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Abstract: Raccoon dogs (Nyctereutes procyonoides) and raccoons (Procyon lotor) are invasive alien
species originating from East Asia and North America, respectively. They are discussed as vectors
and reservoirs for various infectious diseases, including vector-borne and zoonotic pathogens, and
are therefore a potential threat to human and domestic animal health, as well as to biodiversity and
conservation. In the years 2021 and 2022, 110 raccoon dogs (Nyctereutes procyonoides) and 30 raccoons
(Procyon lotor) were screened via qPCR for the presence of Leptospira spp., Rickettsia spp. and Borreliella
spp. in the German federal state of Schleswig-Holstein as part of a health and risk assessment study.
Borreliella spp. were confirmed in one raccoon dog and one raccoon, identified as Borreliella afzelii
in the raccoon. Leptospira spp. were found in 21 (19.44%) raccoon dogs and 2 (6.90%) raccoons. In
five raccoon dogs, Leptospira spp. were identified as Leptospira borgpetersenii, Leptospira kirschneri and
Leptospira interrogans.

Keywords: tick-borne diseases; vector-borne diseases; emerging infectious diseases; raccoon dog;
raccoon; invasive species; Leptospira; Rickettsia; Borrelia; Borreliella

1. Introduction

Zoonotic pathogens originating in wildlife have gained attention worldwide, with
numerous wildlife species acting as reservoirs for pathogens that are a risk for human
and domestic animal health, but also a threat to biodiversity and conservation [1,2]. In-
creased contact of humans and domestic animals with wildlife due to population growth,
urbanisation and habitat encroachment leads to a growing risk of disease spread and
transmission [3–7]. Invasive neozoa have the capability to serve as additional host and
vector species for various infectious pathogens, which might increase the possibility of
disease spread [8].

Raccoon dogs (Nyctereutes procyonoides) and raccoons (Procyon lotor) are two of the
most successful invasive alien species in Europe [9], originating in East Asia [10] and North
America [11], respectively. Being omnivorous, they are discussed as predators of native
fauna and might be competing for natural resources with native predators [12–14]. Both
species have a high reproductive capacity and are able to adapt to different habitats [8,15].
They have expanded their geographic distribution and increased in abundance in Europe
in the last decades [9]. Large-scale climatic habitat suitability for the two species is present
in Europe and is likely to increase under upcoming climate change [16]. Additionally, these
species have the potential to act as reservoirs for numerous infectious agents such as rabies
lyssavirus (RABV), canine distemper virus (CDV), Trichinella spp., Baylisascaris procyonis,
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Echinococcus multilocularis and various vector-borne diseases, such as, for example, Borreliella
spp. and Rickettsia spp. [5,8,15,17,18]. Their host and vector potential allows pathogens to
increase in the environment and to extend their geographical range [5,9,15,19,20]. Therefore,
raccoon dogs and raccoons have the capability to threaten biodiversity as well as human
and animal health [9,14,21].

An increasing incidence and diversity of vector-borne infections and zoonoses with
one-health relevance has been observed in recent years [3,22], which may also be influenced
by improved technical diagnostics and epidemiological techniques [1].

Leptospirosis has emerged as a globally important infectious disease, being the most
common bacterial zoonosis in humans worldwide [7,22]. The genus Leptospira consists
of various species which are gram-negative spirochetes and can be divided into at least
300 serovars [23]. A broad range of infected wild and domestic vertebrates serve as reservoir
hosts, which shed the bacteria via infected urine [22,24]. Humans can be infected either by
direct contact with an infected animal or by indirect contact with contaminated material,
e.g. soil or water [7,24]. Leptospirosis in humans may result in a life-threatening fever with
kidney and/or liver failure, as well as severe pulmonary haemorrhage [22].

Borreliella spp. cause lyme borreliosis, a multisystemic inflammatory disorder and
the most prevalent arthropod-borne disease in the northern hemisphere [25]. The genus
Borrelia was initially described by Swellengrebel in 1907 [26], whereas Adeolu and Gupta
dived the genus into two genera: Borrelia and Borreliella with species of the B. burgdor-
feri (s.l.) complex belonging to the Borreliella genus [26–29]. Borreliella spp. are spiro-
chetes, which depend on a host and vector to maintain their life cycle [30]. In Europe,
the tick species Ixodes (I.) ricinus is the primary vector, while small and medium-sized
mammals and ground-feeding birds serve as sylvatic maintenance hosts and reservoirs of
Borreliella spp. [1,31].

Rickettsia spp. are obligate intracellular bacteria, comprising pathogens of the spotted
fever group (SFG) causing tick-borne rickettsiosis in humans [32,33]. Clinical signs include
fever, rash, headache and myalgias, resulting in a mild to severe and potentially fatal
disease [34]. Arthropods are involved in their infection cycle with various wild and
domestic animals as hosts [35,36]. Rickettsia spp. are prevalent pathogens found in I. ricinus
and Dermacentor (D.) reticulatus ticks in Europe [37].

Wild carnivores are often infested with I. ricinus, the most widespread and medically
important European tick [38]. I. ricinus has a broad host range [39–44], including raccoon
dogs [20,38,45] and raccoons [46], which among other vertebrate hosts makes them potential
reservoir hosts.

Literature on vector-borne pathogens in raccoon dogs and raccoons in Europe is
scarce. So far, only a few studies have been carried out on animals from Germany [19,47],
Austria [9], the Czech Republic [48,49], Spain [4,50] and Poland [6,38,47,51], investigat-
ing the presence of the tick-borne pathogens Babesia spp., Anaplasma spp., Ehrlichia spp.,
Hepatozoon spp., Borrelia spp., Borreliella spp., Bartonella spp. and Neoehrlichia mikurensis,
respectively [5,49].

To the authors‘ knowledge, the presence of Leptospira spp., Borreliella spp. and Rick-
ettsia spp. has not been investigated in raccoon dogs from Germany so far. In rac-
coons originating from the German federal states Mecklenburg-Vorpommern (Müritz
National Park), Berlin, Lower Saxony and Baden-Württemberg, Leptospira spp. have been
found [17,52,53]; nevertheless, the occurrence of Borreliella spp. and Rickettsia spp. has not
been examined yet.

Hence, the aim of this study was to examine the presence of Leptospira spp., Borre-
liella spp. and Rickettsia spp. in raccoon dogs and raccoons from northern Germany, to
investigate the ectoparasite burden, perform species identification of the pathogens and sta-
tistically analyse demographic factors and ectoparasite infestation potentially influencing
the prevalence of the vector-borne pathogens.
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2. Materials and Methods
2.1. Animals, Sample Preparation and Ectoparasite Burden

During 2021 and 2022, 110 raccoon dogs and 30 raccoons that had been shot or found
dead underwent post-mortem examinations at the Institute for Terrestrial and Aquatic
Wildlife Research (ITAW) of the University of Veterinary Medicine Hannover as part of a
health and risk assessment study of these invasive species in the federal state of Schleswig-
Holstein, Germany (Figure 1) [54]. The animals were provided by hunters (A), who killed
the animals as part of regular hunting practice in accordance with national hunting laws,
or (B), who found them dead in their habitat. The killing of these animals did not require
authorisation by an internal animal care and use committee or competent authority under
Directive 2010/63/EU [55]. For all animals, the hunting area was documented, but no
geocoordinates were collected. Of the raccoons, ~63% (19/30) were retrieved within the
cities of Lübeck, Bad Schwartau and Ratekau. A modified necropsy protocol, according
to Fähndrich et al. [56], was used. Selected biological data were collected as described by
Klink et al. [54]. All animals were divided into one of two age classes (juvenile and adult)
by size, teeth (deciduous or permanent) and tooth wear. During necropsy, all animals were
examined macroscopically for ectoparasites, which were then collected and fixed in 70%
ethanol. Ectoparasites were divided by taxonomic families and counted. All raccoons were
frozen at −20 ◦C until further processing. Raccoon dogs were frozen at −70 ◦C for at least
96 h, to minimise the risk of Echinococcus multilocularis infections [57], and then stored at
−20 ◦C. Four raccoon dogs were dissected right after arrival and two animals were only
frozen at −20 ◦C due to logistical reasons; in these cases, personal protective equipment
was used to reduce the infection risk.
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Figure 1. Locations of retrieval of 110 raccoon dogs (Nyctereutes procyonoides) and 30 raccoons (Procyon
lotor) investigated during the health assessment study between 2021 and 2022 in the federal state of
Schleswig-Holstein, Germany. Raccoon dogs are presented in orange and raccoons in blue.

2.2. Tissue Preparation, DNA Extraction and Multilocus Sequence Typing

Kidney samples were taken individually; 0.6 g of sterile ceramic beads (sized 1.4 mm,
Peqlab Biotechnologie, Erlangen, Germany) and 500 µL phosphate-buffered saline (PBS)
were added. To the skin samples, 0.6 g of sterile steel beads (sized 2.8 mm, Peqlab Biotech-
nologie, Erlangen, Germany) and 500 µL PBS were added. All samples were homogenised
in the Precellys®24 tissue homogeniser (Bertin Technologies, Montigny-le-Bretonneux,
France), spleen samples at 5000 rpm for 2 × 30 s with 15 s breaks in between; skin samples
underwent homogenisation twice at the same program settings. DNA extraction was
performed on all samples with the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s recommendations for tissue DNA extraction. A spec-
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trophotometer (NanoDrop® 2000c, Peqlab Biotechnologie, Erlangen, Germany) was used
to measure the quality and the quantity of the DNA samples.

2.3. PCR Methods

Kidney DNA samples were screened for the presence of Leptospira spp. and skin
samples for Rickettsia spp. and Borreliella spp.:

Kidney DNA samples were tested by quantitative PCR (qPCR) for Leptospira spp.,
targeting the LipL32 gene (242 base pairs, bp), using the primers Lipl32-45F (5′-AAG CAT
TAC CGC TTG TGG TG-3′) and LipL32-286R (5′-GAA CTC CCA TTT CAG CGA TT-3′)
and probe LipL32 (5′6-FAM-AA AGC CAG GAC AAG CGC CG BHQ1-3′). The Qiagen
QuantiTect Multiplex no Rox Kit (Qiagen, Hilden, Germany) was used. As a positive
control, DNA from a laboratory strain of the Leptospira kirschneri serovar Grippotyphosa in
a 1:10 dilution was used [23].

Skin DNA samples were tested by qPCR for Rickettsia spp., targeting the gltA gene
(70 bp), using the primers Pan Rick gltA_2 for (5′-ATAGGACAACCGTTTATTT-3′) and Pan
Rick gltA_2 rev (5′-CAAACATCATATGCAGAAA-3′) and the probe Pan Rick gltA_3 taq
(5′-6FAM-CCTGATAATTCGTTAGATTTTACCG-TMR-3′). The Roche LightCycler FastStart
DNA Master HybProbe Kit (Roche, Basel, Switzerland) was used. As a positive control,
Rickettsia helvetica DNA from Ixodes ricinus ticks was used.

Skin DNA samples were tested by qPCR for the presence of Borreliella spp., targeting the
p41 gene (96 bp), using the primers FlaF1a (5′-AGCAAATTTAGGTGCTTTCAA) and FlaR1 (5′-
GCAATCATTGCCATTGCAGA) and probe FlaProbe1 (5′-6 FAM-TGCTACAACCTCATCTGT
CATTGTAGCATCTTTTATTTG—BBQ) following the protocol by Schwaiger et al. [58] using
the Qiagen QuantiTect Multiplex no Rox Kit (Qiagen, Hilden, Germany). As positive con-
trols, isolates of Borreliella (B.) valaisiana (2.0 × 105 cells/µL) and B. afzelii (2.0 × 105 cells/µL)
in a 1:10 dilution were used.

The Mx3000P Real-Time Cycler (Stratagene, Agilent Technologies Deutschland GmbH,
Waldbronn, Germany) was used for all qPCR reactions, including the negative controls of
the DNA extractions and the negative controls for each performed qPCR.

Multilocus Sequence Typing (MLST) was performed on samples that tested positive
for Leptospira spp. with ct-values <34 and on Borreliella spp.-positive samples if the ct-values
were <35. MLST was carried out as described by Schmidt et al. [59] and Król et al. [60].

2.4. Histopathology

During post-mortem examination, selected tissue samples for the histological exami-
nation were taken and processed as described by Klink et al. [54]. The pathological findings
will be described elsewhere. On kidney sections from animals where qPCR confirmed the
presence of Leptospira spp. Warthin–Starry silver staining according to standard protocol
was performed in addition to routine Haematoxylin and Eosin (HE) staining.

2.5. Statistical Analysis

Confidence intervals (95% CI) for the prevalence of pathogens were determined by the
modified Wald method using GraphPad Prism v.4 (Graph Pad Software, San Diego, CA,
USA). Chi-square and Fisher’s tests were used to test the prevalence levels for significant
independence. The significance threshold was set at p = 0.05. The ectoparasite infestation
rate was compared between groups with the Mann–Whitney U test.

3. Results
3.1. Animals

In total, 110 raccoon dogs were dissected. The proportion of female and male raccoon
dogs was almost balanced (61 female and 49 male animals, respectively), while the age
groups were clearly dominated by juvenile animals, at 80% (88/110). Overall, 30 raccoons
were investigated, with an almost balanced sex proportion of 16 females and 14 males.
Juvenile raccoons were the dominant age group, at 67%. For details, see Table 1.
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Table 1. Age classes of 110 investigated raccoon dogs (Nyctereutes procyonoides) and 30 raccoons
(Procyon lotor).

Species Juvenile Adult Total

Raccoon dog 88 22 110
Raccoon 20 10 30

In total, 70 out of 110 raccoon dogs (63.64%; 95% CI: 0.5432 to 0.7204) were infested
with ectoparasites. Also, an ectoparasitosis was present in 7 out of 30 raccoons (23.33%;
95% CI: 0.1152 to 0.4120).

The most frequent macroscopically detected ectoparasites in both neozoa species were
ticks (Ixodida), with ~63% of the examined raccoon dogs and 20% of examined raccoons
being affected. Fleas (Siphonaptera), lice (Phthiraptera) and louse flies (Hippoboscidae)
were also detected. For details, see Table 2.

Table 2. Ectoparasites detected in 110 raccoon dogs (Nyctereutes procyonoides) and 30 raccoons
(Procyon lotor).

Parasites Raccoon Dogs (n = 110) Raccoons (n = 30)

Ixodida 69 6
Siphonaptera 5 1
Phthiraptera 5 1

Hippoboscidae 5 0

In total, 925 ticks were collected from 69 raccoon dogs and 31 ticks were collected from
6 raccoons. A maximum of 220 ticks were found on one raccoon dog, while 15 ticks were
the highest number found on a raccoon. A mean intensity of ~13 ticks per tick-infested
raccoon dog and 5 ticks per raccoon infested with ticks was observed. Details are presented
in Figure 2.
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Figure 2. Number of ticks per individual collected from tick-infested raccoon dogs (Nyctereutes
procyonoides) and raccoons (Procyon lotor); the mean intensity is presented in green and the median
value in red.

Statistical analysis was performed, comparing the ectoparasite burdens of raccoon
dogs and raccoons, which were not significantly different (p = 0.1310, t = 1.5192).

3.2. PCR and Statistical Analysis for Rickettsia spp., Borreliella spp. and Leptospira spp.

As most animals were harvested by hunters, in some cases the carcasses were too
destroyed to take all samples. Additionally, sample collection errors occurred. Therefore,
there is a discrepant count between assessed animals and organs available for this study.
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In total, 136 skin samples were analysed for the presence of Rickettsia spp. and
Borreliella spp. via performing qPCR. Furthermore, 138 kidney samples were investigated
for Leptospira spp.

Rickettsia spp. were not detected in both species. As shown in Table 3, two samples
were positive for Borreliella spp., one obtained from a raccoon dog (1/107, ct-value: 37.52)
and one from a raccoon (1/29, ct-value: 33.98). Of 138 kidney samples tested for Leptospira
spp., 23 were positive. In total, in 21 out of 109 raccoon dogs (ct-values: 28.35–42.84) and
in 2 out of 29 raccoons (ct-values: 34.95 and 36.59), Leptospira spp. were detected. The
two raccoons were retrieved from the cities of Lübeck and Bad Schwartau.

Table 3. Vector-borne pathogens detected in 110 investigated raccoon dogs (Nyctereutes procyonoides)
and 30 raccoons (Procyon lotor).

Pathogen Raccoon Dogs Raccoons

Rickettsia spp. 0/107 (0% 95 CI 0) 0/29 (0% 95 CI 0)
Borreliella spp. 1/107 (0.93% 95 CI < 0.01–5.62) 1/29 (3.45% 95 CI < 0.01–18.63)
Leptospira spp. 21/109 (19.44% 95 CI 3.01–27.97) 2/29 (6.90% 95 CI 0.85–23.03)

Statistical analysis of demographic data was performed on the occurrence of Leptospira
spp. in raccoon dogs, showing no statistical difference between sexes (p = 0.8113) but
statistical difference between age groups (p = 0.0066), with juvenile raccoon dogs being
more often infected with Leptospira spp. than adults. Comparing the occurrence of Leptospira
spp. in raccoon dogs and raccoons, raccoon dogs were more often infected than raccoons
(p = 0.0450).

The raccoon skin sample was tested by MLST and was positive for B.afzelii. Sequencing
was not performed on the raccoon dog skin sample due to the exceeding ct-value (>35).

On six raccoon dog kidney samples, sequencing was performed, as the ct-values were
below 34. MLST was performed, and in three cases Leptospira (L.) borgpetersenii and in
one case each L. kirschneri and L. interrogans were identified. In one kidney sample, MLST
was negative.

3.3. Histopathology

Among the animals that tested positive for Leptospira spp., interstitial nephritis was
found in two raccoon dogs (2/21) and both raccoons (2/2). Therefore, interstitial nephritis
was present in 9.5% of the affected raccoon dogs and in all raccoons. In none of the
investigated animals histologic lesions attributable to acute and severe leptospirosis were
detected, which, apart from focal to diffuse interstitial nephritis, includes acute transient
tubular injury or tubular epithelial necrosis [61]. Using Warthin–Starry silver staining,
spiral-shaped bacteria, corresponding to Leptospira spp., were successfully demonstrated
within the renal tubules in one animal (Figure 3).
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4. Discussion

In this study, raccoon dogs and raccoons from Schleswig-Holstein were investigated
for the presence of selected vector-borne and zoonotic pathogens, namely Leptospira spp.,
Borreliella spp. and Rickettsia spp., for the first time. In addition, analysis of demo-
graphic factors and ectoparasitic infestation in concordance with the pathogen prevalence
was performed.

Raccoon dogs and raccoons have the potential of being competent reservoirs of various
pathogens, including rodent-borne and arthropod-borne pathogens [5,8,15,17,18]; however,
there is a lack of data on the reservoir function of these neozoa in northern Germany.

European raccoon dogs have not been examined for the occurrence of Leptospira spp.
yet. Until now, Leptospira spp. were only identified in Korean raccoon dog faeces [62]
and a brief report on leptospiral meningoencephalitis in a Japanese raccoon dog has been
published [18]. The prevalence of Leptospira spp. in raccoon dogs in the present study was
19.44%, which is much higher than the prevalence of 6.7% reported in Korea [62]. In the
Korean study, the leptospires were identified as L. wolffii, while in the raccoon dogs investi-
gated in the present study, L. borgpetersenii, L. kirschneri and L. interrogans were identified,
which are all pathogenic and can cause human leptospirosis, a zoonosis with worldwide
distribution and global importance [22,63]. So far, in Germany, raccoons have been as-
sessed for the presence of Leptospira spp. in the federal states of Mecklenburg-Vorpommern
(Müritz National Park), Berlin, Lower Saxony and Baden-Württemberg [17,52,53]. The
prevalence of Leptospira spp. in raccoons in the present study was 6.90%; in other studies,
the prevalence was 20.6% in Berlin, 3.9% in Baden-Württemberg [17], 3.2% in Mecklenburg-
Vorpommern [52] and 1.3% in Lower Saxony [53]. Therefore, the detected prevalence is
highest in raccoons from an urban habitat, i.e., Berlin, followed by the examined raccoons
in Schleswig-Holstein, which show a higher prevalence than in the other states. Of the
investigated raccoons in this study, approximately 63% were retrieved within cities (Lübeck,
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Bad Schwartau and Ratekau), with the two positive animals being from Lübeck and Bad
Schwartau. Geocoordinates were not taken as part of this study; therefore, the closeness to
water bodies or human settlements of the other animals cannot be analysed.

The closeness of urban raccoons to the dwellings of wild boars and rodents, especially
rats, which are the main reservoir hosts for different pathogenic Leptospira spp., poses an
increased chance for interspecies transmission in either direction [22,52]. Also, a prevalence
of 18% of Leptospira spp. is described in wild boars in Berlin [64,65] and one case of human
leptospirosis with wild boars as a possible source has been published [65]. Raccoon dogs
are described to avoid human settlements [66], whereas raccoons reach high population
densities close to human or agricultural settlements [67] and therefore might pose a higher
risk of disease spread to humans. On the other hand, cohabitation of burrows of raccoon
dogs with other carnivores is described [68], while to date interactions of raccoons with
comparable predator species, e.g. the European badger (Meles meles) and the raccoon dog,
have not been observed [67]. Thus, their life habits and the observed prevalence of 19.4%
of Leptospira spp. in raccoon dogs might bear the potential of transmission of pathogens,
especially to other carnivore species. Nevertheless, the presence of Leptospira spp. in both
species bears the potential of transmission of zoonotic pathogens to domestic animals and
humans, as well as other wildlife species, and both species should be considered as reservoir
species for Leptospira spp. The reservoir function is further supported by the absence of
attributable pathologic findings, e.g. focal or diffuse interstitial nephritis and acute transient
tubular injury or tubular epithelial necrosis [61] in the kidneys of 90.5% of the infected
raccoon dogs. Nevertheless, raccoon dogs are susceptible to disease, as in a raccoon dog
from Japan leptospiral mengingoencephalitis was diagnosed with the histologic sections of
the kidneys revealing diffuse lymphoplasmacytic interstitial nephritis [18]. Raccoons are
also susceptible to disease and may not only serve as asymptomatic reservoirs, as interstitial
nephritis was found histologically in raccoons originating from Germany, including in the
present study and in the USA [52,69]. In the present study, the detected interstitial nephritis
was overall rather mild and most likely subclinical in all cases.

Furthermore, the main food sources of raccoon dogs identified in Germany are small
mammals, amphibians, birds, carrion, insects and plants [70,71], with small mammals
making up 37.8% of consumed components [70]. In contrast, the most frequently detected
food items for raccoons were invertebrates followed by plant-based food [72].

As raccoon dogs tend to feed more frequently on small mammals in comparison to
raccoons, ingestion of infected prey should be considered as a possible transmission route,
as prevalence of Leptospira spp. in raccoon dogs was significantly higher (19.44%) compared
to 6.90% in raccoons.

We performed statistical analyses on the occurrence of Leptospira spp. in the different
age classes of raccoon dogs, and the p value showed a significantly higher occurrence in
juveniles, indicating that juveniles might be more susceptible to the disease. Nevertheless,
80% of the assessed raccoon dogs were juveniles, which could also be a possible explanation
for detecting Leptospira spp. only in this age class.

Ectoparasitosis was a frequent finding in both species, with 64% of raccoon dogs
and 23% of raccoons being affected. The most common ectoparasites were ticks, which
were detected in approximately 63% of examined raccoon dogs and 20% of the examined
raccoons. In a Polish study, 82.3% of the examined raccoon dogs were found to have
ticks [38], while in a German study only 8.3% of the investigated raccoons were infested
with ticks [52]. Nevertheless, the detection of ectoparasites might be biased by the sampling
technique, as most ectoparasites dismount their host soon after its death [52]; for example, in
a study conducted in the USA, prevalences of up to 92% for ticks were recorded in raccoons
that were sampled while being anaesthetised [73]. The infection rates with different
ectoparasite species might be even higher if examination takes place prior to transportation
and freezing. Ticks are vectors for both Borreliella spp. and Rickettsia spp. [1,37]. There is
a possible reservoir function of raccoon dogs for both, ticks and tick-borne diseases. The



Pathogens 2024, 13, 270 9 of 13

observed co-inhabitation of burrows with the red fox (Vulpes vulpes) and European badger
may contribute to the maintenance of overlapping transmission cycles [38].

In Poland, different Borreliella spp. were identified in both raccoon dogs and rac-
coons [38,51]. In one study, B. garinii was found to be most frequent species detected
in raccoon dogs, followed by B. afzelii; both pathogens are described as the dominant
spirochetes found in ticks in Europe [38]. In the second study, B. afzelii was the only
species found in both, raccoon dogs and raccoons, with prevalences of 2.0% and 23.5%,
respectively [51]. In our study, one raccoon dog and one raccoon were positive for Borre-
liella spp., which could be identified as B. afzelii in the raccoon. B. afzelii is one of the
causative agents of lyme borreliosis, with rodents being described as principal reser-
voirs [74,75]. Domestic dogs, badgers and raccoon dogs are also susceptible [38,76]. Even if
the prevalence of Borreliella spp. in both species was low and the sample size of raccoons
was small, both species should be considered as possible reservoirs for this pathogen in
Schleswig-Holstein, Germany.

Neither of the species has been investigated for the presence of Rickettsia spp. in Europe
before [5]. In the present study, Rickettsia spp. were not detected in raccoon dogs or raccoons.
Nevertheless, serological studies on the occurrence of Rickettsia spp. in Japanese [77] and
South Korean [78] raccoon dogs do exist, and one study using molecular detection was
carried out in Korea [79]. So far, only Rickettsia spp.-specific antibodies have been confirmed
in South Korean raccoon dogs, with prevalences of 30.5% and 41.6%, tested via an indirect
fluorescent antibody test [78]. In two studies in Japan, molecular detection of Rickettsia
spp. in raccoons was performed [80,81]. Rickettsia (R.) helvetica and R felis were among
the identified species, with prevalences between 0.1 and 1.6% [80,81]. Both pathogens are
also present in Europe and belong to the six Rickettsia species present in Germany [82–84].
Tufts et al. [85] confirmed Rickettsia spp. by PCR with a prevalence of 7.7% (3/39) in
assessed raccoons originating from the USA. Previous studies confirmed the susceptibility
of both neozoa species to Rickettsia spp., for raccoon dogs so far only in native (Korea
and Japan) ranges and for raccoons in native (USA) and introduced (Japan) ranges [5].
Rickettsiae are transmitted by various types of arthropods, including ticks, fleas, mites and
lice [86]. The major host for R. helvetica is I. ricinus, while R. felis is mainly transmitted by
the cat flea (Ctenocephalides felis), but was also detected in I. ricinus in Germany [82,84]. A
possible explanation for not detecting R. felis in the present study could be the observed
low infestation rate with fleas. Even if Rickettsia spp. and suitable arthropod vectors are
present in Germany, a possible explanation for the absence of this pathogen in raccoon dogs
and raccoons could be that I. ricinus is not present in their autochthonous range [30] and
therefore is a foreign ectoparasite to both species. Additionally, coevolutionary dynamics
may play a role. A variety of host defences to parasitism exists in nature, including immune
defences such as resistance and tolerance [87]. Therefore, raccoon dogs and raccoons as
neozoa might not be part of the transmission cycle of Rickettsia spp. in Germany yet.

A follow-up study of the presence and prevalence of Rickettsia spp. and Borreliella
spp. in the collected ectoparasites is intended to further evaluate the role of raccoon
dogs and raccoons as reservoirs for these tick-borne pathogens in the federal state of
Schleswig-Holstein.

In conclusion, the results of this study show that raccoon dogs and raccoons in
Schleswig-Holstein should be considered as reservoirs for pathogenic Leptospira spp. Also,
the present study confirms the presence of Borreliella spp. in both species. Further research
is necessary to rule out the reservoir function of both species for tick-borne pathogens.
Their high reproductive rate, ability to adapt to different habitats, omnivorous feeding
behaviour and dispersal capacity result in growing populations, which pose risks of disease
spread, interspecies transmission and disease persistence. Therefore, long-term health
monitoring of both species, including infectious disease surveillance and expansion of the
study area, is essential to evaluate their potential risk to human and animal health.
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