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Abstract: Recent studies have suggested that periodontal disease and alterations in the oral mi-
crobiome may be associated with cognitive decline and Alzheimer’s disease (AD) development.
Here, we report a case-control study of oral microbiota diversity in AD patients compared to healthy
seniors from Central Asia. We have characterized the bacterial taxonomic composition of the oral
microbiome from AD patients (n = 64) compared to the healthy group (n = 71) using 16S ribosomal
RNA sequencing. According to our results, the oral microbiome of AD has a higher microbial diver-
sity, with an increase in Firmicutes and a decrease in Bacteroidetes in the AD group. LEfSe analysis
showed specific differences at the genus level in both study groups. A region-based analysis of the
oral microbiome compartment in AD was also performed, and specific differences were identified,
along with the absence of differences in bacterial richness and on the functional side. Noteworthy
findings demonstrated the decrease in periodontitis-associated bacteria in the AD group. Distinct
differences were revealed in the distribution of metabolic pathways between the two study groups.
Our study confirms that the oral microbiome is altered in AD. However, a comprehensive picture of
the complete composition of the oral microbiome in patients with AD requires further investigation.

Keywords: oral cavity; microbiome; 16S rRNA; sequencing; metabolic pathways; Alzheimer’s disease;
Kazakhstan population

1. Introduction

Alzheimer’s disease (AD) is a gradually worsening neurodegenerative condition
marked by memory decline, significant alterations in personality and conduct, and an
inability to perform routine daily tasks in its advanced stages. The likelihood of developing
AD rises with age, impacting around 10% of individuals between 65 and 75 years old and
affecting 32% of those aged 80 and older [1,2]. According to the World Health Organization
(WHO), the incidence of AD is increasing every year. Thus, it is postulated that there could
be a threefold increase in the number of AD patients by 2050, and the most significant
increases in dementia will happen in low- and middle-income countries [3]. In Kazakhstan,
as well as in other countries of the world, over the past decades, there has been an increase
in the number of older adults. However, the Kazakh population is poorly represented in
global studies of dementia.

Numerous factors that elevate the risk of Alzheimer’s disease (AD) have been iden-
tified. These include both non-modifiable (age, gender, family history, genetic) and mod-
ifiable factors such as low education, midlife hypertension, high cholesterol, physical

Pathogens 2024, 13, 195. https://doi.org/10.3390/pathogens13030195 https://www.mdpi.com/journal/pathogens

https://doi.org/10.3390/pathogens13030195
https://doi.org/10.3390/pathogens13030195
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0002-7350-6083
https://orcid.org/0000-0001-9668-0327
https://orcid.org/0000-0002-3670-3600
https://orcid.org/0000-0001-6161-1671
https://orcid.org/0000-0001-9479-0899
https://doi.org/10.3390/pathogens13030195
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens13030195?type=check_update&version=1


Pathogens 2024, 13, 195 2 of 18

inactivity, obesity and diabetes, and many others. One of the critical factors that has been
influencing human health and increasingly attracting the attention of scientists during the
last two decades is the human microbiota.

The human microbiota is referred to as the genomic content of microorganisms coloniz-
ing various anatomical locations like the digestive system, respiratory system, urogenital
system, etc., where they form multifaceted and distinct ecosystems that adapt to the envi-
ronmental conditions and closely interact with the host organism [1,2]. These interactions
have a tremendous impact on human physiology in healthy individuals and during an
illness. The gut harbors the most extraordinary microbial diversity and load, which play
a crucial role in influencing both human health and the development of various diseases.
Recent research strongly indicates that the microbiota in the gastrointestinal tract can influ-
ence brain functions and contribute to the development of AD [4–7]. The oral microbiome,
ranking second in the microbiomes of the human body, also plays a crucial role in both
oral and systemic diseases and can influence brain functions [8,9] through its potential
to provoke neuroinflammation [10]. Studies have shown that the oral microbiome can
impact the pathophysiological and immunoinflammatory mechanisms of Alzheimer’s dis-
ease [11]. Factors such as aging, local inflammation, and systemic diseases can contribute to
microbial dysbiosis, potentially leading to the development or exacerbation of Alzheimer’s
disease [12]. Prebiotic compounds and probiotic strains are a potential therapeutic approach
for the modulation of the oral microbiome [11].

Many studies have provided evidence of a connection between periodontal disease
and both neurodegeneration and cognitive decline [13–15]. Chang et al. reported that
chronic periodontitis of 10 years was associated with a 1707-fold increased risk of devel-
oping AD [16]. A nationwide retrospective cohort study carried out in Taiwan found that
individuals with chronic periodontitis and gingivitis had a higher likelihood of developing
dementia when compared to those with healthy gum conditions [17]. Moreover, recent
evidence has demonstrated a direct causal relationship between the oral microbiome and
AD [18–22]. For example, P. gingivalis, the most common bacterium associated with peri-
odontal disease, was able to cause the buildup of beta-amyloid plaques and neurofibrillary
tangles after an experimental oral infection in mice [23]. In turn, the content of serum
antibodies to P. gingivalis was increased in patients with AD [24], and the enzyme gingipain
produced by P. gingivalis was found in the brains of patients with Alzheimer’s disease [25].
Dominy et al. demonstrated that oral administration of small-molecule gingipain inhibitors
blocked gingipain-induced neurodegeneration, reduced P. gingivalis levels, and reduced
Aβ42 production in mouse neural tissue resulting from P. gingivalis brain infection [23].
Chronic systemic P. gingivalis infection has also been found to induce Aβ accumulation
in inflammatory monocytes/macrophages via activation of CatB/NF-κB signaling [26].
Recent studies suggest that Aggregatibacter actinomycetemcomitans has been implicated in
Alzheimer’s disease through its potential to induce inflammatory responses and affect the
central nervous system [27,28]. In vitro studies have shown that A. actinomycetemcomitans
can upregulate inflammatory cytokines and toll-like receptors in brain cells, leading to
increased expression of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α [29].
Additionally, A. actinomycetemcomitans has been found to induce the secretion of β-amyloid,
a hallmark protein associated with Alzheimer’s disease [27]. Furthermore, extracellular
RNA in outer-membrane vesicles of A. actinomycetemcomitans has been shown to cross
the blood–brain barrier and induce inflammation [30].

In addition, evidence indicates significant differences in the quantity and quality of
the oral microbiome in patients with AD compared to cognitively healthy age-matched
individuals. For example, Liu et al. demonstrated lower abundance and biodiversity of
the salivary microbiome in patients with Alzheimer’s disease than in healthy controls [19].
The authors note relatively high levels of Moraxella, Leptotrichia, and Sphaerochaeta and a
significant decrease in the number of Rothia in the saliva of patients with AD [19]. However,
these authors highlight the study’s limitations due to the absence of many periodontal
bacteria in saliva that typically exist in the subgingival niche or calculus [31]. Thus, a



Pathogens 2024, 13, 195 3 of 18

complete picture of the composition of the oral microbiome and its relationship with AD
requires further research. Thus, in the present study, we have investigated the diversity
and composition of oral microbiomes isolated from local patients diagnosed with AD in
comparison with healthy seniors and probed possible links between the oral microbiota
and some clinical parameters.

2. Materials and Methods
2.1. Responders Recruitment

Participants were recruited from Astana and Almaty through partnerships with neu-
rologists at healthcare facilities, including City Hospital No. 1 in Astana and Shashkin
Clinic in Almaty, between September 2020 and April 2022.

The study employed a predefined algorithm and a case-control study design, focusing
on older individuals with Alzheimer’s disease (cases) and cognitively healthy elderly indi-
viduals (controls). Alzheimer’s disease diagnosis adhered to the NINCDS-ADRDA criteria.
Inclusion criteria for the “case” group comprised the following: (1) Alzheimer’s disease
diagnosis; (2) age 50 or older at the time of diagnosis and data collection; (3) voluntary
consent to participate and provide blood and oral swab samples. Inclusion criteria for the
“control” group included the following: (1) absence of cognitive impairment, including
memory deficits; (2) appropriate age and gender; (3) voluntary consent to participate and
provide blood and stool samples. Exclusion criteria encompassed (1) severe somatic dis-
eases and (2) unrelated mental disorders for the “case” group. The control group consisted
of age-matched individuals without Alzheimer’s disease, selected to parallel the patient
cohort in demographic characteristics.

All participants (or their guardians) received comprehensive information from the
coordinator regarding the research project’s objectives and provided written informed
consent to participate. All patients underwent laboratory examination, with blood samples
collected in a fasting state. Comorbidity data from participants, including those with
dementia, were collected via self-report, caregiver reports, and medical records. The design
of the study is provided in Figure 1.
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2.2. Sample Collection and DNA Isolation

Before obtaining samples, participants were instructed to abstain from oral hygiene
procedures for the preceding 12 h and to refrain from eating or drinking in the 2 h leading up
to the study visit. Samples collection was performed according to the Human Microbiome
Project, Core Microbiome Sampling Protocol [32], from various areas within the oral cavity,
encompassing saliva, soft tissues, and hard tissues. The collection of saliva involved
using a calibrated pipette to obtain samples from the floor of the mouth. Soft tissue
specimens were acquired from multiple locations, including the dorsum of the tongue, hard
palate, buccal mucosa, keratinized (attached) gingiva, palatine tonsils, and throat, using a
DNA/RNA Shield Collection Tube w/ Swab (Zymo Research, Orange, CA, USA, R1107).
Both supragingival plaque and subgingival plaque were collected from a minimum of four
molar teeth, employing a Gracey curette. Equal numbers of plaque samples were included
from two studies. DNA extraction was performed using the ZymoBIOMICS DNA Miniprep
Kit (Zymo Research, Orange, CA, USA, D4300). A qualitative control of isolated DNA was
conducted by electrophoresis using 1% agarose gel. The concentration and clarity of the
isolated DNA samples were defined using an Invitrogen Qubit 3.0 Fluorometer (Invitrogen,
Carlsbad, CA, USA); as a negative control, sterile water was served.

2.3. Periodontal Status Evaluation of Responders

The participants underwent a clinical examination conducted by a periodontologist,
which involved a comprehensive gathering of complaints and medical histories, an assess-
ment of the oral cavity, and an index evaluation of the periodontal tissue condition. The
examination addressed patient-reported issues such as bleeding gums; the prescription
and the circumstances of its occurrence; the frequency of abscess formation; the presence
of bad breath; tooth mobility, as well as cosmetic concerns related to the movement of the
frontal group of teeth; heightened tooth sensitivity to various stimuli; and disruptions in
the function of the dental system. Parameters such as bone loss (%), bleeding on prob-
ing (BoP), periodontal probing depths (PPD), clinical loss of attachment (CAL), gingival
recession (GR), and number of remaining teeth were indicated. Periodontal health was
defined for areas with a probing depth (PPD) of ≤3 mm and an absence of bleeding during
probing. The presence of periodontitis was determined in cases where probing depth (PPD)
was ≥4 mm, clinical loss of attachment (CAL) was ≥2 mm, and radiographic bone loss
accounted for >15%.

2.4. Statistical Analysis
2.4.1. Clinical and Demographic Data Analysis

Statistical analysis was performed using Python 3.9.16. The normality was assessed by
the Shapiro–Wilk test. The equality of variances was checked by Levene’s test. Quantitative
data were compared using unpaired t-tests or Mann–Whitney U tests, as appropriate.
Discrete variables comparison analysis was carried out by chi-squared tests or Fisher’s
exact tests. Statistically significant results were determined in the case of p values < 0.05.

2.4.2. Sequencing Data Analysis

The analysis method of 16S rRNA sequencing was performed on the Illumina NovaSeq
6000 platform in the Novogene laboratory (Beijing, China) following the standard Illumina
protocols. The V3–V4 hypervariable regions of the 16S rRNA were employed for analysis.

For 16S amplicon sequencing data processing, the LotuS2 pipeline (Less OTU Scripts 2)
was used. All reads were demultiplexed, quality filtered, and dereplicated by using a
demultiplexer. Chimeric sequences were eliminated by employing UCHIME algorithms.
Taxonomic postprocessing of amplicon sequences in LCA with sequence clustering UPARSE
was performed using the SILVA database.

Statistical analysis and visualization of microbiome composition were performed in
Python 3.9.16. The OTU table was rarefied to account for inter-sample variation; only
OTUs present in at least 25% of the samples in either group were retained. All two-group
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comparisons were performed using the Mann–Whitney U test with the “SciPy 1.10.1”
library, and correlations were calculated using Spearman’s ρ. No adjustment for multiple
comparisons was applied when comparing correlations between significantly differentially
abundant parameters; in all other cases, FDR-BH correction was applied. Alpha diversity
was assessed using Shannon and Chao1 indices and using Faith phylogenetic diversity
and the number of OTUs observed after filtration; beta diversity was assessed based
on the unweighted UniFrac (U-UniFrac) distance using ANOSIM and PERMANOVA
tests with 9999 permutations using the “scikit-bio 0.5.6” library. Ordination of between-
sample composition was performed using principal coordinate analysis (PCoA). Differential
analysis of taxonomic features was performed using “LEfSe” with a significance cutoff of
p ≤ 0.05 and LDA > 2. Differential analysis of functional features was based on differences
in medians with 95% CI estimation using the Hodges–Leghman estimator. Only differences
in functional features with non-overlapping CIs were considered significant. Feature
importance analysis was performed using a combination of gradient boosting decision
trees (GB) and binomial logistic regression (LR) with leave-one-out cross-validation using
the “scikit-learn 1.2.2” and “LightGBM 3.3.5” libraries without prior feature selection or
hyperparameter tuning. ROC-AUC analysis was performed based on the leave-one-out
predictions. Visualization was performed using the “Matplotlib 3.7.1”, “seaborn 0.11.2”,
and “Sankey flow 0.3.8” libraries. Cladograms and L2FC bar plots were built using the
LEfSe 1.0.8 visual tools.

2.4.3. Metabolic Pathways Analysis

PICRUSt2 (phylogenetic investigation of communities by reconstruction of unob-
served states) v2.5.0 with default parameters was used for the prediction of functional
metagenomic data based on the 16S rRNA sequencing results [33]. In order to estimate the
gene family copy numbers for each OTU, a reference tree with an NSTI (nearest sequenced
taxon index) cutoff of 2 was employed. The MetaCyc Metabolic Pathway database was
used to forecast the abundance of bacterial metabolic pathways.

3. Results
3.1. Responders Characteristics

The study overall enrolled 135 participants, 64 patients with Alzheimer’s disease (AD)
and 71 healthy individuals (as shown in Figure 1). The average age of AD patients was
68 years; in the control group, it was 67 years. A total of 34 AD patients and 45 controls
were recruited in Almaty, and 30 AD patients and 26 controls were recruited from Astana.

The control group of individuals matched for age, sex, and ethnicity to the AD patients
(Table 1). There were no significant differences in periodontitis frequency between the two
studied groups, p > 0.05. Statistically significant differences were obtained in laboratory
parameters; total cholesterol (TC), low density lipoprotein (LDL), triglyceride (TG), alanine
transaminase (ALT), and aspartate transaminase (AST) were significantly lower in AD
patients compared to the control group (Table 1).

There were no significant differences in periodontitis frequency between the two
studied groups or between female and male subjects, p > 0.05. Periodontal parameters
(such as bone loss (%), BoP, PPD, CAL, GR, and number of remaining teeth) were similarly
distributed between the groups, p > 0.05. More details on the distribution of periodontal
parameters can be found in the Supplementary Material (Tables S1 and S2).

For further analysis, the main study group was divided into subgroups depending
on regions: Almaty-AD and Astana-AD, respectively. The clinical and demographic
characteristics are indicated in Table 2. The age of the two subgroups demonstrated
statistical differences; the Almaty-AD patients were younger than the Astana-AD patients,
p = 0.002. BMI and MMSE were significantly higher in the Almaty-AD subgroup, p = 0.03
and p = 0.0002, respectively. PFHDEM (family history of dementia) predominated in the
Astana-AD subgroup.
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Table 1. Responders’ clinical and demographic characteristics.

Parameters AD (n = 64) Control (n = 71) p-Value

Age (Me, years, Q1–Q3) 68 (63–74) 67 (61–72) p = 0.113

Race (n, %)

p = 0.913Kazakh 48 (75%) 52 (73.2%)

Non-Kazakh 16 (25%) 19 (26.8%)

Gender (n, %)

p = 1.000Male (n, %) 16 (25%) 17 (23.9)

Female (n, %) 48 (75%) 54 (76.1)

BMI (Me, kg/m2, Q1–Q3) 24.7 (21.36–28.7) 26.3 (23.04–30.48) p = 0.187

Periodontitis (n, %) 56 (87.5%) 58 (81.7%) p = 0.476

History of smoking (n, %) 13 (20.3%) 10 (14.1%) p = 0.337

APOE4 carrier (n, %) 26 (41.3%) 19 (27.1%) p = 0.124

MMSE (mini-mental state
examination), (Me, score, Q1–Q3) 21 (13–22) 29 (29,30) p < 0.0001 *

Fasting glucose (mmol/L) 5.07 (4.62–5.47) 5.18 (4.76–5.86) p = 0.135

TC (mmol/L) 4.84 (4.20–5.15) 5.53 (4.48–6.10) p = 0.001 *

TG (mmol/L) 1.15 (0.84–1.55) 1.48 (0.93–2.09) p = 0.01 *

LDL (mmol/L) 2.79 (2.37–3.43) 3.31 (2.77–3.86) p = 0.004 *

ALT (IU/L) 11.85 (7.9–17.2) 16.65 (10.6–22.6) p = 0.004 *

AST (IU/L) 17.55 (15.3–20.6) 18.55 (16.7–22.6) p = 0.052 *

CRP (mg/L) 1.7 (0.6–3.55) 1.45 (0.7–3.9) p = 0.857

PFHDEM (family history of dementia) 2 (3.1%) 3 (4.3%) p = 1.000

PPASTHX (self-reported depression) 26 (40.6%) 23 (32.4%) p = 0.581

PTOLDBP (self-reported
blood pressure) 32 (50%) 38 (53.5%) p = 0.365

PTOLDHRT (self-reported
heart disease) 14 (21.8%) 16 (22.5%) p = 0.874

PCVA (self-reported stroke), (n (%)) 5 (7.8%) 4 (5.6%) p = 1.000

PTIA (self-reported TIA (transient
ischemic attack)) 5 (7.8%) 9 (12.7%) p = 0.268

PLOC (self-reported brain injury) 11 (17.2%) 11 (15.5%) p = 0.97

PTOLDDM (self-reported diabetes) 7 (10.9%) 7 (9.8%) p = 1.000
Note: * p ≤ 0.05.

Table 2. AD region-based subgroups’ clinical and demographic characteristics.

Parameters Almaty-AD (n = 34) Astana-AD (n = 30) p-Value

Age (Me, years, Q1–Q3) 66 (62–72) 71 (67–80) p = 0.002 *

Race (n, %)

p = 0.679Kazakh 24 (70.6%) 24 (80.0%)

Non-Kazakh 10 (29.4%) 6 (20.0%)

Gender (n, %)

p = 0.247Male (n, %) 11 (32.4%) 5 (16.7%)

Female (n, %) 23 (67.6%) 25 (83.3%)

BMI (Me, kg/m2, Q1–Q3) 26.9 (23.4–29.0) 23.4 (21.1–27.9) p = 0.03 *

Periodontitis (n, %) 29 (85.3%) 27 (90.0%) p = 0.712

History of smoking (n, %) 10 (29.4%) 3 (10%) p = 0.054

APOE_e4_carrier (n, %) 10 (29.4%) 16 (53.3%) p = 0.06
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Table 2. Cont.

Parameters Almaty-AD (n = 34) Astana-AD (n = 30) p-Value

MMSE (mini-mental state
examination), (Me, score, Q1–Q3) 22 (20–24) 14.5 (4–21) p = 0.0002 *

Fasting glucose (mmol/L) 5.11 (4.89–5.62) 4.76 (4.4–5.33) p = 0.041 *

TC (mmol/L) 4.92 (4.44–5.15) 4.64 (3.97–4.99) p = 0.100

TG (mmol/L) 1.16 (0.81–1.55) 1.09 (0.84–1.52) p = 0.568

LDL (mmol/L) 2.7 (2.41–3.08) 3.04 (2.14–3.46) p = 0.938

ALT (IU/L) 12 (7.1–16.4) 11.75 (8.4–17.5) p = 0.438

AST (IU/L) 17.75 (16.1–20.6) 16.65 (13.8–20.0) p = 0.324

CRP (mg/L) 1.55 (0.47–2.8) 2.15 (0.62–5.03) p = 0.159

PFHDEM (family history of dementia) 0 (0%) 2 (6.7%) p = 0.05 *

PPASTHX (self-reported depression) 21 (61.8%) 5 (16.6%) p = 0.0006 *

PTOLDBP (self-reported
blood pressure) 19 (55.9%) 13 (43.3%) p = 0.627

PTOLDHRT (self-reported
heart disease) 7 (20.6%) 7 (23.3%) p = 0.759

PCVA (self-reported stroke), (n (%)) 2 (5.9%) 3 (10.0%) p = 0.643

PTIA (self-reported TIA (transient
ischemic attack)) 3 (8.8%) 2 (6.7%) p = 1.000

PLOC (self-reported brain injury) 8 (23.5%) 3 (10.0%) p = 0.497

PTOLDDM (self-reported diabetes) 3 (8.8%) 4 (13.3%) p = 0.454
Note: * p ≤ 0.05.

3.2. Oral Microbiome Compartment in AD and Control Groups

After filtering 8570 OTUs (29,261,786 reads) remaining in the matrix, the total reads
in the matrix were 29,261,786. Reads processed: 32,974,292. Accepted (high qual): 25,687,589
(110,060 end-trimmed). Rejected: 7,286,703, with an average sequencing depth of
216,753.97 reads per sample.

According to our results, the relative abundance of microbial taxa at the phylum level
demonstrated specific differences; Firmicutes increased in the AD group. However, this dif-
ference did not show any statistical significance, while there was a decrease in Bacteroidota
in the AD group at the tendency level, p = 0.06 (Figure 2a,b). Statistically significant differ-
ences between the two study groups were obtained at the species level; four species were
decreased in AD compared to the control group: s_Haemophilus_parainfluenzae, p = 0.009;
s_Prevotella_melaninogenica, p = 0.02; s_Prevotella_histicola, p = 0.01; s__Actinomyces_oris,
p = 0.004 (Figure 2a). The α-diversity differed between study groups by Faith PD (p = 0.004),
observed (p = 0.04), and Chao1 (p = 0.016) indexes (Figure 2c) and was higher in the AD
group compared to the control. β-diversity also showed significant differences between
the two groups by unweighted UniFrac: PERMANOVA, p = 0.0001; ANOISM, p = 0.0001,
respectively (Figure 2d) and was higher in the AD group. LefSe at the LDA > 2 levels
showed enrichment of specific taxa in the AD group, and beneficial bacteria were from
Limosilactobacillus, Lactobacillus, Lacticaseibacillus, Bacteroides, Catenibacterium, Parabacteroides,
Eubacterium_eligens_group, Fusobacterium, Turicibacter, and Anaerostipes genera (Figure 2e),
which are described in more detail on the cladogram (Figure 2f).
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Pathogens 2024, 13, 195 9 of 18

most abundant phyla; Mann–Whitney U test; (c) α-diversity. Shannon and Chao1 indices. Number
of observed OTUs and Faith phylogenetic diversity (pd). Mann–Whitney U test, with abs. Cliff’s
delta effect size (normalized U statistic) a; (d) β-diversity. Principal coordinate analysis (PCoA)
ordination based on the unweighted UniFrac (U-UniFrac) distance. ANOSIM R, PERMANOVA F
with permutations; (e) LefSe bar plot, LDA < 2 at the genus level; (f) LefSe cladogram at the genus
and species levels. * p ≤ 0.05, ** p ≤ 0.01. a Cliff’s delta quantifies how often values in one distribution
are higher than in the second distribution.

3.3. Oral Microbiome Compartment in Astana-AD and Almaty-AD Subgroups

Analysis of taxonomy in AD between the Almaty and Astana regions demonstrated the
following significant differences: at the species level, s_unclassified_TM7, p < 0.05, prevailed
in the Astana-AD subgroup (Figure 3a); at the genus level, g_Actinobacillus, p < 0.0001, and
g_unclassified_TM7, p < 0.05, prevailed in the Astana-AD subgroup, while g_Streptobacillus,
p < 0.0001, and g_Campylobacter, p < 0.05, prevailed in the Almaty-AD subgroup (Figure 3b).
α-diversity did not show any differences by all indexes, p > 0.05 (Figure 3c). At the same
time, unweighted UniFrac analysis of β-diversity demonstrated significant compositional
differences, PERMANOVA p = 0.001, ANOISM p = 0.002, higher in the Astana-AD sub-
group (Figure 3d). LefSe analysis of taxa revealed specific alterations in AD between two
regions, g_Clostridium_sensu_stricto1, g_Campylobacter, g_Acinetobacter, g_Ramlibacter, g_
Lacticaseibacillus, g_Kingella were the most abundant taxa in the Astana-AD; g_Actinobacillus,
g_Porphyromonasadaceae, g_Alloprevotella, g_Selenomonas, g_Staphylococcus, g_Streptobacillus,
g_Bergeyella were the most abundant taxa in the Almaty-AD group (Figure 3e), which are
introduced in greater detail in the cladogram (Figure 3f).

3.4. Correlation Interactions between AD and Control Group

According to correlation analysis, specific correlations between taxa and clinical param-
eters at the species level were observed: s__Anaeroglobus_geminatus negatively correlated
with cholesterol level, s__Corynebacterium_argentoratense negatively correlated with TG
level, and positive correlations were observed between s__Haemophilus_parainfluenzae and
cholesterol and s__Leptotrichia_sp._oral_clone_FP036 and ALT level (Figure 4a).

Correlation analysis of taxa and metabolic pathways demonstrated several correla-
tions; s_Flavonifactor_plautii, s_Lactobaccillus_gassery, s_Intestinomionas_butyriciproducens,
s_Treponema_socranskii, and Porphyromonas_pasteri demonstrated the majority of cor-
relation networks, precisely positive in the AD group with a large scale of pathways
(Figure S1). s_Haemofillus_parainfluenzae, s_Prevotella_melaninogenica, s_Prevotella_histicolla,
and s_Prevotella_intermedia displayed positive correlations with the large scale of pathways
in the control group (Figure S1).

In correlation analysis of pathways and clinical parameters, HISTSYN-PWY and
PWY-2941 pathways demonstrated a negative correlation with cholesterol level; HEME-
BIOSYNTHESIS-II, HSERMETANA-PWY, HOMOSER-METSYN-PWY, and MET-SAM-
PWY positively correlated with cholesterol and LDL levels; PWY-5918 showed a positive
correlation with LDL level only; and GLUCOSE1PMETAB-PWY positively correlated with
TG (Figure 4b).

Sankey plot analysis demonstrated specific connections between two key taxa, c__Bateroidia
and c__Erysipelotrichi, nine metabolic pathways, four clinical parameters, and MMSE
(Figure 4c). Notably, the two taxa demonstrated opposite correlation (c__Bacteroidia nega-
tive, c__Erysipelotrichi positive) regarding HISTSYN-PWY and PWY-2941, associated with
AD, which in turn negatively correlated with cholesterol and LDL, and the latter positively
correlated with MMSE (Figure 4c). PWY-5918 was associated with the control group and
negatively correlated with both taxa; meanwhile, it positively correlated with TC, LDL
levels, and MMSE (Figure 4c,d).
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indices. Number of observed OTUs and Faith phylogenetic diversity (pd). Mann–Whitney U test,
with abs. Cliff’s delta (da) effect size (normalized U statistic); (d) β-diversity. Principal coordinate
analysis (PCoA) ordination based on the unweighted UniFrac (U-UniFrac) distance. ANOSIM R,
PERMANOVA F with permutations; (e) LefSe bar plot, LDA < 2 at the genus level; (f) LefSe cladogram
at the genus and species levels. * p ≤ 0.05, **** p ≤ 0.0001.
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Figure 4. Significant correlations between differentially abundant features in AD and control groups:
(a) between taxa and clinical parameters; (b) between pathways and clinical parameters; (c) between
taxa, pathways, clinical parameters, and MMSE. Sankey plot of significant correlations. (d) Scat-
ter plot comparing TC levels and MMSE scores. Spearman’s ρ, p ≤ 0.05; TC = total cholesterol;
LDL = low-density lipoprotein; ALT = alanine transaminase; TG = triglycerides; MMSE = Minimized
Mental State Examination. For differentially abundant features, a group with a higher relative abun-
dance is highlighted: in green, the relative abundance is higher in the control group, and in purple, it
is higher in the AD group. * p ≤ 0.05, ** p ≤ 0.01.

The distribution of metabolic pathways in AD and control groups is provided in
Figure S2. A total of 15 pathways demonstrated statistical significance in the AD group and,
22 pathways did so in the control group. All correlations between significantly abundant
taxa and significantly abundant pathways are provided in Table S3.
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3.5. Correlation Interactions between Astana-AD and Almaty-AD Subgroups

Correlation analysis within the main study group depending on regions revealed signif-
icant relationships at the genus level. The Almaty-AD subgroup demonstrated the most signifi-
cant positive correlations between MMSE and taxa, such as g__Lachnospiraceae_NK4A136_group,
g__Intestinimonas, g__Colidextribacter, g__Flavonifractor, and g__Anaerostipes. Taxon g__Bergeyella
positively correlated with APOE_e4_status in the Astana-AD subgroup (Figure 5a).
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Figure 5. Significant correlations between differentially abundant features in AD subgroups in the
Almaty and Astana regions: (a) between taxa, MMSE, and e4 status; (b) between taxa and demo-
graphic parameters; (c) between taxa and pathways; (d) between taxa, family history of dementia
(PFHDEM), and self-reported depression (PPASTHX) status. Spearman’s ρ, p ≤ 0.05 for continuous
parameters. Point-biserial r, p ≤ 0.05, for binary-continuous pairs; MMSE = Minimized Mental State
Examination; BMI = body mass index. For differentially abundant features, a group with a higher
relative abundance is highlighted: in coral, the relative abundance is higher in the Almaty-AD group,
and in gray, it is higher in the Astana-AD group. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001.

Of note, relationships were identified between BMI, age, and certain taxa: g_Flavonifractor,
g_Colidextribacter positively correlated with BMI and negatively correlated with age, while
g_Acinetobacter and g_Acidovorax positively correlated with BMI. g_Streptobacillus and
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g_Shuttleworthia negatively correlated with BMI. g_Akkermansia, g_Alistipes, and g_Anaerostipes
negatively correlated with age, while g_Caulobacter positively correlated with age (Figure 5b).

Relationships between taxa and metabolic pathways were disclosed, precisely, that
two pathways, PWY-6353 and RIBOSYN2-PWY, demonstrated the most relationships
with taxa at the genus level (Figure 5c). The remarkable trends were observed regarding
g__Clostridium_sensu_stricto_1, g__Acinetobacter, g__Aeromonas, and g__Lachnospiraceae_NK4A136_group
positively correlated with PWY-6353 in the Almaty-AD group, while g__Alloprevotella,
g__Selenomonas, g__Shuttleworthia demonstrated opposite correlations in two study groups
(Figure 5c).

PFHDEM (family history of dementia) positively correlated with g_Pseudopropionibacterium,
g_Streptobacillus, g_Actinobacillus, and g_Bergeyella, while PPASTHX (self-reported depres-
sion) demonstrated a negative correlation with g_Selenomonas (Figure 5d).

The distribution of metabolic pathways in the Almaty-AD and Astana-AD subgroups
is provided in Figure S3; only two pathways demonstrated statistical significance.

3.6. Feature Importance Analysis of AD and Control Groups

The cross-validated feature importance analysis at all genera levels was performed
to reveal the key taxa with the most predictable power among AD and control groups.
Overall, twenty ranked by estimated importance between groups taxa demonstrated the
key featured prediction with GB, LOO AUC = 0.8, LR, LOO AUC = 0.62 (Figure 6).
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Figure 6. Feature importance analysis of AD and control groups. (Left): First 20 taxa, ranked by
estimated importance for discriminating between groups. (Upper right): Principal coordinate analysis
(PCoA) ordination based on the top 20 important taxa. Bray–Curtis dissimilarity with ANOSIM and
PERMANOVA tests. (Lower right): AUC-ROC curve reflecting the degree of separability between
groups during validation. GB = gradient boosting; LR = logistic regression; LOO = leave-one-out
cross-validation; AUC = area under the curve. AUC > 0.5 suggests group separation, whereas
AUC = 1 indicates absolute separation. Group with higher median abundance is indicated by (↑) in
green for control and in purple for AD. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.
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Five taxa, g__Bacteroides (p < 0.0001), g__Methylobacterium-Methylorubrum (p = 0.01),
g__Anaerostipes (p < 0.0001), g__Shuttleworthia (p = 0.001), and g__Lactobacillus (p = 0.009),
were statistically common in AD compared to the control group. g_F0332 demonstrated the
leading prediction feature in the AD group, while g_Alloprevotella demonstrated the most
predictable power in the control group. Notably, the majority of the key taxa belonged to
the Firmicutes phylum (Figure 6).

4. Discussion

Despite numerous studies devoted to AD, a precise mechanism for the disease de-
velopment still needs to be discovered. The scientific community currently targets the
microbiome as a critical point in various diseases [34], including AD pathogenesis. This
performed study provides the oral microbiome compartment peculiarities in Kazakhstanis
in the interactions with clinical, demographic, and anamnestic data and laboratory parame-
ters. The periodontal condition and its contribution to AD development and progression
are still under investigation. The absence of significant differences in periodontitis between
our study groups and any associations of periodontitis with AD corresponds to the re-
cent review by Liccardo et al. about the debatable coexistence of these two diseases [35].
Particularly, our data did not reveal significant differences in the prevalence and abun-
dance of known periodontal pathogens, the distribution of periodontal parameters, or the
association of these parameters with the composition of the oral microbiome.

From the perspective of previous studies, our findings regarding oral microbiome
composition in AD patients, precisely the bacterial richness, evenness, and dissimilarity,
correspond to the Holmer et al. study [36]. Meanwhile, Wu et al. [37] and Yang et al. [38]
reported results contradicting our identified lower oral microbiome diversity among AD
patients. The recent studies of Fu et al. and Tadjoedin et al. observed no significant
differences in alpha diversity and richness [39,40].

Relative abundance analysis revealed the downward trends in phyla Proteobacteria,
Actinobacteria, and Bacteroidota in the AD group. At the same time, Firmicutes was signifi-
cantly more abundant in AD patients, which aligns with the results of Chen et al. [41,42]. The
results on the lower abundance of s_Haemophilus_parainfluenzae, s_Prevotella_melaninogenica,
s_Prevotella_histicola, and s__Actinomyces_oris in AD patients are partly consistent with
Liu et al. data [12]. However, the lower abandoned Actinomyces in this study were as-
sociated with the APOE_e4 genotype. Wu et al. observed the low abundance of this
taxon in AD patients, corresponding to our findings [37]. In their study on Canadians,
Cristea et al. also observed the Actinomycetaceae family’s lower abundance in AD [43].
Actinomyces is known as a pathogen associated with periodontitis development [44]. Our
findings regarding Prevotella’s lower abundance, correspond to the Yang et al. study [38].
Haemophilus_parainfluenzae was recently associated with healthy oral conditions in the
study of Moroccan adolescents with periodontitis, which is partly consistent with our
data [45]. Noteworthy, our study results demonstrate a decrease in the level of periodontitis-
associated bacteria in the AD group.

Our LefSe-based findings regarding Lactobacillus and Lacticaseibacillus contradict Wu
et al.’s study [37], obtaining a lower abundance of these taxa. However, the recent ani-
mal study of Liu et al. demonstrated the protective feature of Lactobacillus; an increase
of this taxon led to the attenuation of AD symptoms [46]. Interestingly, we did not ob-
serve the increase in Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans in
AD patients despite several existing studies proving these taxa’s relation to AD disease,
according to a recent review by Weber et al. [47] and Wan et al. [48]. However, our region-
based analysis results revealed the increase of Porphyromonas and Actynobaccillus in the
Astana-AD subgroup.

Our findings related to regional differences in AD patients’ oral microbiome compart-
ment totally correspond to existing data on the variations of oral microbiome composition
depending on geographical and environmental factors [49,50], even in one ethnic group [50].
However, in the absence of differences in species richness, nearly no differences were found
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from a functional side in our main group divided into regions. Consequently, we can
assume that AD may have a peculiar oral microbiome composition.

Two pathways, HISTSYN-PWY (L-histidine biosynthesis) and PWY-2941 (L-lysine
biosynthesis II), demonstrated opposite key correlations relating to AD development, a
negative correlation with laboratory parameters such as cholesterol and LDL and a positive
correlation with MMSE. Moreover, two bacteria classes, Bacteroidia and Erysipelotrichia,
demonstrated the opposite correlations with mentioned pathways. Our finding corresponds
to the Nielsen et al. recent metabolomic study, demonstrating that histidine metabolisms
are downregulated in patients with AD [51]. Assuming that Bacteroidia may contribute to
the downregulation of HISTSYN-PWY and that the latter is associated with the decrease
in cholesterol level, which is known as a risk factor and the main culprit of AD [52–54],
obtained results may be used in further new treatment target-searching studies. Existent
data on the L-lysine biosynthesis II pathway reveal the twofold function of lysine in human
health. On the one hand, it is known for its energy source and antioxidant capabilities [24];
on the other hand, according to Yuan et al., it enhances tumor growth [25].

Our featured important analysis results provided the specific taxa with the most
predictable power regarding AD, according to a recent animal study by Xia et al. Bac-
teroides fragilis activating microglia leads to AD development [55]; g__Methylobacterium-
Methylorubrum, according to Kovaleva et al., could cause the infectious process in individu-
als with a compromised immune system [56]; g__Anaerostipes, according to Tran et al., was
associated with urine toxin production in chronic kidney disease [57]; g__Shuttleworthia
was associated with periodontitis [58–60]; and g__Lactobacillus, according to a recent report
by Rastogi and Singh, is known for its immune system-modulating trait [61]. Nevertheless,
the ambivalent characteristic of this taxon regarding autoimmune and other chronic disease
development should not be underestimated [62].

Our findings highlight future research directions in the field of AD disease and the
association of oral microbiome with its development, replenishing the data on AD’s new
potential biomarkers and treatment approaches projects from the point of oral microbiome
stamp and metabolic pathways. The study of possible mechanisms linking the oral micro-
biota and AD incidence will advance the understanding of its pathology and may serve as
a basis for the development of prevention strategies associated with oral health. Certainly,
there are several limitations in our study: first, we performed a case-control study, and
further longitudinal research with a larger AD cohort is needed to provide higher reliability
of the obtained data; secondly, the sequence analysis was performed using 16S rRNA, and
further Shotgun sequencing is required to gain more accurate data.

5. Conclusions

By our reckoning, the presented study is the first study focused on oral microbiome
compartments in AD patients performed in Kazakhstan and Central Asia. Our findings
demonstrate the decrease in periodontitis-associated bacteria in the AD group, along with
the absence of periodontitis and AD relationships in our cohort. However, certain taxa and
metabolic pathways demonstrated a promising perspective with regard to searching for
new biomarkers, which requires further studies to affirm and fortify the obtained results.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/pathogens13030195/s1: Figure S1. Distribution of metabolic
pathways in AD and control groups; Figure S2. Distribution of metabolic pathways in the Almaty-AD
and Astana-AD subgroups; Figure S3. Differentially abundant pathways in AD subgroups in Almaty
and Astana regions. Relative abundance of differentially abundant pathways and 95% confidence
interval (CI) for the difference between their medians. Mann-Whitney U test and CI computed
using the Hodges-Lehmann estimator. Only differences in pathways with non-overlapping CIs
are considered significant. * p ≤ 0.05; Table S1. Periodontal parameters in AD and control groups;
Table S2. Periodontal parameters by gender in AD and control groups; Table S3. Correlations between
significantly abundant taxa and metabolic pathways.

https://www.mdpi.com/article/10.3390/pathogens13030195/s1
https://www.mdpi.com/article/10.3390/pathogens13030195/s1
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