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Abstract: In this review, we investigated the genetic diversity and evolutionary dynamics of the
Orthomarburguirus marburgense species that includes both Marburg virus (MARV) and Ravn virus
(RAVYV). Using sequence data from natural reservoir hosts and human cases reported during out-
breaks, we conducted comprehensive analyses to explore the genetic variability, constructing haplo-
type networks at both the genome and gene levels to elucidate the viral dynamics and evolutionary
pathways. Our results revealed distinct evolutionary trajectories for MARV and RAVYV, with MARV
exhibiting higher adaptability across different ecological regions. MARV showed substantial genetic
diversity and evidence of varied evolutionary pressures, suggesting an ability to adapt to diverse
environments. In contrast, RAVV demonstrated limited genetic diversity, with no detected recombina-
tion events, suggesting evolutionary stability. These differences indicate that, while MARV continues
to diversify and adapt across regions, RAVV may be constrained in its evolutionary potential, possibly
reflecting differing roles within the viral ecology of the Orthomarburgvirus marburgense species. Our
analysis explains the evolutionary mechanisms of these viruses, highlighting that MARYV is going
through evolutionary adaptation for human-to-human transmission, alarmingly underscoring the
global concern about MARV causing the next pandemic. However, further transdisciplinary One
Health research is warranted to answer some remaining questions including the host range and
genetic susceptibility of domestic and wildlife species as well as the role of the biodiversity network
in the disease’s ecological dynamics.

Keywords: hemorrhagic fever; Global Health Security; pandemic; transdisciplinary One Health;
genomics; Orthomarburguirus genus; phylodynamics

1. Introduction

Marburg virus disease (MVD) is a severe hemorrhagic fever with high fatality rates
caused by either Marburg virus (MARV) and/or Ravn virus (RAVV), both belonging
to the genus Orthomarburguirus of the family Filoviridae [1,2]. Since MARV’s discovery
in 1967 during an MVD outbreak in Germany, it has emerged as a major public health
concern due to its ability to cause large outbreaks with significant mortality and a high case
fatality rate, ranging from 24% to over 88%, seemingly depending on the population or
environmental condition per the geographical areas, particularly in many African countries
including Angola (2004-2005) [3], the Democratic Republic of Congo (1998-2000) [4],
Uganda [5,6], Kenya [7], South Africa [8], Ghana [9], Guinea [10], Tanzania [11], and, most
recently, Rwanda for the first time in 2024 [12]. The transmission of MARV and RAVV in
human populations primarily occurs through direct contact with body fluids of infected
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individuals or contaminated objects, and sporadic spillover events from its natural reservoir,
the Egyptian fruit bat (Rousettus aegyptiacus) [13-15].

RAVYV was first identified in 1996 and it was considered as a new subtype of MARV
due to the similarity in disease progression; however, genomic studies revealed that RAVV
is a separate virus from MARV and differed from it by up to 21.3% of its genomic structure;
however, both viruses share the same ancestral origin [3,16,17]. MARV and RAVYV, like
other filoviruses, have a single-stranded, negative-sense RNA genome that encodes seven
structural proteins, including nucleoprotein (NP), viral proteins (VP35, VP40, VP30, VP24),
glycoprotein (GP), and the RNA-dependent RNA polymerase (L) [3,16,18].

MVD caused due to infection with MARV or RAVV cannot be differentiated clini-
cally. A laboratory diagnosis of MVD includes molecular methods such as the reverse-
transcription polymerase chain reaction (RT-PCR), which detects MARV or RAVYV viral
RNA, or serological tests like the enzyme-linked immunosorbent assay (ELISA) [19]. While
RT-PCR provides definitive evidence of active infection, antibody testing can offer insights
into past exposures and immunity in the population. However, cross-reactivity with other
flaviviruses can complicate serological diagnosis, since other pathogens during outbreaks
cannot be easily differentiated unless relying on genomic sequencing tools to differentiate
the causative virus [20,21].

To understand MARV and RAVV’s evolution and phylodynamics, viral genomic
sequencing plays a pivotal role in identifying mutations and determining transmission
dynamics and adaptation during outbreaks. This study aims to investigate MARV and
RAVV’s evolutionary history and phylodynamics for understanding how those viruses
adapt and spread within human populations and across different regions, as well as
identifying patterns of viral evolution and any adaptations that may enhance their fitness
or transmissibility.

2. Materials and Methods
2.1. Data Collection of Viral Genomic Sequences

We collected publicly available genomic sequences of MARV and RAVYV isolates of
confirmed cases or reservoir hosts during outbreaks from the National Centre for Biotech-
nology Information (NCBI) GenBank database (https://www.ncbinlm.nih.gov/datasets/
genome/, accessed on 23 November 2024). Each sequence was accompanied by metadata,
including the year of isolation, geographic location, and the host species.

2.2. Sequences Selection

To ensure the integrity and reliability of our analysis, we carefully curated the sequence
dataset to exclude any isolates that are not complete or partial genomes and/or derived
from laboratory-adapted strains or recombinant forms of MARV or RAVV (Supplementary
File S1: Table S1). Laboratory-adapted strains often accumulate mutations or genetic
changes that arise under artificial conditions, such as repeated passaging in cell cultures
or animal models. These mutations can differ significantly from those occurring during
natural infection and transmission cycles, potentially introducing biases in evolutionary or
genetic diversity analyses [22].

Similarly, recombinant sequences—where genetic material from different viral strains
or species has been artificially combined—do not represent naturally occurring genetic
exchanges and could obscure patterns of natural evolution. These were also excluded to
maintain the focus on authentic evolutionary processes [23].

In addition to laboratory and recombinant exclusions, we ensured that all retained
sequences originated from natural reservoirs, such as bats, or from direct human infections
documented in outbreaks. This approach was crucial for capturing the genetic variation
that occurs during natural spillover events and human-to-human transmission. By doing
so, we aimed to avoid confounding factors introduced by unnatural environments or
conditions that do not reflect real-world transmission dynamics.
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This rigorous selection process aimed to enhance the robustness of the analysis, al-
lowing us to investigate the evolutionary dynamics of MARV and RAVV with greater
confidence. It ensures that the observed genetic diversity and evolutionary patterns gen-
uinely represent the natural processes shaping these viruses in their reservoirs and human
hosts. As a result, our findings are more relevant to understanding the adaptation, spread,
and potential emergence of these viruses in natural contexts, contributing valuable insights
for public health strategies and outbreak management.

The final dataset consisted of complete or nearly complete genomes representing
multiple outbreaks across various geographic regions and time points. The accession
numbers of the sequences analyzed in this study along with their metadata are available in
Supplementary File S1: Table S2.

2.3. Sequence Alignment and Genetic Diversity Indices

Al MARYV and RAVYV sequences were aligned using MAFFT v7 with default param-
eters to ensure optimal nucleotide alighment. The alignment was performed using the
FFT-NS-2 algorithm, a progressive method optimized for general-purpose alignments and
medium-sized datasets, with the number of refinement iterations set to 0. For nucleotide
sequences, a substitution matrix with equal weights for matches and mismatches was
applied, while default gap penalties were used, with a higher penalty assigned for opening
gaps and a lower penalty for extending them. Moreover, manual curation was performed to
remove poorly aligned regions and gaps, especially in non-coding or repetitive regions, that
could introduce noise into the analysis using Unipro UGENE software (version 51.0) [24].
Nucleotides and the deduced amino acid sequences of the protein-coding regions from
MARYV and RAVV genomes were analyzed to assess genetic diversity parameters, includ-
ing nucleotide diversity (7t), the number of haplotypes (H), haplotype diversity (Hd), and
neutrality test indices such as Tajima’s D [25], Fu and Li’s D, and Fu and Li’s F statistics [26].
We performed sliding window analyses for each virus genus separately, including MARV
and RAVYV, to investigate patterns of genetic diversity, selection pressure, and evolutionary
dynamics across different regions of the genome. For MARYV, the analysis was conducted
on a subset of 70 sequences, while, for RAVYV, 12 sequences were included. The analyses
were performed for whole genome sequences as well as their corresponding protein-coding
regions using a window size of 25 base pairs with a step size of 10 base pairs to identify
specific genomic hotspots of high variability or selection. All sliding window analyses and
genetic diversity parameters were calculated using DnaSP software (version 5.10.1) [27].

2.4. Phylogenetic Analysis

For phylogeographic analysis, each viral sequence was linked to its corresponding
geographic location and the year of isolation. This information allowed the tracing of the
virus’s movement over time and space. Geographic data were used to categorize viral
isolates into discrete countries, while temporal data were used to calibrate evolutionary
models. To assess the evolutionary relationships among MARV and RAVYV isolates, a
maximum likelihood phylogenetic tree was constructed using MEGA?7 software (version
7.0.26) [28], using the Maximum Likelihood method based on the Tamura 3-parameter
model with Gamma-distributed rate variation among sites [29]. Bootstrap analysis with
1000 replicates was conducted to evaluate the statistical support of the branching clusters.
Sequences used as outgroup taxa when constructing the phylogenetic tree are shown in
Supplementary File S1: Table S3.

2.5. Selection Pressure and Adaptive Evolution Analysis

To detect evidence of positive or purifying selection acting on the MARV and RAVV
genomes, we calculated the ratio of non-synonymous (dN) to synonymous (dS) substi-
tutions (dN/dS) using DnaSP software to detect codon positions subject to differential
selection pressures between hosts.
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The minimum number of recombination events (Rms) for each gene was also calcu-
lated by analyzing linkage disequilibrium and examining patterns of genetic variation
across the MARV and RAVYV sequences using the Hudson and Kaplan method [30], by
estimating the minimum number of recombination events required to explain observed
haplotype structures in the data using DnaSP software.

2.6. Haplotype Network Construction

To visualize the microevolution of MARV and RAVV within and between outbreaks,
we constructed haplotype networks using PopART software (version 1.7) [31] for the
identification of mutational relationships between viral isolates and viral diversity and
transmission chains based on host, temporal, and geographical representations. The years
of outbreak or field investigations for virus isolation were grouped to minimize redun-
dancy and prevent misinterpretation of results. Older sequences were consolidated into a
1967-1987 group, capturing initial outbreak data, while more recent outbreaks were orga-
nized into defined intervals: 1998-2000, 2004-2005, 20072012, 2013-2018, and 2021-2022.
This grouping strategy allowed for clearer temporal analysis and comparison across out-
break periods. Field investigation isolates were incorporated within these groups.

3. Results
3.1. Neutrality Testing and Genetic Diversity

The neutrality testing of MARV and RAVV populations based on protein-coding
regions across different countries and hosts revealed varying results. The MARV population
from the DRC which related to humans exhibited a high haplotype diversity and signs of
population expansion or selection in all the genes, including NP (Hd = 0.877 & 0.00291),
VP35 (0.904 & 0.00090), VP40 (0.793 £ 0.00544), GP (0.938 £ 0.00116), VP30 (0.791 + 0.00536),
VP24 (0.631 £ 0.00791), and the L protein (0.978 = 0.00030). Tajima’s D, Fu and Li’s D, and
Fu and Li’s F values were all statistically significant (p < 0.05). Other MARV populations,
including those from Angola, Sierra Leone, and the Uganda bat sub-population, did not
exhibit statistically significant values for Tajima’s D, Fu and Li’s D, or Fu and Li’s F, with
the exception of the Uganda human sub-population, which showed statistically significant
negative Fu and Li’s D values for all genes, and Fu Li’s F values for VP40 and VP24 genes
(p < 0.05). Overall, the Angola population displayed the lowest haplotype diversity, while
the Uganda bat sub-population exhibited the highest haplotype diversity across all genes
(Table 1).

Table 1. Neutrality testing and genetic diversity analysis of MARV population.

Population ¥ n S Eta Hap Hd £ VarHd Pi AvDif Tajima D FuLi's D FuLi’s F
NP gene

DRC Human 29 139 139 15 0.877 £ 0.00291 0.00690 14.399 —2.2949 * —1.0584 * —1.0549 *
Uganda 14 142 142 12 0.978 £ 0.00119 0.02646 55.242 1.0635 —0.5462 —0.4411
Uganda Human 6 123 123 4 0.867 + 0.01667 0.03078 64.267 1.2496 —0.8115* —0.8151
Uganda Bat 8 131 131 8 1.000 =+ 0.00391 0.02578 53.821 0.3562 —0.6933 —0.6646
Angola Human 13 3 3 4 0.423 £ 0.02705 0.00022 0.4620 —1.6523 —0.5802 —0.4856
Sierra Leone Bat 6 137 138 3 0.600 =+ 0.04630 0.02382 49.733 —1.1475 —0.8115 —0.8151
VP35 gene

DRC Human 29 74 74 13 0.904 £ 0.00090 0.00834 8.2560 —2.1397* —0.9686 * —0.9789 *
Uganda 14 74 74 11 0.967 + 0.00134 0.02831 28.022 0.9057 —0.4641 —0.339
Uganda Human 6 61 61 4 0.867 + 0.01667 0.03226 31.933 1.2554 —0.8222* —0.8196

Uganda Bat 8 69 69 7 0.964 £ 0.00596 0.02796 27.679 0.2171 —0.7133 —0.6769
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Table 1. Cont.

Population ¥ n S Eta Hap Hd + VarHd Pi AvDif Tajima D FulLi's D FuLi's F
Angola Human 13 1 1 2 0.154 £ 0.01590 0.00016 0.1540 —1.1491 —0.5113 —0.3981
Sierra Leone Bat 6 74 74 3 0.600 £ 0.04630 0.02714 26.867 —1.1019 —0.8222 —0.8196
VP40 gene

DRC Human 29 63 63 12 0.793 £ 0.00544 0.00775 7.0640 —2.1191* —1.4735* —1.4003 *
Uganda 14 65 65 10 0.945 £ 0.00203 0.02762 25.187 1.0267 —0.981 —0.9095
Uganda Human 6 56 56 4 0.867 & 0.01667 0.03231 29.467 1.2932 —0.8309 * —0.8295 *
Uganda Bat 8 63 63 6 0.893 £ 0.01238 0.02710 24.714 0.0927 —0.8673 —0.8455
Angola Human 13 2 2 2 0.154 £ 0.01590 0.00034 0.3080 —1.468 —0.9568 —0.8893
Sierra Leone Bat 6 66 66 3 0.600 £ 0.04630 0.02588 23.600 —1.1809 —0.8309 —0.8295
GP gene

DRC Human 29 227 228 19 0.938 £ 0.00116 0.01339 27.387 —2.0584 * —1.2524* —1.2432*
Uganda 14 227 228 12 0.978 £ 0.00119 0.04304 88.066 1.0288 —0.6956 —0.6145
Uganda Human 6 200 200 4 0.867 & 0.01667 0.05103 104.40 1.2458 —0.7361 * —0.7385
Uganda Bat 8 202 202 8 1.000 =+ 0.00391 0.04109 84.071 0.4332 —0.7492 —0.7333
Angola Human 13 2 2 3 0.410 £ 0.02368 0.00021 0.4360 —0.9092 —0.7286 —0.6594
Sierra Leone Bat 6 235 240 3 0.600 £ 0.04630 0.04148 84.867 —1.2512 —0.7361 —0.7385
VP30 gene

DRC Human 29 78 79 12 0.791 £ 0.00536 0.01013 8.574 —2.1897* —1.2083 * —1.1940*
Uganda 14 72 72 10 0.956 & 0.00142 0.03245 27451 0.9415 —0.6712 —0.582
Uganda Human 6 63 63 4 0.867 & 0.01667 0.03901 33.000 1.2605 —0.7312* —0.7321
Uganda Bat 8 63 63 7 0.964 £ 0.00596 0.03052 25.821 0.339 —0.7751 —0.7606
Angola Human 13 2 2 3 0.295 + 0.02427 0.00036 0.3080 —1.468 —0.6713 —0.5888
Sierra Leone Bat 6 72 72 3 0.600 £ 0.04630 0.03002 25.400 —1.2528 —0.7312 —0.7321
VP24 gene

DRC Human 29 40 40 6 0.631 £ 0.00791 0.00469 3.571 —2.4061* —0.5604 * —0.5087 *
Uganda 14 53 53 11 0.956 + 0.00200 0.02620 19.967 0.8704 —0.428 —0.3414
Uganda Human 6 42 42 4 0.867 & 0.01667 0.02913 22.200 1.3213 —0.6335* —0.6309 *
Uganda Bat 8 50 50 8 1.000 =+ 0.00391 0.02643 20.143 0.2397 —0.5522 —0.5231
Angola Human 13 1 1 2 0.513 £ 0.00675 0.00067 0.5130 1.3005 —0.5227 —0.4566
Sierra Leone Bat 6 43 43 3 0.600 £ 0.04630 0.01986 15.133 —1.2549 —0.6335 —0.6309
L gene

DRC Human 29 524 525 23 0.978 £ 0.00030 0.00807 56.461 —2.2653 * —1.2662 * —1.2593 *
Uganda 14 569 576 12 0.978 £ 0.00119 0.03116 218.022 0.9222 —0.6498 —0.5472
Uganda Human 6 488 490 4 0.867 & 0.01667 0.03652 255.467 1.2396 —0.8458 * —0.8499
Uganda Bat 8 518 522 8 1.000 =+ 0.00391 0.03005 210.25 0.2436 —0.763 —0.7373
Angola Human 13 4 4 4 0.603 & 0.01707 0.00014 0.9740 —0.8291 —0.6811 —0.5894
Sierra Leone Bat 6 569 570 3 0.600 £ 0.04630 0.02901 202.933 —1.218 —0.8458 —0.8499

DRC: Democratic Republic of Congo, n: number of sequences, S: segregating sites, Eta: number of mutations,
Hap: number of haplotypes, Hd 4 VarHd: haplotype diversity &+ variance of haplotype diversity, Pi: nucleotide
diversity, AvDif: average number of nucleotide differences. ¥ Populations with fewer than 3 sequences, including
those from Ghana (2), Guinea (2), The Netherlands (1), Kenya (1), and South Africa (2), were excluded from the
analysis to reduce bias caused by small sample size. * indicates statistical significance, with p-values < 0.05.

For the RAVV population, no statistically significant neutrality indices were observed.
In the Kenya population, which includes isolates from 1987, all the sequences shared
the same haplotype across the NP, VP35, VP40, VP30, VP24, and L genes, showing no
haplotype diversity, whereas the GP gene displayed two haplotypes with a moderate
haplotype diversity (Hd = 0.667 £ 0.04167) (Table 2).
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Table 2. Neutrality testing and genetic diversity analysis of RAVV population.

Population ¥ S Eta Hap Hd £ VarHd Pi AvDif Tajima D FulLi's D FuLi's F
NP gene
Uganda 17 17 4 0.867 + 0.01667 0.00300 6.26670 —0.9819 —-1.3715 —1.3729
Uganda Bat 16 16 3 0.833 + 0.04948 0.00399 8.33330 —0.4599 —0.6826 —0.6826
Kenya Human 0 0 1 0.000 = 0.00000 0.00000 0.00000 n.d. n.d. n.d.
VP35 gene
Uganda 10 10 4 0.800 + 0.02963 0.00397 3.93330 —0.6119 —1.51 —1.5076
Uganda Bat 10 10 4 1.000 + 0.03125 0.00556 5.50000 0.0834 —0.8473 —0.8473
Kenya Human 0 0 1 0.000 = 0.00000 0.00000 0.00000 n.d. n.d. n.d.
VP40 gene
Uganda 1 1 2 0.533 + 0.02963 0.00058 0.53330 0.8506 —1.3999 —1.3979
Uganda Bat 1 1 2 0.667 + 0.04167 0.00073 0.66670 1.633 —0.8086 —0.8086
Kenya Human 0 0 1 0.000 + 0.00000 0.00000 0.00000 nd. nd. n.d.
GP gene
Uganda 31 31 3 0.600 £ 0.04630 0.00661 13.5333 —0.0202 —1.3024 —1.3053
Uganda Bat 31 31 3 0.833 + 0.04948 0.00888 18.1667 0.7693 —0.6143 —0.6143
Kenya Human 1 1 2 0.667 + 0.04167 0.00033 0.6667 1.633 —0.6143 —0.6143
VP30 gene
Uganda 5 5 3 0.600 £ 0.04630 0.00244 2.06670 —0.3147 —1.3245 —1.3228
Uganda Bat 5 5 3 0.833 + 0.04948 0.00335 2.83330 0.3719 —0.7801 —0.7801
Kenya Human 0 0 1 0.000 + 0.00000 0.00000 0.00000 nd. n.d. n.d.
VP24 gene
Uganda 2 2 3 0.600 £ 0.04630 0.00087 0.66670 —-1.132 —1.4239 —1.4219
Uganda Bat 2 2 3 0.833 £ 0.04948 0.00131 1.00000 —0.7099 —0.8173 —0.8173
Kenya Human 0 0 1 0.000 + 0.00000 0.00000 0.00000 nd. nd. n.d.
L gene
Uganda 72 72 5 0.933 + 0.01481 0.00418 29.2000 —0.4765 —1.5064 —1.5028
Uganda Bat 71 71 4 1.000 £ 0.03125 0.00568 39.6667 0.2532 —0.834 —0.834
Kenya Human 0 0 1 0.000 =+ 0.00000 0.00000 0.00000 n.d. n.d. n.d.

DRC: Democratic Republic of Congo, n: number of sequences, S: segregating sites, Eta: number of mutations,
Hap: number of haplotypes, Hd 4 VarHd: haplotype diversity + variance of haplotype diversity, Pi: nucleotide
diversity, AvDif: average number of nucleotide differences. ¥ Populations with fewer than 3 sequences, including
those from South Africa (1), DRC (1), and Uganda Human isolate (2) were excluded from the analysis to reduce
bias caused by small sample size. n.d. means not determine.

The sliding window analysis of MARV and RAVV genomes revealed a variable nu-
cleotide diversity across protein-coding regions. In the MARYV genome, a lower nucleotide
diversity was observed in the NP, VP35, VP40, VP30, and VP24 genes, with values ranging
between 0.025 and 0.08, indicating these regions are highly conserved. In contrast, the
GP and L genes exhibited a higher nucleotide diversity, with several regions exceeding
0.13. When analyzed by the host source, MARYV isolates from human hosts showed a lower
nucleotide diversity compared to those from bat hosts. Additionally, intergenic regions
displayed greater diversity than protein-coding regions (Figure 1A).

In the RAVV genome, the nucleotide diversity by host source was inconsistent, with
neither human nor bat isolates consistently displaying a higher diversity across the genome.
However, certain protein-coding regions in bat isolates exhibited a considerably higher
diversity compared to those from human isolates. For instance, human-related sequences
showed a maximum nucleotide diversity of 0.02, whereas bat-related sequences exhibited
a diversity exceeding 0.03 (Figure 1B). Comparatively, the MARV and RAVV genomes
isolated from bats showed a higher nucleotide diversity across the protein-coding regions
than the genomes isolated from human (Supplementary File S2: Figures S1-514).
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Figure 1. Sliding window analysis of (A) MARV and (B) RAVV genome sequences. Regions marked
with dot lines are protein-coding regions labeled with their corresponding gene names. The following
gene designations are used: NP (Nucleoprotein), VP35 (Viral Protein 35), VP40 (Viral Protein 40),
GP (Glycoprotein), VP30 (Viral Protein 30), VP24 (Viral Protein 24), and L (RNA-dependent RNA
polymerase).

3.2. Phylogenetic Analysis

The phylogenetic analysis of MARV and RAVV genomic sequences revealed a clear
clustering into two distinct clades when sequences from other genera within the Filoviridae
family were incorporated (Figure 2).
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MN187406.1.Sierra Leone.Bat.2018
MN187404.1 Sierra Leone. Bat.2018
MN187403.1.Sierra Leone Bat. 2018
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O0K665848.1.Guinea. Human.2021
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DQ447656.1.Angola.Human 2005
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DQ447653.1.Angola.Human.2005
DQ447655.1.Angola. Human 2005
100| | KR063674.1.Angota Human 2005
KU978782.1.Angola. Human.2005
KY425629.1 Angola.Human. 2005
MT586762.1.Angola Human 2005
DQ447657.1.Angola. Human.2005

LDQ447658.1. Angola,Human.2005 __ |
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NC 024781.1 Kenya.Human 1987
EUS00827.1.Kenya. Human, 1987
KU179482.1 Kenya. Human. 1987
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100| | FI750953.1.Uganda Human 2007
| KU059750.1.Uganda, Human, 2007
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NC 055176.1 Wenling thamnaconus septentrionalis filovirus
100 lW{_Em; 076734.1 Fiw virus
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e
050

Figure 2. Maximum-likelihood phylogenetic tree. The phylogenetic tree of MARV and RAVV genomic
sequences alongside reference genome sequences from other viruses within the Filoviridae family
which was used as outgroup taxa. The blue-colored box highlights MARV sequences, while the
beige-colored box highlights RAVV sequences. Bootstrap values supporting the clustering of branches
are indicated next to the corresponding branches.
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The MARYV clade comprised two main lineages. One lineage primarily consisted of
sequences from the 1998-2000 DRC outbreak and sequences reported from Uganda. Within
this lineage, sequences from Uganda showed close relatedness, clustering with strong
bootstrap support of 100%. Additionally, sequences from Sierra Leone and South Africa,
originating from both human and bat hosts, indicated an older divergence within this
lineage. The second MARYV lineage included sequences also from humans and bats across
Uganda, DRC, Kenya, Sierra Leone, Guinea, Ghana, and Angola, supported by a 92%
bootstrap value. This lineage was further divided into three sub-lineages, each with strong
bootstrap support of 98% or higher. One sub-lineage comprised sequences exclusively from
bats in Sierra Leone collected during 2017-2018, another sub-lineage included sequences
related to the 20212022 outbreak in Guinea and Ghana, and the third sub-lineage was
exclusively a cluster of sequences from the 2005 Angola outbreak (Figure 3).

JX458840]1|ORCIHuman|2000
11|DRC] 2000
JX458839]1|DRC[Human|2000
JX458838]1|DRCIHuman|2000
()9 M|DRCIH |2000
JX458843]1|DRC]Human| 2000
JX458848]1|DRC[Human|2000
JX458845]1|DRC|Human|2000

% 11|DRC] 2000
JX458844]1|DRC]Human| 2000
X 11|ORCH |2000

JX458837]1|DRCIHuman|2000
DQ447651|1]DRC|Human| 1999
71 |DRC] 2000
JX458850]1|DRCIHuman|2000
(3 1]DRC] 2000
50 | JX458834]1|DRC]Human|2000
| JX458835]1|DRC[Human|2000
JX458833]1|DRC[Human|1999
JX458832]1|DRC|Human| 2000
JX458831]1|DRCIHuman|2000
DQ447650|1|DRC|Human| 1999
JX458830]1|DRC{Human|1999
JX458827]1|DRC[Human|2000
JX458828]1|DRC|Human| 2000
JX458829]1|DRC|Human|2000
JX458825]1|DRC|Human| 1999
JX458826]1|DRCIHumal 1999
1L 009
FJ750958|1|Uganda|Bat|2007

100

100 JX458854]1|Uganda|Bat|2009
FJ750959|1|Uganda|Bat|2007
JX458852]1|UgandalBat|2008

MHE38314]1|UgandalHuman|2017

100 MHE38315]1|UgandalHuman|2017

FJ750957|1|Uganda|Human|2007
JX458855]1|Uganda|Bat]2009
KP935768|1|Uganda|Human|2014
AYISB025|2|South AfricalHuman|1975
100 E MG725616(1|South Africa]Bat|2013
MN258362]1|Sierra Leone|Bat|2017
JX458853]1|UgandalBat|2008
JX458858]1|UgandalBat|2009
KC545387]1|UgandalHuman|2012
KC545388|1|UgandalHuamn|2012
JX458851]1|DRC|Human|1999
JN408064|1|Netherlands|Human|2008
NC 001608|3]KenyalHuman|1980
MN187405]1|Sierra Leone|Bat|2018
MN187406]1|Sierra Leone|Bat|2018
MN187404]1|Sierra Leone|Bat|2018
MN187403]1|Sierra Leone|Bat|2018
MN258361]1|Sierra Leone|Bat|2017
OKE65848|1]GuinealHuman| 2021
OLT702894|1[Guinea|Human|2021
QQET2470]1|GhanalHuman|2022
OQET2471)1|GhanalHuman|2022
DQ447659]1|AngolalHuman| 2005
KY047763|1)Angola|Human|2005
DQ447654|1Angola|Human| 2005
DQ447656]1 AngolalHuman [ 2005
DQ447660]1|AngolalHuman|2005
DQ447653|1 JAngolalHuman 2005
DQ447655|1 JAngola|Human| 2005
KRO63674]1|Angola|Human|2005
KU9T787821|AngolajHuman|2005
KY425629|1]Angola|Human|2005
MTS86762]1|AngolajHuman|2005
DQA4TEST|1|AngolalHuman[2005
DQ447658|1|Angola|Hurman| 2005
NC 055510.1 Mengla dianlovirus

Figure 3. MARV maximum-likelihood phylogenetic tree. Bootstrap values supporting the clustering
of branches are indicated next to the corresponding branches. Mengla dianlovrius reference sequence
is used as outgroup taxon.
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In contrast, the RAVV clade displayed a single lineage that clustered sequences from
both humans and bats, limited to Kenya, DRC, and Uganda. Notably, a South African
sequence isolated from a bat in 2017 showed substantial divergence from the common
ancestor of the RAVV clade and did not cluster within it, indicating significant genetic
distance from related sequences. Additionally, RAVV sequences isolated in 1987 clustered
separately from those isolated between 1999 and 2009, highlighting the distinct evolutionary
groupings within this clade (Figure 4).

MT321489|1|South Africa|Bat|2017

76 FJ750953|1|Uganda|Human|2007

86 KU059750|1|Uganda|Human|2007

100 L FJ7509541|Uganda|Bat|2007

60 FJ750955|1|Uganda|Bat|2007

FJ750956|1|Uganda|Bat|2008

32

96

JX458857|1|Uganda|Bat|2009

DQ447652/1|DRC|Human|1999

100

EU500827|1|Kenya|Human|1987

100 KU179482|1|Kenya|Human|1987

18 NC 024781|1|Kenya|Human|1987

26

DQ447649|1|Kenya|Human|1987

NC 055510.1 Mengla dianlovirus

Figure 4. RAVV maximum-likelihood phylogenetic tree. Bootstrap values supporting the clustering
of branches are indicated next to the corresponding branches. Mengla dianlovrius reference sequence
is used as outgroup taxon.

Moreover, when constructing phylogenetic trees for each gene separately in MARV
and RAVV sequences to investigate their phylogenetic topologies, we observed consistent
topologies across all genes. This uniformity in tree structure indicates that the genes of
MARYV and RAVYV have diversified independently of each other, reinforcing the distinction
between these two viruses at the genetic level (Supplementary File S2: Figures S15-521).

3.3. Selection Pressure and Adaptive Evolution Analysis

The analysis of the SS/NSS ratio for the protein-coding regions of MARV and RAVV
isolated from humans and bats showed similar ratios across the different host types. All
SS/NSS ratios were below 1. The Dxy values, representing average nucleotide differences
between the human and bat populations, showed the highest divergence in the GP gene in
MARYV and RAVYV sequences, while the VP24 gene showed the least divergence in MARV
sequences, and the VP40 gene in RAVV sequences. The Da values, which account for the
within-population diversity, are consistently low across all genes. The number of shared
mutations in MARV and RAVYV sequences between the human and bat populations was
the highest in the L gene, while the VP24 gene has the fewest shared mutations (Table 3).
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Table 3. Analysis of synonymous to non-synonymous substitution ratios for the protein-coding
regions of MARV isolated based on host of isolation.

Protein-Coding Region SS/NSS Ratio Dxy Da Shared Mutations Rm
Human Bat Human Bat
MARV
NP 0.295 0.295 0.03839 0.00141 182 41 32
VP35 0.308 0.311 0.03826 0.00143 83 24 11
VP40 0.303 0.302 0.03772 0.00160 70 24 17
GP 0.306 0.306 0.05850 0.00171 226 68 60
VP30 0.292 0.293 0.04397 0.00121 81 11 13
VP24 0.286 0.284 0.03685 0.00182 58 13 7
L 0.290 0.291 0.04304 0.00220 648 147 109
RAVV
NP 0.292 0.292 0.00486 0.00047 3 0 0
VP35 0.300 0.300 0.00494 0.00004 3 0 0
VP40 0.312 0.312 0.00305 0.00055 1 0 0
GP 0.300 0.305 0.00882 0.00009 14 0 0
VP30 0.291 0.298 0.00409 0.00100 1 0 0
VP24 0.283 0.278 0.00505 0.00075 0 0 0
L 0.293 0.295 0.00562 0.00027 21 0 0

SS: synonymous substitution, NSS: non-synonymous substitutions, Dxy: average number of nucleotide differences
per site between populations, Da: net nucleotide differences, Rm: minimum number of recombination events.

Considering the minimum number of recombination events (Rms) observed for genes
of MARV and RAVYV across human and bat populations, MARV genes exhibited consid-
erable recombination in both populations, with generally higher Rm values in humans
compared to bats. For instance, the L gene showed the highest recombination, with
147 events in humans and 109 in bats, suggesting greater genetic exchange in the human
host environment. Similarly, genes such as NP and GP demonstrate high recombination
frequencies in humans (41 and 68 events, respectively) relative to bats (32 and 60 events).
However, some MARV genes, such as VP30, show slightly more recombination in bats than
in humans, indicating the variability in host influence on recombination rates. Conversely,
RAVYV genes exhibited no recombination events in either population (Table 3).

3.4. Haplotype Networks Analysis

The analysis of MARV haplotypes based on country, year, and host of isolation revealed
a notable clustering of sequences from the DRC closely related to those from Uganda. This
suggests a genetic connection between the two regions, likely maintained during outbreaks
across different time periods, particularly the 1998-2000 outbreak in the DRC and the
2007-2012 and 2013-2018 outbreaks in Uganda. MARV haplotypes displayed complex
genetic connectivity, with a range of 1 to 976 mutation steps, further supported by the
inclusion of both human and bat isolates within these clusters. RAVV haplotypes, however,
were distinctly separated from MARYV haplotypes by 2933 mutation steps. Within the RAVV
haplogroup, the highest number of mutation steps was observed between Kenya and South
Africa, with 127 mutation steps. In contrast, within MARV haplotypes, Kenya and Angola
exhibited 976 mutation steps, and Kenya and South Africa showed 965 mutation steps,
underscoring the substantial genetic divergence among MARYV haplotypes. This wide
range of mutational steps further emphasizes the extensive genetic diversity within the
MARV population (Figure 5).
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Figure 5. Minimum-spanning haplotype networks of MARV and RAVV genomic sequences.
(A) This represents distribution of haplotypes according to countries of isolation. (B) This rep-
resents distribution of haplotypes according to host of isolation. (C) This represents distribution
of haplotypes according to outbreaks years. The number of mutations between each haplotype is
indicated between parentheses. Red circles represent haplotypes related to RAVV sequences.

The constructed haplotype networks for the MARV and RAVV genomes, with each
gene analyzed separately, revealed varying levels of genetic divergence among genes.
The L gene exhibited the highest number of mutational steps between MARV and RAVV
haplotypes, while VP24 had the lowest. The number of mutational steps observed for each
gene were as follows: NP (284), VP35 (135), VP40 (104), GP (382), VP30 (77), VP24 (42),
and L (853). Shared haplotypes based on the region of virus isolation were observed only
between Ghana and Guinea, specifically in the MARV VP24, VP30, and GP genes. Addi-
tionally, shared haplotypes between human and bat hosts were noted in MARV and RAVV
VP24 and VP30 genes, and in RAVV GP, VP35, and VP40 genes (Supplementary File S2,
Figures 522-528).

4. Discussion

In this study, the observed co-circulation of MARV and RAVV within the same MVD
outbreak periods, specifically during the 1998-2000 MVD outbreak in the DRC and the 2007
MVD outbreak in Uganda, underscores the importance of genomic surveillance, which
aids in accurate virus identification, especially since both viruses cause similar clinical
presentations [4,32].

Uniquely, this study analyzes the genetic diversity, phylodynamics, and population
structure of MARV and RAVYV independently, unlike previous studies that grouped them
together. It also excludes recombinant strains and guinea-pig-adapted viruses, which artifi-
cially inflate the perceived genetic diversity due to adaptation for the mouse host [3,33,34].
Our findings highlight the separate evolutionary trajectories for MARV and RAVV where
MARYV lineages exhibit a within-lineage diversity while maintaining distinct clustering,
suggesting limited recombination or genetic exchange. In contrast, RAVV sequences show
an absence of recombination, indicative of a stable evolutionary path with preserved inher-
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itance patterns across genomic regions, reinforcing a structured evolutionary framework.
Although it is important to interpret the results for RAVV with caution, as only twelve
genome sequences were available for this analysis, even when these sequences were treated
as a single population regardless of host type, no evidence of recombination was found
across the RAVV genes. This finding underscores the evolutionary distinctness and stability
of RAVYV relative to MARYV, supporting the notion that MARV and RAVYV are distinct
entities with unique evolutionary patterns [35].

The phylogenetic analysis revealed that MARV is organized into two primary lineages,
each containing several sub-lineages associated with specific geographic regions and host
species. This clustering differs slightly from previous studies, which identified three lin-
eages [34]; however, the two-lineage organization in our analysis was strongly supported.
This support was consistent not only at the whole-genome level but also across individual
gene analyses, with nearly identical tree topologies. Consequently, we concluded that the
two main clusters represent the primary lineages, while clustering within each lineage
represents sub-lineages. This organization aligns with evidence suggesting MARV diversi-
fication in response to regional and ecological factors [36]. The structured presence of these
sub-lineages also points to a shared ancestral MARV population maintained through cross-
host transmission, highlighting the virus’s adaptability and its capacity to persist across
various ecological environments [34]. These sub-lineages exhibit limited genetic divergence
and specific geographic regions and host species clustering, pointing to a shared ancestral
population that has persisted over time rather than arising from repeated independent
spillover events. Notably, the unique sub-lineage clustering of bat-derived sequences from
the Sierra Leone epidemiological field study (2017-2018) [13] and their separation from
those isolated from bats in Uganda (2008-2009) [37,38] indicate that regional ecological or
geographic factors may drive MARV evolution in bat populations. This distinct clustering
suggests recent ecological diversification, with MARV potentially adapting to specific
local environments, which could influence its transmission dynamics and persistence in
certain regions. A similar pattern was observed for MARV sequences from the 2005 Angola
outbreak, which included only human-derived isolates [3]. Their phylogenetic distinctness
points to a recent divergence event likely contributing to evolutionary changes that may
have enhanced viral transmissibility and virulence.

Additionally, a haplotype network analysis revealed regional genetic connectivity
suggesting transmission dynamics, particularly between the DRC and Uganda, where
DRC sequences from the 1998-2000 outbreak closely cluster with Ugandan sequences from
2007-2012 and 2013-2018 [5,39-41]. Such clustering suggests a persistent transmission link
between these regions, possibly facilitated by cross-border viral transmission sustained
by shared ecological conditions or cross-species transmission. This pattern may also
indicate strains adapted for transmissibility, potentially serving as progenitors of various
lineages. Further investigation into whether MARV and RAVYV are evolving toward specific
haplotypes associated with higher fitness or epidemic potential is essential.

The reduced genetic diversity observed in Angola isolates suggests that MARV un-
derwent adaptation to survive in varied environmental conditions and host reservoirs.
Such adaptation is likely influenced by selective pressures in the new ecology, which could
include host immune responses, or other factors unique to each region [42]. These adapta-
tions may contribute to the virus’s fitness and persistence across diverse habitats and hosts.
Notably, the MVD outbreak in Angola caused by MARYV recorded a case fatality rate of
approximately 90%—higher than other documented MVD outbreaks—and saw extensive
spread, resulting in 252 reported cases and 227 deaths [3].

The observed relationship between Angola isolates and the Kenya Musoke strain, as
well as isolates from West African countries like Sierra Leone, Guinea, and Ghana, provides
compelling evidence for the cross-regional transmission of MARV. This genetic connectivity
across haplotypes suggests potential transboundary events in which the virus may have
spread between East and West Africa, likely facilitated by known bat migration patterns
and wildlife corridors [43]. This movement also hints at a possible attenuation of virulence
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as MARV adapts to different ecological niches. Such reduced virulence may result from
a trade-off in the virus’s replication dynamics, where high transmissibility or adaptation
to new hosts and environments coincides with milder pathogenic effects. This hypothesis
aligns with the relatively low death tolls reported in Guinea and Ghana, with only one
and two deaths, respectively. For instance, in Ghana, 110 cases were reported, which may
indicate viral adaptation to local host populations, while, in Guinea, early detection and
a rapid response limited the outbreak to a single confirmed case [9,44,45]. These patterns
suggest the virus may have become less lethal but more sustainable in certain regions or
host populations. Additionally, these findings underscore how localized factors can drive
MARV’s genetic divergence, shaping its epidemiology and virulence during outbreaks.

The neutrality testing of MARV populations revealed distinct genetic variability by
region and host, suggesting varied evolutionary pressures. The high haplotype diver-
sity in DRC populations points to selective pressures that may enhance viral adaptability,
supported by significant neutrality values in protein-coding regions. In Uganda, MARV
sequences from humans showed purifying selection, indicating adaptation to the human
immune system, while bat-derived sequences displayed a high diversity without significant
neutrality values, suggesting bats as reservoirs that contribute to MARV’s genetic diversity
with minimal immune-driven structural changes [38,46,47]. A sliding window analysis
highlighted conserved protein-coding regions, particularly NP, VP35, VP40, VP30, and
VP24, which undergo purifying selection for essential viral functions, enabling immune
evasion by introducing minor changes that prevent immune recognition while preserving
replication efficiency [48-51]. Low synonymous-to-non-synonymous substitution ratios for
both MARV and RAVYV isolates indicate strong purifying selection, preserving protein func-
tion. The divergence in the GP gene suggests the adaptation to host-specific interactions,
while VP24’s stability underscores its role in immune evasion across hosts [33]. The genes
with shared haplotypes likely contribute to viral fitness across species, enabling MARV or
RAVV to jump between bat reservoirs and humans. VP24 and VP30 are key in immune
evasion and viral replication, potentially making them vital for adapting to diverse host
environments [52-54].

In the current ongoing MVD outbreak in Rwanda, the open borders with DRC and Tan-
zania, where MVD outbreaks had occurred recently, suggest the possibility of cross-border
spillover or human-to-human transmission from the DRC. MARV’s diversity appears to
be driven by geographic and temporal factors, underscoring its evolutionary adaptability
across Africa. This continuity also supports the role of viral reservoirs in MARV persistence
in Central Africa, especially within the DRC [2]. Therefore, countries at risk of the diseases
should invest in strengthening Global Health Security through institutionalizing the imple-
mentation of a transdisciplinary multisectoral One Health strategy [12,15]. Implementing
a national One Health prioritization exercise will help in identifying zoonotic diseases
of public health importance [55-59]. Then, in collaboration with local and international
stakeholders of One Health, these diseases of high priority could be jointly targeted with
an integrated One Health preparedness, prevention, surveillance, and response strategy
to enhance the cost-effectiveness and reduce the associated labor and required time for
planning and implementation [12,56,58-61]. This will enhance Global Health Security
through the cross-border coordination and joint implementation of the International Health
Regulations (IHRs 2005) [62-64].

5. Conclusions

It seems that, driven by the high dynamics and rapid and distant movements of the
main reservoir, fruit bats, Marburg and Ravn viruses are rapidly evolving and adapting
to transmission among the human population. This growing adaptability might be at-
tributed to several factors including increased undetected transmission, expansion in the
host range, and changes in climate and land use and cover as well as human activities,
which increase the contact between a wide range of animal species including humans.
More investigations in holistic One Health are needed to explore these hypotheses and
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provide up-to-date evidence to inform policymaking, strategic planning, and the develop-
ment and implementation of cost-effective interventions for the prevention and control of
the diseases.
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