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Abstract: In Mycobacterium tuberculosis, proline dehydrogenase (PruB) and ∆1-pyrroline-5-carboxylate
(P5C) dehydrogenase (PruA) are monofunctional enzymes that catalyze proline oxidation to gluta-
mate via the intermediates P5C and L-glutamate-γ-semialdehyde. Both enzymes are essential for
the replication of pathogenic M. tuberculosis. Highly active enzymes were expressed and purified
using a Mycobacterium smegmatis expression system. The purified enzymes were characterized using
natural substrates and chemically synthesized analogs. The structural requirements of the quinone
electron acceptor were examined. PruB displayed activity with all tested lipoquinone analogs (naph-
thoquinone or benzoquinone). In PruB assays utilizing analogs of the native naphthoquinone [MK-9
(II-H2)] specificity constants Kcat/Km were an order of magnitude greater for the menaquinone analogs
than the benzoquinone analogs. In addition, mycobacterial PruA was enzymatically characterized
for the first time using exogenous chemically synthesized P5C. A Km value of 120 ± 0.015 µM was
determined for P5C, while the Km value for NAD+ was shown to be 33 ± 4.3 µM. Furthermore, proline
competitively inhibited PruA activity and coupled enzyme assays, suggesting that the recombinant
purified monofunctional PruB and PruA enzymes of M. tuberculosis channel substrate likely increase
metabolic flux and protect the bacterium from methylglyoxal toxicity.

Keywords: proline catabolism; coupled assay; menaquinone; ubiquinone; lipoquinone

1. Introduction

The enzymes involved in the oxidation of proline to glutamate play important roles in
the physiology and metabolism of Mycobacterium tuberculosis, which is the etiological agent
of tuberculosis. Genes involved in proline metabolism are strongly expressed during nutri-
ent starvation or hypoxia [1], and proline metabolism has been implicated in mycobacterial
infections [2,3]. In addition, the enzymes involved in the oxidation of proline to glutamate
are important for achieving M. tuberculosis growth [1,4–6]. Therefore, there is interest in
using these enzymes as potential drug targets [7,8].

Proline oxidation involves the conversion of proline to ∆1-pyrroline-5-carboxylic acid
(P5C, Figure 1) via catalyzation by proline dehydrogenase, using FAD as a cofactor. P5C
exists in tautomeric equilibrium with glutamate-semialdehyde (GSA), which is converted
into glutamate by a NAD+-dependent ∆1-pyrroline-5-carboxylate dehydrogenase. How-
ever, the tertiary/quaternary structures of the enzymes catalyzing these reactions differ
from organism to organism [9]. Some bacterial species possess a bifunctional enzyme that
accomplishes the conversion of proline into glutamate [10], while other bacteria have a
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trifunctional enzyme in which an additional DNA-binding domain acts as a transcrip-
tional regulator, as seen in Escherichia coli PutA [11]. However, all eukaryotes and some
bacteria, including M. tuberculosis [1,4,7,8], are restricted to pairs of monofunctional en-
zymes [12,13]. In mycobacteria, these enzymes are encoded by pruA and pruB and rv1187
and rv1188, respectively.
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Figure 1. Reactions catalyzed by M. tuberculosis PruB and PruA enzymes. For PruB, proline dehydro-
genase catalyzes the formation of ∆1-pyrroline-5-carboxylic acid (P5C), which is in equilibrium with
glutamate-γ-semialdehyde (GSA), as well as the reduction in menaquinone. P5C is further oxidized
by PruA to generate glutamate with the concomitant reduction in NAD+.

Mycobacterial PruB has previously been cloned, purified, and characterized using the
artificial electron acceptor 2,6-dichlorophenolindophenol (DCPIP) [8]. Steady-state kinetic
analysis revealed a ping-pong mechanism, and site-directed mutagenesis suggested that
Lys110 is involved in the catalytic mechanism [8]. Mycobacterial PruA has also been cloned
and purified, and the crystal structure has been determined [7]. However, due to a lack of
exogenous substrate(s) for PruA, [P5C/GSA (Figure 1)] and aggregation of recombinant
PruB, these researchers were unable to conduct a kinetic analysis, although they were able
to demonstrate that both PruB and PruA were required to convert proline to glutamate in
assays containing both recombinant proteins.

In E. coli and Staphylococcus typhimurium, it has been shown that there is direct transfer
of P5C between the proline dehydrogenase and P5C dehydrogenase active sites of the
multifunctional enzyme PutA. This substrate channeling between proline dehydrogenase
and P5C dehydrogenase active sites has been extensively studied [14,15]. Possible reasons
for channeling P5C/GSA may include limiting interactions with other molecules and regu-
lating signaling activity, as P5C and GSA have been shown to react with metabolites [1,16],
inhibit enzymes [17], and affect signaling pathways [18]. The Rosetta stone hypothesis
suggests that if two or more enzyme activities are fused in a single protein in one organism,
as exemplified by PutA in E. coli [14], it is true that in an organism in which the activities
are not fused into a single protein, the individual proteins constituting the same activities
may interact [19,20]. Although mycobacterial PruB and PruA mixtures were previously
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shown to be active, it was not possible to demonstrate evidence of stable complex for-
mation between the enzymes; however, such an interaction seemed to be possible, as the
PruA active site is solvent accessible via a channel that is potentially suitable for substrate
channeling [7]. Thus, the question of whether non-covalently linked PruB and PruA in
M. tuberculosis utilize a substrate channeling mechanism like that seen in PutA remains
unanswered.

Here, we report the kinetic characterization of PruA from M. tuberculosis, discuss
the kinetic characterization of mycobacterial PruB utilizing natural lipoquinone electron
acceptor analogs, and provide enzymatic evidence of substrate channeling between a
monofunctional proline dehydrogenase (PruB) and a ∆1-pyrroline- 5-carboxylate dehydro-
genase (PruA).

2. Materials and Methods
2.1. Materials

High Fidelity Taq DNA polymerase was acquired from Roche Diagnostics (South
San Francisco, CA, USA), and Pierce BCA Protein Assay Kits were purchased from Ther-
moFisher Scientific (Waltham, MA, USA). Oligonucleotide primers were synthesized via
Integrated DNA Technologies. Plasmid mini-prep and PCR purification kits were ac-
quired from ThermoFisher Scientific (Waltham, MA, USA). Hygromycin B was acquired
from Calbiochem. Bacterial media and growth supplements (7H9, 7H10, ADC, OADC,
and LB) were acquired from BD Difco. Vitamin K2 (MK-4), UQ-1, UQ-2, NAD+, FAD,
2-aminobenzaldehyde, goat antimouse IgG alkaline phosphatase conjugated secondary
antibody, BCIP/NBT tablets, acetamide, Complete Protease Inhibitor Cocktail, Ni-NTA
beads, Tween-80, and Triton X-100 were purchased from Millipore Sigma (Burlington,
MA, USA). 6×-His tag antibodies were acquired from ThermoFisher Scientific (Waltham,
MA, USA). MK-1, MK-1(H2), and MK-2 were prepared as previously described [21–24]
(see Table 1 to review the structures of the various lipoquinone molecules described in
this study).

2.2. Cloning, Expression, and Purification of PruB and PruA

PruB and PruA were amplified from M. tuberculosis genomic DNA using the primers
listed in Table S1. Amplicons were initially cloned in the pET28a+ vector; however, due
to a lack of protein expression in E. coli, both genes were further subcloned in the pMyNT
mycobacterial expression vector [25,26]. The fidelity of the clones was verified via restric-
tion digestion and DNA sequencing. The recombinant plasmids were used to transform
Mycobacterium smegmatis. Transformants were inoculated in 10 ml of 7H9 Middlebrook
Medium supplemented with 0.2% (v/v) glycerol, 10% ADC, 0.05% Tween-80, and 50 µg/mL
of hygromycin B, and they were incubated at 37 ◦C for 2 days. The culture was diluted into
1000 mL of Middlebrook 7H9 medium and incubated at 37 ◦C. At the mid-log phase, bacte-
ria protein expression was induced with 0.2% (w/v) acetamide Millipore Sigma (Burlington,
MA, USA) for another 24–36 h at 37 ◦C, and cells were harvested via centrifugation. Har-
vested cells were resuspended in buffer containing 150 mM of Tris-HCl (pH 7.0), 100 mM
of NaCl, and 1 mM of phenylmethylsulfonyl fluoride and protease inhibitor cocktail.

The harvested bacteria were broken via sonication in buffer containing 0.1% Triton
X-100. The detergent solubilized homogenate was obtained via centrifugation at 27,000× g
for 30 min at 4 ◦C. This fraction was then incubated at 4 ◦C with Ni-NTA beads (Burlington,
MA, USA) [27]. Bound protein was eluted with buffer containing 150 mM of Tris-HCl
(pH 7.0), 100 mM of NaCl, and 250 mM of imidazole. Eluted protein was further purified
using PD-10 columns and concentrated via ultra-filtration in 150 mM of Tris-HCl containing
100 mM of NaCl. The purity of the protein was assessed using 12% SDS-PAGE. Purification
yielded ~1 mg of protein per liter of culture volume. The protein concentration was
determined using a BCA Protein Assay Kit, glycerol was added up to 10%, and protein was
stored in aliquots at −80 ◦C.
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PruA protein was isolated from the soluble fraction with the help of a Ni-NTA affinity
column. Eluted protein was further purified using PD-10 columns and concentrated via
ultra-filtration, as described above.

2.3. Measurement of PruB Enzymatic Activity

The reaction mixtures contained 20 mM of Tris-HCl (pH 7.0), PruB, lipoquinone, and
L-proline in a total volume of 200 µL at 25 ◦C in the presence of 5 µM of FAD. The enzyme
activity was spectrophotometrically measured following the decrease in the absorbance
at 270 (MK) or 278 (UQ) nm. In all cases in which menaquinone was used as the electron
acceptor, the lipoquinone was solubilized in 20% Tween-80, which was diluted to a final
concentration of 0.5% in the assay mixtures.

2.4. Synthesis of DL-Pyrroline-5-Carboxylic Acid [(DL)-P5C]

(DL)-5PC (50/50 mixture) was synthesized as previously described [28]. In brief, a
stir bar was added to a 250-milliliter round-bottom flask containing DL-hydroxylysine
(2.0 mmol) and double distilled H2O (28 mL), which was cooled to 0 ◦C in an ice-H2O bath.
Then, 50 mM of sodium metaperiodate (44 mL, which was adjusted to pH 7.0 using a glass
electrode and a small volume of 1 M of NaOH in dim light), which had been cooled to 0 ◦C
on ice for ~10 min. was quickly added. The reaction mixture was covered in aluminum foil
and stirred for 8 min at 0 ◦C. The periodate solution was quenched with 1-molarity glycerol
and stirred for 2 min at 0 ◦C. Then, the solution was acidified with 6-molarity HCl. The
resulting cold reaction mixture was then poured onto a Dowex 50 column (2 × 62 cm), and
~30 mL of flow through was collected and set aside at ~4 ◦C, as P5C is stable in 1-molarity
HCl at 4 ◦C [28]. The column was then moved to room temperature for the remainder of
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the procedure, and (DL)-P5C elution was accomplished with 1.0-molarity HCl at a flow rate
of ~1 mL/min; fractions were immediately collected (8.5-milliliter fraction volume, with
70 fractions being collected). Fractions containing (DL)-5PC (50/50 mixture) were stored at
4 ◦C and neutralized on the day of experiments on ice with 10-molarity NaOH [28].

2.5. Measurement of PruA Enzymatic Activity

P5C dehydrogenase activity was measured by monitoring the initial velocity of NADH
formation at 340 nm. Assays were performed using exogenous (DL)-P5C and recombinant
PruA in 20 mM of Tris-HCl (pH 7.0). (DL)-P5C was neutralized with 10-molarity NaOH on
ice immediately prior to the performance of assays. The kinetic parameters for P5C were
determined by varying the P5C/GSA concentration (0.01–2.0 mM) while holding the NAD+

concentration constant at 0.2 mM in 20 mM of Tris-HCl (pH 7.0). The Km and Kcat values
for NAD+ were determined by varying the NAD+ concentration (0–400 µM) while holding
the (DL)-P5C concentration constant (300 µM). All assays were performed in 200-microliter
reaction volumes. The inhibition of PruA activity by proline was determined by varying
(DL)-P5C (1–300 µM) at the indicated concentrations of proline (0–32 mM). Initial velocities
were fit to a competitive inhibition equation.

Vmax

[1 + (Km/S)× (1 + I/KI)]
(1)

using SigmaPlot 14 Enzyme Kinetics Module (Systat Inc., Richmond, CA, USA).

2.6. Coupled PruB-PruA Reaction

The coupled M. tuberculosis proline dehydrogenase-P5C dehydrogenase activity was
monitored by following the NADH absorbance at 340 nm or fluorescence (excitation at
340 nm and monitoring fluorescence emission at 460 nm). Assays were performed at 25 ◦C
in 20 mM of Tris-HCl (pH 7.0) containing 100 µM of UQ-1, 0.2 mM of NAD+, 40 mM of
proline, and 0.5 µM of PruB enzyme over a 5-minute incubation period. The reaction was
initiated via the addition of 0.5 µM of PruA enzyme, and the production of NADH was
followed over 30 min.

2.7. P5C Trapping Assays

Trapping assays were performed as described, with coupled assays performed with
the addition of 1mM of o-aminobenzaldehyde (o-AB). In the presence of P5C, o-AB rapidly
formed a dihydroquinazolinium compound that could be monitored spectrophotometri-
cally at 443 nm [29].

3. Results and Discussion
3.1. Expression and Purification of PruB and PruA

Both pruB and pruA genes were amplified from genomic DNA of M. tuberculosis and
cloned in the pET28a+ vector. Due to the lack of protein expression in E. coli, both genes
were further sub-cloned in pMyNT, which is a mycobacterial expression vector [21,25].
Although the protein is associated with membrane-enriched preparations, the His-tagged
recombinant PruB could be purified to at least 80% purity, as estimated via SDS-PAGE
analysis, after solubilization in buffer containing 0.1% Triton X-100 (Figure S1). In contrast,
PruA was purified from the soluble cytosol fraction [27]. Both nickel-NTA-purified proteins
had appropriate apparent molecular weight, as determined via SDS-PAGE and Western
blot analyses. The purified recombinant PruB protein was yellow in color, which was in
keeping with the observation that it has a predicted FAD-binding domain and suggests
that the protein is co-purified with bound FAD.
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3.2. Biochemical Characterization of PruB

Enzyme assays were conducted at 25 ◦C and pH 7.0 in 20 mM of Tris-HCl. Commer-
cially available MK-4, which is a naphthoquinone with four isoprene units (Table 1), was
initially used as a prospective electron acceptor for PruB; however, no enzyme activity
could be detected. MK has very limited solubility in aqueous solution, the calculated
logP (ClogP) value of MK-4 is 10.9, and the compound is sensitive to light exposure [30].
The resulting technical issues forced the use of chemically synthesized MK-1 and MK-
2, which share the same naphthoquinone head group as the natural lipoquinone found
in M. tuberculosis membranes, being the electron acceptor in the assays (Table 1). These
molecules with ClogP values of 4.8 and 5.0, respectively, were acceptable substrates for
PruB (see Figure S2 for representative UV-vis traces of the kinetic assay). However, all
menaquinone derivatives utilized required 20% Tween-80 to perform solubilization of the
stock material in aqueous buffer, which was further diluted to the 0.5% utilized in enzyme
assays. Additionally, water-soluble commercially available analogs of ubiquinone (UQ-1
and UQ-2, Table 1) were utilized as substrates. PruB oxidoreductase activities were assayed
by measuring the reduction in UQ or MK. The reaction mixtures contained 20 mM of
Tris-HCl, PruB, lipoquinone, FAD, and L-proline at a total volume of 200 µL. The enzyme
activity was spectrophotometrically measured following the decrease in the absorbance
at 270 (MK) or 278 (UQ) nm. However, as mycobacterial PruB enzymes require FAD as a
cofactor, and FAD reoxidation appears to be the rate-limiting step in the overall reaction [8],
the addition of FAD to the assay buffer resulted in little difference in activity, confirming
the copurification of the protein and co-factor.

Among the UQ analogs tested, UQ-2 was found to show the least activity. MK-1 was
found to support more activity than MK-2, and no activity could be detected using MK-4.
The lack of activity in the presence of MK-4 is attributed to the lack of sufficient solubility
under the tested conditions. PruB enzyme activity was also detected with MK-1(H2), which
is a naphthoquinone analogue with a single saturated isoprene unit.

3.3. Kinetic Parameters for PruB

The maximum enzyme activity was found at 25 ◦C and pH 7.0 [8]. The addition of
CHAPS, cholate, or Tween-80 at 0.1 to 0.2% had no significant effect on activity; however,
the addition of CHAPS or cholate at 0.5% or greater reduced activity by 90%. The addition
of Tween-80 at 0.5% reduced the enzyme activity by 20% but was required to solubilize
the naphthoquinones. The kinetic parameters for PruB of M. tuberculosis were determined
using the Michaelis–Menten kinetic assumptions, as shown in Figures 2 and S3. The PruB
Km value for UQ-1 (Km

UQ-1) in presence of FAD was found to be 9.7 µM at saturating
concentrations of L-proline (Table 2). The Km

proline was determined to be 2.5 mM in the
presence of saturating levels of UQ-1, while Km

proline at saturating concentrations of MK-1
was found to be 14 mM. The Km values of the napthoquinone analogs MK-1 and MK-2 in
presence of FAD and 0.5% Tween-80 were determined to be 23 µM and 12 µM, respectively,
at saturating levels of L-proline. The Km for MK-1(H2) was found to be 46 µM, which was
the highest Km of all tested quinone analogs. The calculated parameters Kcat and Kcat/Km
are presented in Table 2.

Km
UQ-1 in presence of exogenous FAD and saturating L-proline were found to be

9.6 µM, which is 10 times less than that reported for the bifunctional E. coli PutA [31]. In
addition, the Km

proline in the presence of saturating UQ-1 was found to be 2.5 mM, which is
18-fold less than that reported for E. coli PutA [31]. However, it must be kept in mind that
these values reflect the half reactions catalyzed by the bifunctional enzymes in comparison
to the purified recombinant proline dehydrogenase derived from M. tuberculosis. The
Km

proline reported here is similar to previously reported for PruB (5.7 mM) in the presence
of saturating DCPIP as the final electron acceptor [8].
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Table 2. Calculated kinetic parameters of proline dehydrogenase (PruB). Km and Vmax values of UQ-1,
MK-1, MK-1(H2), and MK-2 were determined in the presence of saturating levels of proline, and
kinetic parameters of proline were determined in the presence of UQ-1 or MK-1, as indicated. Assays
were performed at 25 ◦C and pH 7.0 in 20 mM of Tris-HCl. PruB activity was assayed by measuring
the reduction in the ubiquinone or menaquinone. Error indicates the standard deviation of the mean
of the three independent experiments. nd = not determined.

Substrate Km Vmax (pmol) Kcat (S−1) Kcat/Km (S−1 M−1)

UQ-1 9.7 ± 1.4 µM 1.6 ± 0.39 2.3 2.3 × 105

MK-1 23 ± 3.2 µM 1.9 ± 0.04 2.8 1.2 × 106

MK-1(H2) 46 ± 13 µM 3.2 ± 0.21 4.6 1.0 × 106

MK-2 12 ± 0.66 µM 1.8 ± 0.01 2.6 2.1 ×106

Proline (saturating
UQ-1) 2.5 ± 0.3 mM 1.2 ± 0.03 1.7 6.9 × 102

Proline (saturating
MK-1) 14 ± 4.1 mM nd nd nd
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The Km values of the natural naphthoquinone substrate analogs MK-1 and MK-2 were
found to be 23 µM and 12 µM, respectively. Interestingly, PruB can utilize benzoquinones
as electron acceptors as efficiently as the naphthoquinones; the calculated Kcat values were
similar for MK-1, MK-2, and UQ-1, suggesting that PruB does not differentiate between
these molecules. Additionally, PruB is able to utilize MK-1(H2) as an electron acceptor,
indicating that a double bond in the isoprene side chain is not essential for PruB activity.

3.4. Characterization and Kinetic Parameters of PruA

M. tuberculosis PruA activity was determined using previously synthesized exogenous
(DL)-P5C and 0.5 µg of the PruA enzyme. Synthesized and stored (DL)-P5C was neutralized
with 10 M of NaOH immediately prior to its use in assays. Like PruB activity, PruA was
optimal at 25 ◦C and pH 7.0 in 20 mM of Tris-HCl. Kinetic parameters for PruA were
determined using Michaelis–Menten kinetic assumptions. The representative saturation
curves are shown in Figure 3.
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Figure 3. Representative Michaelis–Menten curves for PruA showing the effects of the P5C concen-
tration in an assay at a 0.2-millimolar NAD+ (Panel (A)) concentration and a 0.3-millimolar P5C
(Panel (B)) concentration. Assays contained 500 ng of PruA in 200 µL of 20 mM of Tris-HCl at pH
7.0 and were incubated at 25 ◦C for 30 min. Activities were monitored following the increase in the
absorbance at 340 nm. The calculated kinetic parameters can be found in Table 3.

Table 3. Calculated kinetic parameters of PruA. The kinetic parameters were measured in 20 mM
of tris-HCl buffer (pH 7.0) at 25 ◦C. Substrate concentrations are described in the Methods sec-
tion. The increase in the absorbance at 340 nm measures the conversion of NAD+ into NADH
in the PruA- catalyzed reaction. Error indicates the standard deviation of the mean of the three
independent experiments.

Substrate Km
(µM)

Vmax
(pmol)

Kcat
(S−1)

Kcat/Km
(S−1 M−1)

NAD+ 33 ± 4.3 0.57 ± 0.06 1.1 3.4 × 105

P5C 120 ± 0.02 0.54 ± 0.05 1.1 8.5 × 103

The Km for NAD+ was found to be 33 µM, which is two-fold less than that of the
monofunctional enzyme derived from Thermus thermophilus [13] and ten-fold less than
that of the bifunctional enzyme derived from Bradyrhizobium japonicum [32]. In the ab-
sence of proline, the Km

P5C was found to be 120 µM, as shown in Table 3, which is three
times higher than that reported for the monofunctional enzyme derived from Thermus
thermophilus [13,33]. The addition of proline to the reaction mixtures resulted in a Km

P5C

nearly twice as high (230 µM) as that observed in the absence of proline, suggesting the po-
tential competitive inhibition of PruA activity, an observation that is consistent with similar
conclusions previously drawn for both monofunctional and bifunctional enzymes [31,33].
Subsequent experimentation showed that the addition of increasing proline concentrations
to the assay mixtures resulted in a pattern of decreased PruA enzyme activity that fit the
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competitive inhibition model well (Figure 4 and Table S2). An inhibition constant (Ki) of
6.7 mM was calculated.
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Figure 4. Inhibition of PruA by L-proline. Michaelis–Menten curves are shown in Panel (A). The
proline concentration varied from 0 to 32 mM and the P5C concentration varied from 0.1 to 1.6 mM
in 20 mM Tris-HCl at pH 7.0 at 25 ◦C for 30 min. Panel (B) shows the double reciprocal plots of the
same data. Error bars indicate the standard deviation of the mean of three independent experiments.
The KI

proline (6.7 mM) was calculated using the fit to a competitive inhibition model (Equation (1)).

3.5. PruB-PruA Channeling

As noted above, the central pathway of proline utilization in M. tuberculosis is catalyzed
via the activities of two different monofunctional enzymes, as indicated in Figure 1. The
addition of both PruB and PruA to the reaction mixture results in a coupled assay, which
can be used to determine the rate of the conversion of proline into glutamate in the presence
of NAD+.

A molar ratio of PruB to PruA (1:1), ensuring that the coupled reaction was not limited
by the concentration of either enzyme, was determined by varying PruA (0.125–6 µM)
and fixing PruB at 0.5 µM (Figure S4). The reaction mixture containing 20 mM of tris-HCl
(pH 7.0), 100 µM of UQ1, 0.2 mM of NAD+, 40 mM of proline, and 0.5 µM of PruB was
pre-incubated for 5 min. The reaction was initiated via the addition of the PruA enzyme
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for 30 min. The increase in absorbance or fluorescence was recorded by measuring the
conversion of NAD+ into NADH in the PruA-catalyzed reaction.

The effect of one enzyme on the reaction rate of the other enzyme was also monitored
(Figure S5). Reaction mixtures contained 20 mM of Tris-HCl (pH 7.0), 5 µM of FAD, 100 µM
of UQ-1, 0.2 mM of NAD+, 40 mM of proline, and equimolar concentrations (0.5 µM) of
enzymes. In addition, the activity of each enzyme was separately monitored under the
same conditions; no change in the activity of either enzyme was observed in the presence
or absence of the other enzyme (Figure S5).

The compound o-aminobenzaldehyde (o-AB) reacts with free P5C in solution, forming
dihydroquinazolinium that is detectable at 443 nm [28]. The addition of o-AB to the assay
mixture results in the trapping of the P5C via rapid formation of dihydroquinazolinium as
it is released from the PruB. P5C trapping was examined using equimolar mixtures of PruB
and PruA in assays with and without NAD+. The formation of the dihydroquinazolinium
was substantially reduced when NAD+ (200 µM) was present in the reaction mixture
(Figure 5A). Thus, in the presence of NAD+ P5C, trapping is significantly decreased,
indicating that the P5C is not accessible to the o-AB. These observations indicate that the
bulk of P5C is channeled directly to PruA from PruB, rather than being released into the
surrounding milieu.
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Figure 5. Intermediate P5C-GSA trapping with o-aminobenzaldehyde. P5C/GSA is bound by o-
aminobenzaldehyde (o-AB), forming the dihydroquinazolinium complex that is detectable at 443 nm.
The reaction mixtures contained 20 mM of Tris-HCl (pH 7.0), 100 µM of UQ1, 0.2 mM of NAD+,
20 mM of proline, and equimolar concentrations (0.5 µM) of PruB and PruA enzymes (Panel (A)).
Reactions were also performed in the presence of low and high salt concentrations (Panel (B)). Error
bars indicate the standard deviation of the mean of three independent experiments.
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Additionally, similar reactions were conducted in the presence of high concentrations
of salt in anticipation that the salt might disrupt any electrostatic interactions between PruB
and PruA, increasing the P5C available to the o-AB in solution. There was no observable
effect of salt addition on the activity of the individual enzymes, and increased P5C leakage
at a high salt concentration was not detected (Figure 5B).

Overall, it is thought that metabolite channeling, occurring within either multifunc-
tional enzymes or enzyme complexes, enhances metabolic flux, thereby improving the
cellular fitness of the organism [34,35]. Substrate channeling has been extensively studied
in various metabolic pathways, such as fatty acid β oxidation [36], the tricarboxylic acid
cycle [37], and purine biosynthesis [38,39]. In the proline catabolism pathway, evidence for
substrate channeling for the proline/P5C dehydrogenase reactions was reported in PutA
derived from Salmonella typhimurium [15], Bradyrhizobium japonicum [32], and Geobactor sul-
furreducens [40]; these reports have provided unprecedented molecular details of P5C/GSA
channeling [32]. A novel hysteretic mechanism described for the E. coli PutA suggested that
a channeling step in the overall proline/P5C dehydrogenase reactions was activated in the
first few catalytic turnovers [14,41]. In this report, we have provided evidence of substrate
channeling between non-covalently linked M. tuberculosis PruB and PruA enzymes, which
is consistent with the Rosetta stone hypothesis [19,20].

Organisms in which proline dehydrogenase and P5C dehydrogenase are fused may
have the ability to regulate P5C/GSA levels and utilize P5C as a metabolite signaling
molecule or drive the proline-P5C redox cycle [18,42]. In contrast, in organisms with
monofunctional proline and P5C dehydrogenases, the additional regulation of the proline
catabolic pathway maybe possible due to dynamic interactions. It has been suggested
that the proline oxidation protects mycobacterial cells from methylglyoxal toxicity [1].
Methylglyoxal is an abundant reactive electrophilic species formed from glucose, lipid,
and protein metabolism that reacts with nucleophilic centers in macromolecules, such
as DNA, RNA, and protein causing covalent glycation end products [43,44]. Although
multiple methylglyoxal degradation/detoxification pathways have been reported [43], it
has been demonstrated that a functional PruB but not PruA protects mycobacteria from
methylglyoxal toxicity [1].

Methylglyoxal can react with P5C to form non-toxic 2-acetyl-1-pyrroline [45]. However,
the data presented indicate that in equimolar concentrations of purified recombinant
PruA and B, as well as optimized conditions including saturating NAD+, the bulk of
P5C is converted into glutamate in vitro. However, this outcome may not be the case
in vivo. Interacting monofunctional proline and P5C dehydrogenases exhibiting imperfect
metabolite channeling, perhaps occurring due to allosteric or other translational/post-
translational regulation, may provide an advantage in terms of cell survival.

Supplementary Materials: The following supporting information can be downloaded via the follow-
ing link: https://www.mdpi.com/article/10.3390/pathogens12091171/s1, Figure S1. Purification of
PruB and PruA. Figure S2. Representative UV-Vis traces of enzyme activity. Figure S3: Representative
Michaelis–Menten curves for PruB; Figure S4: PruB-PruA coupled reaction; Figure S5: PruB and
PruA do not affect the reaction rate of the other enzyme; Table S1: Primers used in the amplification
of PruA and PruB constructs; Table S2: Non-linear fit of data shown in Figure 4 to a competitive
inhibition model.
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