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Abstract: The intracellular protozoan Toxoplasma gondii is distributed worldwide and infects many
species of warm-blooded animals. Most mammals, including humans, can serve as intermediate hosts.
This pathogen, with its zoonotic potential, causes toxoplasmosis, a condition that can range from
subclinical to fatal in humans. It is therefore important to assess the occurrence of the pathogen, even
if only indirectly through the detection of antibodies. Epidemiological data on the seroprevalence in
wild animals, including invasive species, are rare in Poland. Therefore, we tested 197 wild raccoons
(Procyon lotor) and 89 raccoon dogs (Nyctereutes procyonoides) from Zgorzelec County, southwestern
Poland, for the presence of antibodies. Samples were collected between January 2019 and December
2020 and analysed using a commercial indirect modified agglutination test (MAT, cut-off 1:25). The
statistical analysis revealed significant differences in seroprevalence between the two predatory
species. Of the 197 surveyed raccoons, 96 (48.73%; 95% confidence interval (CI): 41.73–55.73%) tested
positive, while 25 of the 89 raccoon dogs (28.09%; 95% CI: 18.70–37.48%) were positive. Regarding risk
factors, body weight and sex influenced the presence of T. gondii antibodies in both the species, with
a higher likelihood of seropositivity among heavier animals and females, respectively. For raccoon
dogs, juveniles were more likely to be seropositive than adults at a given weight. Our results suggest
that T. gondii infection is widespread in the regional raccoon and raccoon dog populations, indicating
a high level of parasite circulation in the environment.

Keywords: Toxoplasma gondii; modified agglutination test (MAT); raccoon; Procyon lotor; raccoon dog;
Nyctereutes procyonoides; invasive species; wildlife; serological detection; zoonotic

1. Introduction

Toxoplasma gondii is a zoonotic, globally distributed, obligatory intracellular protozoan.
It infects a variety of warm-blooded vertebrates, including humans. It has been estimated
that one-third of the world’s population is infected with this parasite [1]. T. gondii has an
indirect life cycle in which domestic and wild cats are the final hosts and the oocysts are
excreted into the environment via feces. In addition to vertical transmission (i.e., from
mothers to their offspring), infection occurs mainly via the faecal–oral route. The infection
is caused by the intake of water or food contaminated with sporulated T. gondii oocysts
or by the consumption of tissues from animals infected with encapsulated tissue cysts
(bradyzoites) [1].

The raccoon (Procyon lotor), a North and Central American mesocarnivore of the
Procionidae family, has been introduced for fur breeding and hunting and as a pet in
several European and Asian countries over the last century [2–4]. The raccoon is particularly
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widespread in Germany, expanding into neighbouring countries as its geographical range
has increased in recent decades [5]. Genetic studies have shown that German raccoons
originated from various distinct founding events [6,7]. The first records of raccoons in
Poland date from the middle of the 20th century, while established populations were not
recorded until the 1990s. Raccoons from two genetic clusters located in eastern Germany
have been spreading to adjacent areas in Poland [8] and the number of raccoons in Poland
has increased in recent decades [9].

The raccoon dog (Nyctereutes procyonoides) is a member of the Canidae family whose
original area of distribution in East Asia includes eastern Siberia, China, the Korean penin-
sula and Japan [10]. During the 1930s and 1950s, some 10,000 animals were translocated
from the eastern to the western part of the former Soviet Union. Initially, this was for fur
farming purposes, later for deliberate releases [11]. Further populations were established in
the Ukraine and Belarus with animals stemming from these first introductions [12]. After
these successful introductions, the raccoon dog rapidly extended its range [13]. Currently,
the species is widespread in Eastern and Northern Europe and is spreading further into
Central Europe [11,14]. In Poland, the raccoon dog is the most widespread invasive car-
nivore species. It was first recorded in the first half of the 1950s in eastern Poland. The
species subsequently spread westwards and, with the exception of a few mountainous
areas, colonized the entire country by the end of the 1970s [9].

Because of their omnivorous lifestyles, raccoons and raccoon dogs can act as hosts
for numerous zoonotic pathogens [7,15–27]. In general, there are only a few studies on
T. gondii infection in raccoons and raccoon dogs in Poland [28–31]. Here, we report the
seroprevalence of T. gondii observed in raccoons and raccoon dogs from Zgorzelec County
in southwestern Poland and identify factors that determine infection prevalence. We hope
that our findings will help to understand the extent of environmental contamination and
spread of T. gondii in the ecosystem of this region.

2. Materials and Methods
2.1. Ethical Statement

The raccoon and raccoon dog are listed as invasive species in Poland and are not
protected by law. Licensed hunters can harvest both the species outside the closed season
and without a special permit. All animals were legally shot and made available to the
authors. No animals were killed for the purpose of providing samples for this study.

2.2. Sample Collection

Between January 2019 and October 2020, legally shot or road-killed raccoons (n = 197)
and raccoon dogs (n = 89) were collected in Zgorzelec County and the geographical
origin of each animal was recorded (Figure 1). Zgorzelec County (50◦51′–51◦27′ N and
14◦59′–15◦11′ E) has an area of 838 km2 and is located in the province of Lower Silesia
in southwestern Poland, bordering both Germany and the Czech Republic (Figure 1).
Seventy of the raccoons examined here were included in an earlier study on infection with
Pearsonema spp. [32].

During dissection, blood samples were taken from the heart or chest cavity and then
centrifuged at 1000× g for 15 min using an EBM 200 tabletop centrifuge (Hettich GmbH
& Co. KG, Tuttlingen, Germany). The obtained serum was stored at −20 ◦C until further
analysis [33]. Individuals were separated into two age classes based on the incremental
growth lines in the cementum of a mandibular canine: individuals without growth lines
were categorised as juveniles and individuals with one or more growth lines as adults [34].
We recorded the sex and weight of each animal. The raccoons consisted of 100 males and
97 females as well as 116 adults and 81 juveniles. The raccoon dogs comprised 49 males
and 40 females, as well as 39 adults and 50 juveniles.
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Figure 1. Geographical origin of the samples included in the study from Zgorzelec County in south-
western Poland. (a) Raccoon (Procyon lotor). (b) Raccoon dog (Nyctereutes procyonoides). The size of 
the circle indicates the number of samples analysed per location. 

2.3. Detection of T. gondii Antibodies 
Sera were tested for antibodies against T. gondii with the indirect modified aggluti-

nation test (MAT) using a commercial kit (Toxo-Screen DA®, bioMérieux, Lyon, France) 
including negative and positive control samples. We tested with a dilution of 1:25, 1:50, 
1:100 and 1:500 for the determination of T. gondii antibodies. A cut-off titre of 1:25 was 
chosen to maximise the sensitivity and specificity of the test [35]. Sera with a titre of 1:25 
or higher were considered positive and those with a questionable result were retested 
[33,36]. 

2.4. Statistical Analysis 
We calculated the 95% confidence interval (CI) for the prevalence estimates using the 

“Wilson” score interval method [37]. We used a χ2-test to test for differences in prevalence 
between both the species. We fitted logistic regressions with linear mixed-effects models 
(GLMMs) in the glmmTMB package [38] in order to test for an effect of weight, sex, age 
and collection year on the presence T. gondii antibodies in each species. We estimated the 
variation inflation factors (VIFs) with the full GLMMs without interactions to test for mul-
ticollinearity. We deemed that the independent variables exhibited no significant correla-
tion when VIF values were <5 [39]. We only considered two-way interactions to avoid 
convergence and fitting issues and to facilitate interpretation. We used the dredge() func-
tion in the MuMInv.1.46.0 R package [40] to estimate Akaike information criterion (AICc) 

Figure 1. Geographical origin of the samples included in the study from Zgorzelec County in
southwestern Poland. (a) Raccoon (Procyon lotor). (b) Raccoon dog (Nyctereutes procyonoides). The size
of the circle indicates the number of samples analysed per location.

2.3. Detection of T. gondii Antibodies

Sera were tested for antibodies against T. gondii with the indirect modified aggluti-
nation test (MAT) using a commercial kit (Toxo-Screen DA®, bioMérieux, Lyon, France)
including negative and positive control samples. We tested with a dilution of 1:25, 1:50,
1:100 and 1:500 for the determination of T. gondii antibodies. A cut-off titre of 1:25 was
chosen to maximise the sensitivity and specificity of the test [35]. Sera with a titre of 1:25 or
higher were considered positive and those with a questionable result were retested [33,36].

2.4. Statistical Analysis

We calculated the 95% confidence interval (CI) for the prevalence estimates using the
“Wilson” score interval method [37]. We used a χ2-test to test for differences in prevalence
between both the species. We fitted logistic regressions with linear mixed-effects models
(GLMMs) in the glmmTMB package [38] in order to test for an effect of weight, sex, age
and collection year on the presence T. gondii antibodies in each species. We estimated
the variation inflation factors (VIFs) with the full GLMMs without interactions to test
for multicollinearity. We deemed that the independent variables exhibited no significant
correlation when VIF values were <5 [39]. We only considered two-way interactions to
avoid convergence and fitting issues and to facilitate interpretation. We used the dredge()
function in the MuMInv.1.46.0 R package [40] to estimate Akaike information criterion
(AICc) values for all potential models and selected those models whose AICc values were
within 2 of the model with the lowest AICc. We selected the most parsimonious model
(lowest number of degrees of freedom) within that subset of models. In order to further
confirm the importance of the predictors in the most parsimonious model, we also con-
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ducted model averaging using the model.avg() function in the MuMIn package. However,
we performed this model averaging on simplified models with the same predictors but
without interactions [41]. Statistical analyses were performed in program R v.4.2.2 (R Core
Team 2023). We plotted the marginal effects of the most parsimonious models using the
plot_model() function in the sjPlot v.2.8.10 R package [42].

3. Results

Antibodies to T. gondii were found in 48.7% (96/197; 95% CI: 41.8–55.7%) of the
analysed raccoons and in 28.1% (25/89; 95% CI: 19.8–38.2%) of the raccoon dogs (Table 1).
There was a significant difference in the prevalence estimates between both the species
(χ2 = 9.87, df = 1, p = 0.002). In the case of the raccoon, positive results were recorded
at titers 1:25 (39.5%), 1:50 (34.4%), 1:100 (16.7%) and 1:500 (9.4%), while positive results
were obtained for the raccoon dog at titers 1:25 (48.0%), 1:50 (28.0%), 1:100 (12.0%) and
1:500 (12.0%).

Table 1. Seroprevalence of Toxoplasma gondii in raccoons (Procyon lotor) and raccoon dogs (Nyctereutes
procyonoides) by sex, age and collection year.

Procyon lotor Nyctereutes procyonoides

Variable Category No.
Tested

No.
Positive

Prevalence in %
(95% CI) 1

No.
Tested

No.
Positive

Prevalence in %
(95% CI)

Gender Male 100 45 45.00 (35.63–54.76) 49 14 28.57 (17.83–42.55)
Female 97 51 52.58 (42.74–62.21) 40 11 27.50 (16.06–43.03)

Age Juvenile 81 27 33.33 (24.04–44.20) 50 11 22.00 (12.67–35.48)
Adult 116 69 59.48 (50.37–67.96) 39 14 35.90 (22.76–51.66)

Collection
year

2019 108 53 49.07 (39.85–58.37) 38 10 26.32 (14.91–42.23)
2020 89 43 48.31 (38.23–58.54) 51 15 29.41 (18.70–43.12)

Total 197 96 48.73 (41.85–55.67) 89 25 28.09 (19.81–38.26)
1 CI—confidence interval.

Since VIF values were ≤3.39 in all full GLMMs (without interactions) across both the
species, our models did not have multicollinearity issues. When trying to identify predictors
for the presence of T. gondii antibodies in raccoons, our model selection procedure resulted
in seven equivalent models based on the AICc. According to the most parsimonious
model, heavier hosts were more likely to be seropositive, as were females compared to
males (Table 2, Figure 2). The terms of the most parsimonious model were included in the
seven equivalent models. Model averaging performed after a model selection procedure
on models without interactions confirmed the importance of both the predictors (Table S1).
The marginal R2 of 0.592 indicated that the most parsimonious model had reasonably high
power to predict accurately the presence of T. gondii antibodies in raccoons based on our
fixed-effects predictors.

When trying to identify predictors for the presence of T. gondii antibodies in rac-
coon dogs, our model selection procedure resulted in seven equivalent models based on
the AICc.

According to the most parsimonious model, heavier hosts were more likely to be
seropositive, as were females compared to males. Moreover, juvenile raccoon dogs were
more likely to be seropositive than adults (Table 2, Figure 3). The terms of the most
parsimonious model were included in the seven equivalent models (Table S1). When
considering models without interactions (in order to perform model averaging), the model
selection procedure gave rise to a single best-supported model. This model was identical to
the most parsimonious model. The most parsimonious model had a marginal R2 of 0.488.
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Table 2. Logistic regressions identifying predictors for the presence of Toxoplasma gondii antibodies in
(a) raccoons (Procyon lotor) and (b) raccoon dogs (Nyctereutes procyonoides) from Zgorzelec County,
Poland. Results are presented for the most parsimonious model identified after model selection. In
the initial model, we included sex, age (juvenile vs. adult), weight and year of sampling as fixed
factors. We only included two-way interactions.

Coefficients Estimate s.e. z-Value p-Value

(a)
(Intercept) −6.8193 1.1125 −6.130 <0.0001

Weight 0.0012 0.0002 6.425 >0.0001
Sex: Males −0.8016 0.3685 −2.175 0.0296

(b)
(Intercept) −9.4400 2.3071 −4.092 −4.092

Weight 0.0016 0.0004 3.937 3.937
Sex: Males −1.3802 0.6614 −2.087 −2.087

Age: Juvenile 2.7118 0.9695 2.787 2.787
In the case of the continuous predictor variable (weight), the logistic regression coefficient gives the change in the
log odds of seroprevalence for a one-unit increase in weight. In the case of the categorical variables, the logistic
regression coefficient gives the change in the log odds of seroprevalence when considering males and juveniles
relative to females and adults, respectively.
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Figure 2. Marginal effects plot of a logistic regression model predicting the presence of Toxoplasma
gondii antibodies in raccoons (Procyon lotor) from Zgorzelec County, Poland, as a function of weight
and sex of the host. The 95% confidence intervals are shown and the plot is based on the most
parsimonious model identified after model selection (see Table 2).



Pathogens 2024, 13, 210 6 of 12

Pathogens 2023, 12, x FOR PEER REVIEW 6 of 12 
 

 

ing models without interactions (in order to perform model averaging), the model selec-
tion procedure gave rise to a single best-supported model. This model was identical to the 
most parsimonious model. The most parsimonious model had a marginal R2 of 0.488. 

 
Figure 3. Marginal effects plots of a logistic regression model predicting the presence of Toxoplasma 
gondii antibodies in raccoon dogs (Nyctereutes procyonoides) from Zgorzelec County, Poland, as a 
function of weight, age category and sex of the host. The 95% confidence intervals are shown and 
the plot is based on the most parsimonious model identified after model selection (see Table 2). 

4. Discussion 
In the raccoon’s native range, seroprevalence of T. gondii ranged from 13 to 92% [43–

50]. In contrast, the seroprevalence values reported from Asia and Europe, where the rac-
coon was introduced, were between 0 and 65.5% [30,33,36,51–53]. A comparison of the 
results of different studies is usually difficult; however, as the determination of the sero-
status can be carried out using blood or meat juice and can be based on different tests, 
such as the MAT, the direct agglutination test (DAT), the indirect hemagglutination test 
(IHAT), the latex agglutination test (LAT) or an enzyme-linked immunosorbent assay 
(ELISA). Experimental studies on raccoons have shown that the MAT has a higher sensi-
tivity and reaction speed compared to the IHAT and LAT [35], whereas the ELISA, tested 
on pig sera, provided comparable results to the MAT [54]. Consequently, subsequent stud-
ies examining the seroprevalence of T. gondii antibodies in raccoons have mostly em-
ployed the MAT test [33,36,45–47,49]. Moreover, previous experimental studies have 
demonstrated the validity of serological analyses using the MAT, as viable T. gondii can be 
recovered from isolates from a large number of seropositive animals. In these studies, a 
high rate of isolated viable parasites was found to be positively associated with the MAT 
titre [55–57]. In the past, the MAT with a cut-off value of 1:25 was frequently used to diag-
nose T. gondii infections in a variety of domestic and wild animal species [1,58–60], includ-
ing raccoons [33,36]. The accuracy of the seroprevalence estimates is strongly influenced 
by the sample size. If results from different studies are considered, especially if the sample 
size is small, the confidence intervals should be considered [53]. 

The seroprevalence for raccoons in the present study aligns with estimates from var-
ious regions in North America [45,50,61] and Central Europe [33,53], where seropreva-
lence commonly varies between 40 and 60%. The highest seroprevalence estimate from 

Figure 3. Marginal effects plots of a logistic regression model predicting the presence of Toxoplasma
gondii antibodies in raccoon dogs (Nyctereutes procyonoides) from Zgorzelec County, Poland, as a
function of weight, age category and sex of the host. The 95% confidence intervals are shown and the
plot is based on the most parsimonious model identified after model selection (see Table 2).

4. Discussion

In the raccoon’s native range, seroprevalence of T. gondii ranged from 13 to 92% [43–50].
In contrast, the seroprevalence values reported from Asia and Europe, where the raccoon
was introduced, were between 0 and 65.5% [30,33,36,51–53]. A comparison of the results
of different studies is usually difficult; however, as the determination of the serostatus
can be carried out using blood or meat juice and can be based on different tests, such as
the MAT, the direct agglutination test (DAT), the indirect hemagglutination test (IHAT),
the latex agglutination test (LAT) or an enzyme-linked immunosorbent assay (ELISA).
Experimental studies on raccoons have shown that the MAT has a higher sensitivity and
reaction speed compared to the IHAT and LAT [35], whereas the ELISA, tested on pig
sera, provided comparable results to the MAT [54]. Consequently, subsequent studies
examining the seroprevalence of T. gondii antibodies in raccoons have mostly employed the
MAT test [33,36,45–47,49]. Moreover, previous experimental studies have demonstrated
the validity of serological analyses using the MAT, as viable T. gondii can be recovered from
isolates from a large number of seropositive animals. In these studies, a high rate of isolated
viable parasites was found to be positively associated with the MAT titre [55–57]. In the past,
the MAT with a cut-off value of 1:25 was frequently used to diagnose T. gondii infections in
a variety of domestic and wild animal species [1,58–60], including raccoons [33,36]. The
accuracy of the seroprevalence estimates is strongly influenced by the sample size. If results
from different studies are considered, especially if the sample size is small, the confidence
intervals should be considered [53].

The seroprevalence for raccoons in the present study aligns with estimates from vari-
ous regions in North America [45,50,61] and Central Europe [33,53], where seroprevalence
commonly varies between 40 and 60%. The highest seroprevalence estimate from outside
the raccoon’s original distribution area has been reported from Germany, where antibodies
against T. gondii were found in 65.5% (61/93; 95% CI: 27.3–81.2%) of raccoons using the
MAT on serum samples [36]. However, due to the smaller sample size, this estimate had
wide 95% CIs. Lower prevalence values are reported from Luxembourg (19%; 95% CI:
2.3–35.8%) and the Czech Republic (0%; 95% CI: 0–19.5%) [33,62]. Similarly, the T. gondii
seroprevalence in the only previous study of raccoons from Poland (based on meat juice
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and analysis with the ELISA) was lower (13.3%; 95% CI: 1.7–40.5) [30] than that observed
in the present study. In comparison, a recent study from the neighbouring federal state of
Saxony in Germany (based on meat juice and analysis with ELISA) was also based on a
smaller number of samples (12/32) [53], but gave rise to a similar prevalence estimate as
the present study (46.9%; 95% CI: 30.9–63.6%). It is clear that seroprevalence value can vary
between regions, as other authors have already pointed out [33,43,48,52,53].

In contrast to raccoons, studies on T. gondii infections in raccoon dogs are rare and
mostly performed on animals from fur farms, particularly in China [63–65]. Serological
studies on wild raccoon dogs have so far only been carried out in Poland and Denmark.
The seroprevalence reported in the present study was comparable to the estimate obtained
in an earlier study in the Głeboki Bród Forest District in the northeastern part of Poland,
in which 25.0% of the tested animals had antibodies against T. gondii [28]. However, this
study was based on only 12 animals and the ensuing 95% confidence intervals were thus
large (8.5–53.7%). A significantly higher seroprevalence has been reported from Denmark,
where 42.7% (95% CI: 36.2–49.5%) of the 227 raccoon dogs tested were seropositive, with
seroprevalence showing greater regional variations (37.1–57.1%) [22].

The relationship between high seroprevalence and cat density has been a recurring
topic. For example, the presence and frequency of domestic and feral cats increase the
risk of infection for wildlife species [66]. In domesticated and wild ruminants (Capreolus
capreolus and Ovis orientalis musimon) and wild boar (Sus scrofa), the presence of domestic
cats and wild cats is considered a major risk factor for T. gondii infection [58–60,67,68].
Hancock et al. [47] and Heddergott and Müller [36] associated the high prevalence in
raccoons in their study areas with the high density of cats and the associated high oocyst
excretion. The low seroprevalence values determined in raccoons in Japan (<15%) support
this assumption, as the country has a low density of domestic cats [52,69,70] and wild cat
species are absent from the main islands. According to Yamaguchi et al. [70], the highest
prevalence of T. gondii antibodies was found in raccoons that share their habitat with feral
domestic cats (Felis catus).

According to local hunters and farmers, there is a very high density of free-ranging and
feral domestic cats in the entire area of Zgorzelec County, while wild cat species such as the
European wildcat (Felis s. sylvestris) and the lynx (Lynx lynx) do not occur in this area [71,72].
In this context, the significant difference in the seroprevalence of the two carnivore species
tested in the present study area is difficult to assess. This could be due more to the fact
that despite the omnivorous lifestyle, the diet of the two species in the study area is very
different and the food components are infected with these parasites to varying degrees.
In general, the prey of both raccoons and raccoon dogs are known to transmit T. gondii
cysts [1]. Feeding ecology studies on raccoons and raccoon dogs are extremely rare in
Central Europe. Two dietary studies in neighbouring eastern Germany found that the
main dietary components of raccoons are earthworms, molluscs and fruits [73,74], while
the most commonly eaten components of raccoon dogs are invertebrates, small mammals,
amphibians and reptiles [75]. It is likely that the individual food components are infected
with T. gondii to varying degrees, which explains the differences in seroprevalence between
the two species.

Our results showed that body weight had a strong influence on the serostatus of both
raccoons and raccoon dogs. Heavier animals were more likely to be seropositive than
animals with a lower body weight. In general, the body weight of the raccoon increases
with age [76] and can therefore be used as an indicator of age, which can also be applied
to the raccoon dog. Age has been described as a risk factor for T. gondii infection, as the
probability of contact with the parasite increases with time [77]. Most studies only consider
two age classes, juvenile and adult, and body weight may be a better indicator than the age
of the animal. Consequently, the studies that considered both weight and age categories in
their analysis found an effect of weight, but not of age [33,36,52,53]. In contrast, studies
that have reported an increased likelihood of the presence of T. gondii antibodies in older
raccoons did not simultaneously test for the effect of weight [43,45,46,49,78]. In the case
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of the raccoon dog, for a given weight, juveniles were more likely to be seropositive than
adults. This result is slightly counterintuitive as the probability of contact with the parasite
likely increases with time. Juveniles may thus have an increased likelihood of encountering
the parasite, as their autumnal home ranges can be larger than those of adults and juveniles
disperse in late summer/early spring [79]. In addition, we cannot definitively rule out the
possibility that the outcome is influenced by our relatively small sample size.

Our results show an association between the presence of T. gondii antibodies and sex
in both the species, with females more likely to be seropositive than males. In contrast,
studies on German raccoons [33,36] and Danish raccoon dogs [22] did not find any effect
of sex on the likely presence of T. gondii antibodies. However, in a recent German study,
male raccoons were significantly more likely to be seropositive than females [53]. The
authors suspected a connection with a lower need for security and a larger home range
of the males, which is ultimately related to a different diet than that of the females. These
authors analysed raccoons harvested for their fur. Their specimens were thus not a random
sample of the population, as heavier males, which are more likely to be seropositive, are
preferentially harvested for their fur. However, Hwang et al. [49] also found a higher
seroprevalence in male raccoons in North America compared to juveniles of both sexes and
surmised a connection with the higher mobility and greater home ranges. Further research
on both host species is clearly needed to improve our understanding of the effect of sex on
the presence of T. gondii antibodies and the underlying reasons for any differences between
the sexes.

The results of the present study show that T. gondii is widely distributed in the en-
vironment of Zgorzelec County, Poland. Although the raccoon and raccoon dog do not
contribute significantly to the epidemiology of this parasite, they may nevertheless con-
tribute to the maintenance of this parasite in the ecosystem. The improper disposal of
infected carcasses resulting from hunting and traffic accidents can inadvertently provide
food for feral domestic cats, which subsequently may excrete T. gondii oocysts into the
environment through their faeces [33]. In contrast to some regions in Germany where
raccoon meat is consumed by humans [33], we know of no incidence of raccoon or raccoon
dog meat being eaten in the study area. Furthermore, general hygiene guidelines should be
followed in fur production. For this reason, the direct risk of infection for humans is low.

5. Conclusions

The aim of the present work was to test for the first time the seroprevalence of T. gondii
infection in two free-living invasive carnivores from Zgorzelec County, southwestern
Poland. The high seroprevalence estimate indicate a high degree of circulation of this
parasite in the regional ecosystem. Although both carnivores do not play a major role in the
epidemiology of T. gondii, they may still contribute to the maintenance of the parasite in the
ecosystem. Continued investigation and monitoring of both invasive and native predatory
mammals, including their food components, are warranted and necessary to further clarify
the occurrence, prevalence and epidemiology of this protozoan.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens13030210/s1; Table S1: Logistic regressions identifying
predictors for the presence of Toxoplasma gondii antibodies in (a) raccoons (Procon lotor) and (b)
raccoon dogs (Nyctereutes procyonoides) from Zgorzelec County, Poland. Results are presented for
the most parsimonious model identified after model selection. In the initial model, we included
sex, age (juvenile vs. adult), weight and year of sampling as fixed factors. We only included
two-way interactions.
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