely infect the same person.
Because a particular skin snip may not contain microfilariae offspring from all female
worms in the person, the number of haplotypes detected will represent the minimum
number of reproductively active female worms. However, assuming that the subset repre-
sents a random sample of the microfilariae in the host, changes over time in the number of
haplotypes estimated should indicate whether MDAi is effectively reducing the number of
reproductively active worms. More explicitly, the number of haplotypes present amongst
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the microfilariae should decline, as MDAi reduces transmission (and thus new infections)
and adult females reach the end of their reproductive life span, thus providing a measure
of progress towards the endpoint of zero fertile adult females.

We opportunistically utilized microfilariae collected in two studies whose focus was
on onchocerciasis-associated epilepsy, one in the Logo Health zone in the Ituri province
of the Democratic Republic of the Congo (DRC) and the other in Maridi county of South
Sudan. People enrolled in the studies had epilepsy (potentially onchocerciasis-associated
epilepsy) and were ivermectin-naïve in the Logo Health zone [37]. To estimate how many
microfilariae per person would need to be sequenced to determine the minimum number
of reproductively active adult female worms, we performed rarefaction and extrapolation
analysis of mitochondrial haplotype diversity. We compared these estimates between
sampling locations to explore differences in baseline infection intensity. We compared
haplotype diversity between the samples from the two countries and between microfilariae
obtained pre- and post-treatment for four people from whom both pre- and post-ivermectin
microfilariae were available. Finally, we placed mitochondrial haplotype diversity identi-
fied in the microfilariae from DRC and South Sudan in the context of sequence data from
parasites from other endemic areas in sub-Saharan Africa.

2. Materials and Methods
2.1. Origin of Microfilariae

Skin snips were collected from people with epilepsy in Maridi County in South Sudan
and in the Logo Health Zone, Ituri Province, DRC in 2018 during epidemiological studies to
investigate the association between onchocerciasis and epilepsy. Two snips were obtained
from each participant at two time points: immediately before ivermectin treatment (“pre-
treatment”) and 4 months (DRC) or 5 months (South Sudan) later (“post-treatment”). After
the 24-h incubation of the snips in isotonic saline, the microfilaridermia was quantified
microscopically [38–40] and samples were transferred to 80% ethanol and sent to La Trobe
University, Victoria, Australia. In Maridi County, annual MDAi had been instituted since
the early 2000s, but was interrupted for several years because of insecurity, and only
reintroduced in 2017 with very low coverage (40.8%) [41]. At the time the skin snip was
taken, each participant had either never taken ivermectin or had taken it only once. In
the Logo Health zone, DRC, MDAi had never been instituted. A recent study concluded
that today, Simulium dentulosum appears to be the main vector of human onchocerciasis
in the area, and that Simulium vorax may be a secondary vector [42]. Ov16 IgG4 antibody
positivity, determined with the Ov16 IgG4 Bioline rapid diagnostic test [43–46], between
2016 and 2018 was 0% (0/55) among 6-year-old and 7.1% (13/182) among 7–10-year-old
children in the Logo Health zone [47]. In contrast, the Ov16 seroprevalence, determined
with the same rapid test in an area in Maridi close to the blackfly breeding site, was 40%
among children 3–6 years old and 66.7% among children 7–9 years old [48]. This suggests
much higher ongoing O. volvulus transmission in Maridi compared to the Logo Health zone.

2.2. Origin of Adult Worms and Adult Worm Sequences

In 2016–2017, 27 adult female worms from the Centre Region and 12 from the Littoral
Region in Cameroon were excised from nodules, as described in [20], and the heads (i.e.,
without uterine tissue) were placed in RNAlater (Invitrogen, Thermo Fisher Scientific,
Waltham, MA, USA).

Short-read data from adult worms were downloaded from the NCBI database from
Benin, Côte d’Ivoire, Ghana, Guinea, Liberia, Mali, Sierra Leone, Liberia, Mali, and Uganda,
project numbers PRJNA997216, PRJNA289926 [49], and PRJNA560089 [50].

2.3. DNA Extraction, Amplification and Sequencing

To minimize the transfer of host skin cell debris during DNA extraction, the microfilariae-
containing ethanol solution was washed with Milli-Q® water (Merck, KGaA, Darmstadt,
Germany) by carefully transferring the ethanol solution containing the microfilariae, but



Pathogens 2023, 12, 971 4 of 20

without skin snip, into a 15 mL falcon tube, filling to 15 mL with Milli-Q water, and
centrifuging at 500× g for 5 min. Approximately 14 mL was aspirated carefully from the
tube, leaving the microfilarial pellet in approximately 1ml of now diluted ethanol solution.
This was transferred into a clean reusable glass petri dish (glass because microfilariae are
less adhesive to glass compared to plastic). Each microfilaria was picked by aspiration using
a pipette (0.1–2 µL) under a dissecting microscope into 20 µL lysis buffer (10mM Tris–HCl,
pH 8.0; 1mM EDTA, pH 8.0; add 1% Tween®20 (Sigma-Aldrich, Burlington, MA, USA) and
Proteinase K 300 µg/mL (recombinant, PCR Grade, Sigma-Aldrich) added just prior to
use). The transfer of any visible cell debris was avoided while picking microfilariae. Tubes
each containing a microfilaria in lysis buffer were incubated at 55 ◦C for 2 or 3 h, followed
by heat inactivating the solution at 80 ◦C or 85 ◦C for 20 min. DNA from adult worms from
Cameroon was extracted using the Isolate II Genomic DNA kit (Bioline, London, UK) as
per the manufacturer’s instructions.

Quantitative PCR (qPCR) was performed on the microfilarial lysates to confirm the
presence of mitochondrial DNA prior to whole genome amplification. qPCR reactions were
performed using 2 µL of 1:5 diluted microfilarial lysates, 5 µL of SsoAdvanced Universal
SYBR Green master mix (Bio-Rad Laboratories, Hercules, CA, USA), 2 µL of nuclease-free
water, and 0.5 µL each of 10 µM forward (SP-Ov-mt-10062: 5′-attggtgaccaataaccttca-3′)
and reverse (ASP-Ov-mt-10062: 5′-ttgattcaatatcagggacgta-3′) primers. A synthesized 68-bp
oligonucleotide (ttg att caa tat cag gga cgt ata ttt cgt caa tct gag ttg act ttg aag gtt att ggt cac
caa t) was used as a positive control and standard and HPLC water as a negative control
for all reactions. Oligonucleotides were synthesized by Integrated DNA Technologies
(Redwood City, CA, USA). qPCR assays were run on a CFX Real-Time System (Bio-Rad
Laboratories), with an initial denaturing step of 3 min at 98 ◦C followed by 40 cycles (of
98 ◦C 10 s, 54 ◦C 15 s, 72 ◦C 15 s, read plate) including melt curve analysis at 65 ◦C to
95 ◦C for 5 s with an increment of 0.2 ◦C for 5 s. Each of the diluted lysates was assayed
in duplicate, and the standards in triplicate. The overall statistics for the qPCR runs were
assessed using the CFX Maestro Software (Bio-Rad Laboratories). The cycle threshold
(Cq) values for each sample were determined as positive if the Cq < 30, and negative if
Cq > 30 [51,52].

Microfilariae are relatively small in size (250–360 × 5–9 µm [29]), with low yield of
DNA from a single microfilaria. A minimum amount of starting DNA is prerequisite to the
successful generation of Illumina sequencing libraries. Whole genome amplification (WGA)
was used as an intermediate step on microfilarial DNA lysates to generate high yields of
amplified DNA as required for library construction. To generate a sufficient quantity of
microfilarial DNA for Illumina library construction, high-fidelity, multiple displacement
whole genome amplification (WGA) was performed on each microfilaria using 2 µL lysate
as the starting material and processed according to the manufacturer’s instructions (REPLI-
g, QIAGEN GmbH, Hilden, Germany). The WGA reactions were performed at 30 ◦C for
16 h and heat-inactivated at 65 ◦C for 10 min. Concentrations of the WGA DNA were
determined using a Qubit 2.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA).

Sequencing libraries were constructed on samples whose DNA concentrations were
above 1.0 ng/µL, using the Nextera DNA Flex/Illumina DNA prep library construction
kits and barcoded using unique dual indexes, according to the manufacturer’s instructions
(Illumina, San Diego, CA, USA). An Agilent TapeStation analysis was performed on libraries
using D1000 ScreenTapes (Agilent Technologies, Santa Clara, CA, USA) to ensure that the
libraries were within the selected size range of 400–650 bp. The Qubit fluorometer was
used to quantify the libraries for pooling. The final 4nM pooled library was spiked with
1% PhiX control (Illumina) and run on a NovaSeq SP, 300 cycles (i.e., 150 bp paired reads)
at the Australian Genomic Research Facility (Melbourne, Australia) or on a NextSeq 500,
300 cycles, at the La Trobe Genomics Platform (Bundoora, Australia).
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2.4. Variant Calling

Raw reads were trimmed using trimmomatic v.0.32 [53]. Trimmed reads were competi-
tively mapped to the O. volvulus nuclear and mitochondrial genomes v.4 [54], the Wolbachia
bacterial endosymbiont (GenBank accession number NZ_HG810405.1), and Homo sapiens
(genome GRCh38.p13) using bwa v.0.7.17 [55,56]. Reads that mapped to H. sapiens were
counted for quality control assessment (Supplementary Table S1) and discarded from the
data using Unix command line programs grep and awk. Samtools v.1.9 [57] was used to
remove secondary and supplementary reads, and only reads that mapped uniquely to
O. volvulus were retained. If a microfilaria was sequenced in more than one experiment, the
mapped reads were combined. Depth was assessed using bedtools v.2.26.0 [58] and coverage
for each O. volvulus chromosome at a depth of at least 20× was estimated using a custom
Perl script (Supplementary Table S1). Samples that did not meet a minimum coverage
of 85% at a depth of 20× were not included in the downstream analyses. RepeatScout
v1.0.5 [59] was used to identify repetitive regions across O. volvulus chromosomes.

For sequences from adult worms, variants were called on the mitochondrial genomes
using GATK v.4.0.11 HaplotypeCaller using a minimum read quality filter of 30. For sequences
from microfilariae, GATK v.4.2.6.1 was used, with de bruijn graph on. Variants for each
sample were combined and GATK GenotypeGVCFs was used for final variant calling. These
data were then filtered using GATK VariantFiltration for quality and depth (-filter “QD < 2.0”
--filter-name “QD2” -filter “QUAL < 30.0” --filter-name “QUAL30” -filter “SOR > 3.0”
--filter-name “SOR3” -filter “FS > 60.0” --filter-name “FS60” -filter “MQ < 40.0” --filter-
name “MQ40” -filter “MQRankSum < −12.5” --filter-name “MQRankSum-12.5” -filter
“ReadPosRankSum < −8.0” --filter-name “ReadPosRankSum-8” -filter “DP > 20” --filter-
name “DP20”).

Variants were also called using freebayes v.1.0.2 [60], and filtered for quality and depth
using vcftools v.0.1.13 [61]. Variant calls were normalized using bcftools v.1.2 [62] and
haplotypes were simplified using the vcfallelicprimitives function in vcflib [63]. Bcftools
was then used to find the intersection between the calls made by GATK and those made
by freebayes. Finally, vcftools was used to further filter the dataset to remove individuals
with less than 99% of variants called, to remove sites with missing data, and to identify and
remove indels, singletons, and repeat regions.

2.5. Data Analysis

The R package adegenet v.2.1.5 was used to produce principal component analysis
(PCA) plots of the genetic diversity within people at each of the different collection time
points and to cluster the worms [64,65]. Discriminant analysis of principal components
(DAPC [66]), which maximizes the differences between predefined groups, was used to
estimate the probability that a microfilaria would be correctly identified to person or to
date of collection based on genotype. The number of PCs to use in DAPC was estimated
using cross-validation.

Rarefaction curves using microfilarial haplotypes from people from whom more than
10 microfilariae were successfully sequenced were produced using the R package iNEXT
v.3.0.0 [67]. Vegan v.2.5–5 [65,68] was used to produce extrapolated estimates of total
haplotype richness and associated standard error based on the Chao and abundance-based
accumulated estimators, adjusted for sample bias [69–71].

SNPEff v.4.1l [72] was used to assess whether variants were in coding or noncoding
regions and to calculate their effects on known genes (e.g., amino acid changes).

PGDSpider v.2.1.1.3 for Windows [73] was used to convert vcf to nexus format, which
was then edited to add a “trait” block indicating person or country of origin. PopArt
v.1.7 [74] was used to generate haplotype networks using the TCS approach [75], calculate
diversity statistics, and to perform an analysis of molecular variance (AMOVA; [76]).
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3. Results
3.1. Sequencing Results

Out of 804 sequenced in total, 225 microfilariae from 10 people from the DRC and
211 microfilariae from 10 people from South Sudan successfully passed the filtering criteria
and were included in the analyzed data (Table 1). Of the successfully sequenced microfilar-
iae from the DRC, 207 were collected before treatment (D0); 15 and 3 microfilariae collected
four months post treatment, were, respectively, from two persons from whom we do not
have pre-treatment mtDNA sequences. The dataset from South Sudan includes 163 microfi-
lariae collected before treatment and 48 collected around five months post treatment, with
four people having parasites successfully sequenced from both pre- and post-treatment
microfilariae samples.

3.2. Genetic Variation of Microfilariae within People

After merging and filtering, 439 variants (places in the genome where the base differs
from the reference sequence) in the 13,744 bp mitochondrial genome were called, of which
119 were singletons (i.e., found in only one worm). Because singletons could be due to
experimental error (e.g., the introduction of variation during whole genome amplification)
rather than biological variation, we excluded these when determining the number of
mitochondrial haplotypes represented in each sample, leaving 320 variants.

The number of mitochondrial haplotypes identified for the microfilariae from a person
represents the minimum number of reproductively active female worms in that person
(Table 1), since there may be unidentified haplotypes from microfilariae either not present in
the skin snip, lost during transfer of the skin snip to ethanol, or not successfully sequenced.

Table 1. Number of Onchocerca volvulus mitochondrial haplotypes estimated per person in the study
areas in the Democratic Republic of Congo (DRC) and South Sudan. The mean counts of microfilariae
from two skin snips, the number of microfilariae successfully sequenced and in the final dataset,
and the number of haplotypes before and after treatment are given. The total number of parasite
haplotypes per person are also indicated, as this number will be different from the sum of the pre-
treatment and post-treatment haplotypes when haplotypes are found in both samples. Totals for each
country represent the total number of unique pre- and post-treatment haplotypes used in the analysis;
the total number in parentheses indicates the number of unique haplotypes across all worms, as some
haplotypes were found in more than one person.

Country Person
Mean Number of

Microfilariae
Pre/Post [37]

Number of
Microfilariae in
Dataset Pre/Post

Number of
Haplotypes

Pre/Post (Total)

DRC OAE015 48.5/3 0/15 0/4 (4)
OAE073 191/0 55/0 13/0 (13)
OAE121 295.5/0 55/0 13/0 (13)
OAE185 18.5/29 2/0 1/0 (1)
OAE195 12.5/0 2/0 2/0 (2)
OAE203 28/0 8/0 2/0 (2)
OAE209 370.5/0 60/0 6/0 (6)
OAE228 40/0 9/0 6/0 (6)
OAE304 9/4 3/0 2/0 (2)
OAE369 52.5/0 16/0 7/0 (7)
All DRC 210/15 52/4 (52)

South Sudan K014 16.5/20.5 0/1 0/1 (1)
K028 78.5/20 27/0 16/0 (16)
K029 57/143 0/1 0/1 (1)
K038 23.5/24 3/0 3/0 (3)
K096 108.5/1.5 9/0 8/0 (8)
M204 59.5/46.5 27/10 13/8 (17)
M206 105.5/62 33/21 19/ 16 (28)
M219 45.5/64 13/0 8/0 (8)
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Table 1. Cont.

Country Person
Mean Number of

Microfilariae
Pre/Post [37]

Number of
Microfilariae in
Dataset Pre/Post

Number of
Haplotypes

Pre/Post (Total)

M224 23.5/51 28/9 15/7 (20)
M238 23/55 23/6 14/5 (18)

All South Sudan 163/48 96/38 (103)

Totals 373/63 148/42 (155)

A rarefaction curve indicates how the number of haplotypes identified changes given
the number of successfully sequenced microfilariae, and the shape of the curve indicates
the extent to which the number of microfilariae sequenced effectively captures the genetic
diversity within the population investigated, i.e., the microfilariae within an individual
person (host). The rarefaction curves for samples from 12 individuals (those with microfi-
lariae counts ≥10; Figure 1) suggest that, overall, the number of microfilariae successfully
sequenced captured the genetic diversity in the parasite population in the DRC study area
(green) to a larger extent than that in the South Sudan study area (purple). Extrapolated
estimates for the total number of haplotypes predicted per person further suggest that
the predicted number of reproductively active female worms (observed+unobserved) is
greater in hosts from the South Sudan study area (average across people based on Chao
estimate: 29.4 haplotypes per person; based on abundance-based accumulation: 36.4) when
compared to the DRC (9.18 and 13.4, respectively), with highly variable associated standard
errors (Table 2).
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Figure 1. Rarefaction curve indicating how the number of Onchocerca volvulus microfilariae sampled
from (a) five individual hosts from the DRC and (b) seven hosts from the South Sudan study
areas affects the number of haplotypes likely to be observed. Solid line: rarefaction; dotted line:
extrapolation; shaded area: confidence interval.

We used several different methods for assessing and comparing mtDNA genetic
diversity in the microfilariae from the DRC and South Sudan locations. Because the
sampling of the parasite population was non-random (i.e., the repeated sampling of sibling
microfilariae in each host is non-representative of the population of parasites across all
hosts), we estimated genetic diversity statistics using the set of unique maternal haplotypes
rather than individual microfilariae sequences. Nucleotide diversity (π: the average number
of pairwise nucleotide differences per site) of haplotypes from the DRC was 0.0198, and
that of haplotypes from South Sudan was similar at 0.0212. Tajima’s D (the difference
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between diversity estimates derived from the mean number of pairwise differences and the
number of variant sites) was negative, but not significantly so, in both populations (DRC:
D = −2.591, p > 0.999; South Sudan: D = −2.609, p > 0.999). A simple, non-nested AMOVA
calculated a fixation index of ΦST = 0.094 (p = 0.011) in the DRC and ΦST = 0.0351 (p = 0.1)
in South Sudan. This indicates that in the DRC, most of this variation was partitioned
within individual people (90.59%), with minor variation among people (9.41%). In South
Sudan, this pattern of variation was even stronger (within individuals: 96.73%; between
individuals 3.27%). In other words, the genetic differentiation between the microfilariae
present in different people was marginally higher in the DRC than in South Sudan, but in
both populations, nearly all of the genetic diversity was within the individual hosts (as in
other parasites, such as the filarial nematode that causes lymphatic filariasis, Wuchereria
bancrofti [77,78]).

Table 2. Extrapolated mitochondrial haplotype richness estimates with standard error (SE) for
Onchocerca volvulus microfilariae sampled from participants in the DRC and South Sudan. Table
indicating the sample size (number of microfilariae sequenced), observed number of haplotypes,
extrapolated number of haplotypes based on the Chao [69] and the abundance-based coverage
estimator (ACE), adjusted for sample bias [70,71].

Person Sample Size Observed No.
Haplotypes Chao 1 (SE) ACE (SE)

DRC: OAE015 15 4 5.0 (2.17) 16.0 (4.14)

DRC: OAE073 55 13 16.0 (4.14) 15.61 (1.47)

DRC: OAE121 55 15 18.3 (4.10) 18.66 (1.89)

DRC: OAE209 58 4 4.0 (0.22) 5.24 (1.31)

DRC: OAE369 16 7 13.0 (7.08) 11.47 (1.49)

South Sudan: K028 27 16 20.7 (4.48) 22.74 (2.33)

South Sudan: K096 14 13 46.0 (26.3) 91.0 (0.98)

South Sudan: M204 35 14 14.1 (0.49) 14.85 (1.19)

South Sudan: M206 51 26 52.3 (18.74) 45.66 (3.50)

South Sudan: M219 13 7 7.2 (0.62) 8.27 (1.36)

South Sudan: M224 37 21 36.6 (11.63) 40.59 (3.18)

South Sudan: M238 29 18 29.0 (8.86) 31.53 (2.69)

We visualized the relationships among the microfilariae using haplotype networks,
which indicate how similar specific haplotypes are to each other. There are fewer haplotypes
observed across the 225 microfilariae from 10 people from the DRC (Figure 2a) than
observed across the 211 microfilariae from 10 people in South Sudan (Figure 2b), and the
network is correspondingly simpler. There are two haplotypes that form central nodes in
the South Sudan haplotype network that are shared by microfilariae from multiple people
(Figure 2b).

We also explored whether genetic diversity was clustered by infrapopulation (the
microfilariae within an individual host). The PCA of the samples from DRC suggests that
there is considerable overlap in genetic diversity across microfilariae from different people
(Figure 3a), but with only a few shared haplotypes (Figure 2a). DAPC is an analytical
approach that maximizes differentiation among groups. A DAPC of the mitochondrial
variants from DRC (using the first 80 PCs as determined by cross-validation) indicated that
worms sampled from different people could be genetically differentiated (Figure 3b). While
there are a few shared haplotypes, the proportion of individual microfilariae that could
be correctly assigned to their host, based on their mitochondrial genotype, is 0.8756. The
assignment proportion does not necessarily serve as a metric for similarity among worms
within a person; rather, it indicates how different the worms sampled are between people.
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The higher the assignment proportion, the more distinct the parasite genotypes present in
different people.
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Figure 2. (a) Haplotype network using 143 mitochondrial single-nucleotide polymorphic variants
from 225 microfilariae collected from 10 people from the DRC. (b) Haplotype network based on
228 genetic variants from 211 microfilariae collected from 10 people from South Sudan. Each circle
represents a haplotype and is colored based on person; circle size indicates the number of microfilariae
with that haplotype. Hatch marks along connecting lines indicate the number of sequence differences
between haplotypes.
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Figure 3. Analysis of genetic differentiation based on 320 mitochondrial DNA variant sites sequences
of microfilariae collected from people in the DRC and South Sudan. (a) Principal components
analysis (PCA) of microfilariae genotyped from 10 people from the DRC, colored by host (as in
(b)); (b) discriminant analysis of principal components (DAPC) for microfilariae from DRC, max-
imizing differentiation between hosts; (c) PCA of microfilariae from 10 people from South Sudan,
colored by host (as in (d)); (d) DAPC of microfilariae from South Sudan, maximizing differentiation
between hosts.

The PCA of mitochondrial genetic variation in the South Sudan microfilariae similarly
suggests overlap in genetic diversity across the microfilariae in different hosts (Figure 3c),
with a couple of haplotypes found in several people (Figure 2b). DAPC (using the first
60 PCs) was less able to discriminate among the parasites from different people compared
to the DAPC performed on the DRC samples (Figure 3d), and the assignment proportion
for individual microfilariae to the infected person from which they came was only 0.641,
indicating that discriminating infrapopulations based on maternal mitochondrial haplotype
was not feasible.

We focused further analysis on the 98 microfilarial haplotypes in the four people from
South Sudan from whom we had both pre- and post-ivermectin treatment samples. It was
not possible to discriminate haplotypes based on whether they were collected prior to
or following treatment: haplotypes found before treatment (gray) were also found post-
treatment (black) and some of the haplotypes were found in more than one person. Figure 4a
visually demonstrates this genetic overlap between microfilariae haplotypes, and Figure 4b
indicates the inability of the discriminant function to differentiate between pre- and post-
treatment haplotypes: each haplotype identified (columns) has a similar probability of
being assigned to either the pre-treatment (gray) or post-treatment (black) category based
on their genotype. When discriminating based on human host and the day sampled, the
post-treatment haplotypes largely overlapped with the pre-treatment haplotypes sampled
from the same individual, although haplotypes from different individuals were moderately
differentiated (Figure 4c,d).
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Figure 4. Analysis of genetic differentiation based on the mitochondrial genotypes of microfilariae
collected from four people in South Sudan with both pre- and post-treatment samples. (a) Discrimi-
nate analysis of principal components (DAPC) by time collected: pre-treatment (pre) or 5 months
post-treatment (post). (b) Each column represents a mitochondrial haplotype found within a person
and the shading the probability that haplotype would be assigned to time of collection based on the
DAPC, with the actual day collected indicated above and columns arranged by individual person, as
in (d); (c) DAPC of haplotypes maximizing differentiation between each individual host and by day
collected; (d) each column represents a haplotype within a person (M204, M206, M224, or M238) and
the shading the probability that it would be assigned to the pre- or post-treatment sample of one of
the four individuals.

3.3. Genetic Variation in the African Context

Maternal haplotype sequences from the DRC and South Sudan mf data (i.e., retaining
only one copy of a haplotype if it was found in multiple people and/or at multiple time
points) were combined with sequences from Guinea (n = 4), Sierra Leone (n = 3), Liberia
(n = 1), Mali (n = 10), Côte d’Ivoire (n = 13), Ghana (n = 189), Benin (n = 1), Cameroon
(n = 39), and Uganda (n = 2) [49,50] for a total of 438 O. volvulus. After filtering, there were
851 single-nucleotide polymorphic variants called in total; of these, 427 were singletons.
For downstream analyses, the singletons were removed.

Of the 424 polymorphic variants in the 13,744 bp mitochondrial genome, 139 variants
were nonsynonymous (i.e., resulting in a change in the amino acid in the gene product),
208 were synonymous (i.e., a nonsynonymous:synonymous ratio across all genes of 0.668),
4 were nonsense mutations that would truncate the predicted gene product, and the
remaining were in non-coding regions. The overall nucleotide diversity was 0.0111. The
reduction in nucleotide diversity compared to that estimated from microfilariae from the
DRC and South Sudan was largely driven by low nucleotide diversity among the 221 West
African worms (π = 0.0064). Most of the variance in this diversity was within countries
rather than between them: a simple non-nested AMOVA resulted in a fixation index
of ΦST = 0.0255 (p = 0.009; significance based on 1000 permutations), where only 2.55%
variance was among countries and 97.45% was within country.

Based on PCA, the haplotype diversity observed in South Sudan and DRC contained
some sequence variation that overlapped with mitochondrial sequences obtained from
adult female worms from West and Central Africa, and some sequence variation that was
quite distinct (Figure 5a; consistent with the haplotype network presented in Figure S1). The
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results of a DAPC including only parasites from those countries where at least 10 parasites
were sampled (Cameroon, Côte d’Ivoire, DRC, Ghana, Mali, and South Sudan), using
the first 70 PCAs as determined through cross-validation, was visually consistent with
the results of the PCA (Figure 5b). Assignment proportions (the proportion of parasites
correctly assigned to their country of origin) were higher for parasites from Cameroon
(0.90), DRC (0.94), and South Sudan (0.81) than parasites from Ghana (0.73), Côte d’Ivoire
(0.08), and Mali (0.40) (Figure 5c). The very low proportions for Côte d’Ivoire and Mali
could be due to fewer haplotypes being available compared to the number of sequences
from countries with higher assignment proportions (i.e., an analytical bias). Consideration
has to be given to the possibility that parasites in countries in West Africa are more closely
related overall (due to the migration of hosts or vectors and/or the more recent divergence
of those populations in evolutionary history) and thus less able to be discriminated using
mitochondrial data alone.
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Figure 5. (a) Principal component analysis of Onchocerca volvulus worms from Benin, Cameroon,
Côte d’Ivoire, Democratic Republic of Congo (DRC), Ghana, Guinea, Liberia, Mali, Sierra Leone,
South Sudan, and Uganda based on mitochondrial genome sequencing. (b) Discriminant analysis of
principal components (DAPC) of worms from Cameroon, Côte d’Ivoire, DRC, Mali, and South Sudan.
(c) Percentage of worms from each country that were correctly assigned to their country of origin
based on DAPC.

4. Discussion

Our results showed that the O. volvulus mitochondrial DNA haplotype diversity varied
between people and that the number of haplotypes in a single person was in the range of
2–26. The number of haplotypes indicates the minimum number of adult female worms that
produced the microfilariae in our analyses, and is within the range of previous estimates
of the number of female adult worms per person in West African populations [35,36].
Furthermore, our analyses showed that: (1) the number of haplotypes identified increased
with the number of microfilariae successfully sequenced (Figure 1), indicating that data
from a higher number of microfilariae than was available to us is required to estimate the
number of haplotypes within one host as well as within the human population to which the
host belongs; (2) the total number of microfilariae that need to be successfully sequenced to
capture the genomic diversity of their parents will vary depending on the number of adult
parasites within a person and geographic location (Figure 1, Table 2); and, thus, that (3) the
number of haplotypes we identified underestimates the number of reproductively active
female worms in most people, more so in those from South Sudan than those from DRC. If
a rarefaction curve begins to asymptote, then the microfilariae genotyped is more likely to
be representative of the genetic diversity within that person. In South Sudan, the number
of microfilariae per person that would need to be successfully sequenced to capture the
genetic diversity in that parasite population appears to be higher than for people in the
DRC (Figure 1). These differences were observed despite similar numbers of microfilariae
sequenced from a similar number of hosts, which further suggests that the intensity of
infection, or worm burden per person, is higher in the area sampled in South Sudan than in
DRC. The differences in infection intensity may be related to differences in prevalence; in
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the cohorts studied here, 36.5% of people recruited for the study based in Ituri compared to
84.9% of participants from South Sudan were microfilaridermic [38,40]. However, because
the participants did not represent a random sampling of onchocerciasis-infected people in
either location, sampling parasites from additional people would be required to confirm
what would be a significant epidemiological difference between the two areas. Differences
in onchocerciasis prevalence are driven by differences in annual biting rates, which are, in
turn, driven by ecological conditions favorable for blackfly breeding, the amount of time
people spend in areas with different biting rates, and the presence and effectiveness of
interventions [79–81].

The statistically significant fixation index (ΦST from AMOVA) of haplotypes from
the DRC and South Sudan demonstrates that each individual infected person carries a
genetically variable population of worms. In population genetic terms, each infected per-
son carries their own infrapopulation that is drawn from a much larger pool of parasites
present in the population as a whole (the metapopulation). Most of the genetic variation is
partitioned within people, which means that the differentiation between infrapopulations
is moderate, and stronger in the DRC than South Sudan. The difference between the DRC
and South Sudan infrapopulation differentiation is driven by fewer haplotypes (i.e., fewer
reproductively active females) detected per host from the DRC, and thus that each sampled
host contained a smaller proportion of the total parasite population’s genetic diversity
than hosts in South Sudan. Regardless, the higher within- than between-infrapopulation
diversity supports the hypothesis that the parasite populations in each transmission
zone—the geographic area over which parasites are transmitted and thus able to
interbreed—are large, and the probability of parasites that have identical-by-descent mito-
chondrial haplotypes being transmitted to one person is low.

The O. volvulus populations sampled in DRC and South Sudan harbor population-
associated genetic variants that can be used to discriminate many of the parasites collected
from these locations from parasites found elsewhere in sub-Saharan Africa. As shown in
similar analyses of mitochondrial DNA data from O. volvulus [49,78], there is a widespread
haplotype found in nearly all countries, which causes the overlap in genetic diversity
observed (Figure 5; central node in Figure S1). This is consistent with large population
sizes maintaining ancestral variation in mitochondrial genomes, which are under selective
constraint to retain function.

For the four hosts from South Sudan from whom we had mitochondrial DNA se-
quences from microfilariae collected before as well as five months post-ivermectin treat-
ment, we found that the haplotypes of the microfilariae collected post treatment were
not distinct from those taken before treatment (Figure 4b). This shared genetic diversity
indicates that the microfilariae present before and five months after ivermectin treatment
are likely the offspring of those mothers that recovered fertility relatively rapidly. However,
some haplotypes identified post treatment were not found in the pre-treatment sample.
New post-treatment infections can be discounted as a source of microfilariae in the skin
only five months post treatment, given that it takes 12–18 months for L3 larvae transmitted
to mature into a reproductive adult worm and that it might take up to 3 years for the micro-
filariae of that adult to be sufficiently numerous to be detectable in skin snips [32,82–84].
An alternative source for post-treatment mitochondrial haplotypes not detected in a pre-
treatment sample could be the random assortment of unique haplotypes into offspring
from a heteroplasmic mother (i.e., a female worm with more than one mitochondrial
haplotype). A likely interpretation is that sampling was not sufficient to detect all of the
genetic diversity actually present within the host: some genotypes are missing from the
pre-treatment sample because of under-sampling rather than true absence. We tested this
hypothesis by producing a rarefaction curve, which indicates how the detection of unique
mitochondrial sequences (or haplotypes) found in each person in both the DRC and South
Sudan microfilariae increases with additional sequenced microfilariae (Figure 1). Under the
assumption that post-treatment microfilariae would be a genetic subset of the pre-treatment
worms, the results are consistent with the hypothesis that there was insufficient sampling
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of microfilariae from people in the South Sudan cohort to capture the genetic diversity
present at the time of ivermectin treatment. Extrapolation may be useful for guiding re-
searchers in determining when additional sequencing is required; while the extrapolated
number of haplotypes varies depending on the assumptions made about detection of rare
haplotypes [70,71], we found that in as many as three people (M206, M224, M238), only
about half of the mitochondrial diversity was predicted to have been sampled (Table 2).

The analysis of parasite mitochondrial data to track changes in the number of repro-
ductively active female worms could be useful for elimination programs and researchers
working where there has been persistent transmission despite MDAi with high compliance
and community coverage. High vector-biting rates can sustain transmission, even when
skin microfilariae load is low. However, ongoing transmission might also be driven by par-
asites transmitted via vector or human movement from other onchocerciasis endemic areas
or by SOR to ivermectin (reviewed in [85]). Changes in the estimated number of reproduc-
tively active worms over time could serve as an indicator of whether years of programmatic
MDAi are successfully reducing the worm burden, or whether new imported infections
(represented as new haplotypes) are identified. In this latter case, the genotyping of worms
from areas with ongoing transmission that are likely to be connected by movement of
people (as in [86,87]) or vectors (including long-distance, wind-assisted migration [88–91])
could help determine whether transmission among endemic areas might be contributing to
persistent prevalence (see, e.g., [92,93] for modeling that explores the impact of movement
of people or vectors on prevalence). We have shown here that mitochondrial haplotypes
can discriminate among parasites from different countries, and, thus, may be informa-
tive where cross-border transmission might occur. Nuclear genotypes derived from the
whole-genome sequencing of adult worms were able to discriminate O. volvulus collected
in forest vs. savannah bioclimes within West Africa [49]; thus, the further development of
cost-effective approaches for the nuclear genotyping of microfilariae would be useful for
identifying transmission occurring between endemic areas.

In areas where SOR is suspected or has been demonstrated, monitoring changes in
the number of reproductive SOR macrofilariae can help inform decisions about whether to
deploy certain alternative and/or complementary interventions. SOR macrofilariae resume
reproduction as soon as a few weeks after ivermectin treatment. Assuming there is no
difference in the growth, survival, and probability of transmission of microfilariae that are
the offspring of SOR and non-SOR macrofilariae, and assuming that the early resumption
of reproduction is a heritable trait [20], the prevalence of reproducing SOR parasites will
increase over time. This would jeopardize onchocerciasis control and elimination efforts and
would require alternative intervention strategies. To date, the methods for identifying SOR
parasites involve counting the microfilariae in skin snips and/or evaluating developmental
stages in the uteri of macrofilariae excised from palpable subcutaneous nodules (where
a fraction of the macrofilariae reside) soon (typically around 3 months) after ivermectin
treatment [16–24,26]. Neither method can identify the number or percentage of SOR
macrofilariae. A genetic approach applied to longitudinal, post-treatment samples of skin
microfilariae or parasites in the vectors could indicate whether or not there is an increase in
the number of SOR adult female worms producing those microfilariae repopulating the
skin early, and, thus, whether alternative intervention strategies should be considered.

A major challenge for developing a genetics-based tool is the expense and sampling
effort required to sufficiently capture the genetic diversity of reproducing parasites. A cost-
effective approach would minimize the amount of effort needed to obtain microfilariae from
skin snips, be able to sequence DNA from parasite pools, and ideally be suitable for use
with blackfly pools. Long-read sequencing technologies (such as Oxford Nanopore) applied
to amplified targets in the mitochondrial or nuclear genome would have the advantage of
sequencing haplotypes even from DNA pools. Since national NTD programs are currently
not set up for sequencing and population genetic analysis, collaboration with a research
institution in the country, or building the required infrastructure and personnel capacity
within the programs, would be needed.
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Finally, the methods we present here may be useful, and easiest to implement, in
studies evaluating the efficacy of new drugs, when it is important to know whether microfi-
lariae appearing in the skin are due to macrofilariae reproductively active before treatment
and that were not sterilized or killed by the new drug or whether they are due to new
infections acquired after treatment [94]. In drug efficacy trials, four skin snips are usually
taken before treatment and at varying time points after treatment. The mitochondrial
haplotypes of the microfilariae sampled before and after treatment (timing dependent on
the prior knowledge about the effect of the drug on the parasites) can be compared to
estimate the effect of a drug on the burden of reproductively active female worms and on
individual female worm fertility. Depending on the extent to which sampling captures
haplotype diversity, samples taken >1 year after treatment could provide insight into the
probability that the haplotypes only identified in post-treatment samples are due to new
infections rather than due to parasites not affected by or having recovered from the effect
of the drug. This is particularly important when the studies are conducted in areas with
high transmission that could result in post-treatment infection.
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