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Abstract: The eradication of the hepatitis C virus (HCV) has revolutionized the hepatology paradigm,
halting the progression of advanced liver disease in patients with chronic infection and reducing the
risk of hepatocarcinoma. In addition, treatment with direct-acting antivirals can reverse the lipid and
carbohydrate abnormalities described in HCV patients. Although HCV eradication may reduce the overall
risk of vascular events, it is uncertain whether altered lipid profiles increase the risk of cerebrovascular
disease in certain patients. We have conducted a review on HCV and lipid and carbohydrate metabolism,
as well as new scientific advances, following the advent of direct-acting antivirals.
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1. Introduction

The hepatitis C virus (HCV) is recognized as a significant human pathogen that initially
causes acute hepatitis. However, it has the potential to evolve into chronic hepatitis, leading to
severe liver complications such as cirrhosis and hepatocellular carcinoma, posing a substantial
global public health challenge. As a single-stranded RNA virus belonging to the Flaviviridae
family, HCV’s mechanism of infection and replication is complex. It involves evading the
host’s immune response, contributing to its chronicity in infected individuals. The virus’s
genetic diversity, marked by multiple genotypes and subtypes, complicates vaccine develop-
ment and treatment strategies. The progression from acute to chronic HCV infection stresses
the importance of early detection and effective antiviral therapies to prevent long-term liver
damage and reduce the risk of liver cancer. Despite advances in treatment, HCV remains a
leading cause of liver transplantation worldwide, highlighting the need for continued research
and public health efforts to combat this virus [1].

HCV transmission occurs primarily through blood-to-blood contact. In healthcare
environments, reusing or inadequately sterilizing medical equipment, notably syringes
and needles, presents a significant risk. Additionally, the transfusion of blood and blood
products that have not undergone thorough screening processes can serve as a conduit for
HCV transmission. Another prevalent route is through the sharing of injection equipment
among individuals using injectable drugs [2].

HCV is classified into seven genotypes, with multiple subtypes, which are unevenly
distributed geographically and differ in response to treatment [3].
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2. Epidemiology of HCV Infection and Clinical Course

The prevalence of HCV infection has been declining since the second half of the
20th century [4]. This is due to improved hygienic and dietary conditions in developing
countries and active surveillance in high-incidence countries. Together, these strategies have
played a pivotal role in reducing the global burden of HCV, showcasing the importance of
comprehensive public health initiatives in combating infectious diseases.

However, accurate estimates of global HCV prevalence are difficult to establish due to
underdiagnosis, underreporting, and a lack of routine surveillance in most countries [5].
The estimated global prevalence of HCV viremia in early 2020 was 0.7 percent, reflecting
56.8 million people with chronic HCV infection. These data reflect a decrease in prevalence
compared to 2015 when there were 63.6 million chronic HCV infections, representing
0.9 percent of the global population.

In Europe, the main incidence areas are the Eastern Mediterranean countries (62.5 per
100,000), where it is associated with healthcare, and the Eastern European region (61.8 per
100,000), where it is associated with injectable drug use [6].

Hepatitis C often progresses stealthily, mirroring other liver diseases with an initial asymp-
tomatic phase in most cases. Over time, it may lead to cirrhosis, presenting complications such
as ascites, variceal bleeding, and hepatic encephalopathy. A notable distinction of hepatitis C
from other liver diseases is its propensity to cause extrahepatic manifestations, including joint
pain (arthralgias), cryoglobulinemia, and various metabolic changes. This broad spectrum of
potential effects highlights the complexity of hepatitis C, affecting not just liver function but also
other bodily systems and requiring comprehensive management strategies.

3. Biology of Hepatitis C Virus and Its Association with Lipoproteins
Characteristics of the Hepatitis C Virus

HCV is a particle between 50 and 80 nm in diameter containing a single-stranded
RNA genome, nucleus, E1 and E2 glycoproteins, and type I transmembrane proteins,
which form covalent bonds with infected hepatocytes [7]. They are closely associated with
lipoproteins, which gives them a very low density [8]. The interactions governing the
relationship between HCV virions and the different lipoproteins involved remain to be
fully characterized [9].

It has been suggested that HCV virion is a hybrid, consisting of a viral part merged
with a lipoprotein capsule (Figure 1) [10]. Another hypothesis is that the relationship occurs
through the interaction of apolipoproteins and lipid molecules that are part of the HCV
envelope [11]. In both cases, the interaction with host lipoproteins could contribute to
protecting and concealing the virion particles, covering their surface. This glycoprotein
coat is essential in the process of inclusion of the viral particle into the target cells. It
plays a crucial role in the binding and fusion process between the viral envelope and the
endosomal membrane of the host cells [12].

In viral replication, HCV relies on the host cellular mechanism, which is associated
with endoplasmic reticulum-derived membranes and various proteins [13]. HCV induces a
massive reorganization of intracellular membranes, creating a membranous network [14].

Several electron microscopic studies have shown that the predominant structure is
a double membrane vesicle consisting of proteins and cholesterol, as well as deposits
of triglycerides (TGs) and cholesterol esters [15–17]. HCV alters the expression of genes
involved in lipid metabolism, resulting in the accumulation of intracellular lipids [18].



Pathogens 2024, 13, 278 3 of 14Pathogens 2024, 13, x FOR PEER REVIEW 3 of 16 
 

 

 

Figure 1. Structure of hepatitis C virion. 

4. Lipoproteins 

Lipoproteins serve as vehicles for lipid transport, consisting of a nonpolar core filled 

with triglycerides (TGs) and esterified cholesterol, encased in a polar outer layer 

composed of apoproteins, phospholipids, and free cholesterol. This diverse group 

includes chylomicrons, very low-density lipoproteins (VLDLs), intermediate-density 

lipoproteins (IDLs), low-density lipoproteins (LDLs), and high-density lipoproteins 

(HDLs). The diversity among these lipoproteins lies in their free cholesterol and TG 

content and their unique compositions of apolipoproteins, reflecting their varied roles in 

lipid transport and metabolism within the body [19]. This variation emphasizes the 

complexity of lipid dynamics and their critical functions in maintaining cellular and 

systemic health. 

Lipoprotein metabolism encompasses both exogenous and endogenous pathways. 

The exogenous pathway involves the absorption of dietary lipids through intestinal 

enterocytes, which are packaged into chylomicrons and enter the lymphatic system before 

reaching the bloodstream. On the other hand, the endogenous pathway occurs primarily 

in the liver (hepatocytes), where lipoproteins such as VLDL are synthesized and released 

into the circulation. These pathways are crucial for distributing lipids across different 

tissues for energy use, storage, or membrane synthesis. 

4.1. Exogenous Pathway of Lipoprotein Metabolism 

The lipids we obtain from the diet are mainly TGs. Once in the intestine, they bind to 

apoprotein B-48 in enterocytes, forming chylomicrons. These are secreted into the 

lymphatic vessels, reaching the general circulation via the thoracic duct. Chylomicrons 

become mature once they receive APOCII and APOE from HDL particles. There is also an 

exchange of TG with LDL particles located in the vascular endothelium, becoming 

remnant chylomicrons, taken up by hepatocytes through an interaction with APOE [20]. 

4.2. Endogenous Pathway of Lipoprotein Metabolism 

The liver is the main organ involved in the endogenous lipoprotein metabolism 

pathway. Hepatocytes secrete VLDL, the formation of which is initiated in the 

sarcoplasmic reticulum by the incorporation of TG into APOB100 particles through the 

action of microsomal TG transfer protein. Cholesterol esters and APOE are incorporated 

into this particle. This is followed by the exocytosis of VLDL lipoproteins into the 

bloodstream, acquiring more APOE and APOC from the HDL particles [21]. Mature 

Figure 1. Structure of hepatitis C virion.

4. Lipoproteins

Lipoproteins serve as vehicles for lipid transport, consisting of a nonpolar core filled
with triglycerides (TGs) and esterified cholesterol, encased in a polar outer layer composed
of apoproteins, phospholipids, and free cholesterol. This diverse group includes chylomi-
crons, very low-density lipoproteins (VLDLs), intermediate-density lipoproteins (IDLs),
low-density lipoproteins (LDLs), and high-density lipoproteins (HDLs). The diversity
among these lipoproteins lies in their free cholesterol and TG content and their unique com-
positions of apolipoproteins, reflecting their varied roles in lipid transport and metabolism
within the body [19]. This variation emphasizes the complexity of lipid dynamics and their
critical functions in maintaining cellular and systemic health.

Lipoprotein metabolism encompasses both exogenous and endogenous pathways. The
exogenous pathway involves the absorption of dietary lipids through intestinal enterocytes,
which are packaged into chylomicrons and enter the lymphatic system before reaching
the bloodstream. On the other hand, the endogenous pathway occurs primarily in the
liver (hepatocytes), where lipoproteins such as VLDL are synthesized and released into the
circulation. These pathways are crucial for distributing lipids across different tissues for
energy use, storage, or membrane synthesis.

4.1. Exogenous Pathway of Lipoprotein Metabolism

The lipids we obtain from the diet are mainly TGs. Once in the intestine, they bind
to apoprotein B-48 in enterocytes, forming chylomicrons. These are secreted into the
lymphatic vessels, reaching the general circulation via the thoracic duct. Chylomicrons
become mature once they receive APOCII and APOE from HDL particles. There is also an
exchange of TG with LDL particles located in the vascular endothelium, becoming remnant
chylomicrons, taken up by hepatocytes through an interaction with APOE [20].

4.2. Endogenous Pathway of Lipoprotein Metabolism

The liver is the main organ involved in the endogenous lipoprotein metabolism path-
way. Hepatocytes secrete VLDL, the formation of which is initiated in the sarcoplasmic
reticulum by the incorporation of TG into APOB100 particles through the action of micro-
somal TG transfer protein. Cholesterol esters and APOE are incorporated into this particle.
This is followed by the exocytosis of VLDL lipoproteins into the bloodstream, acquiring
more APOE and APOC from the HDL particles [21]. Mature VLDLs are catabolized by the
APOCII-activated enzyme lipoprotein lipase and renamed remnant VLDL or IDL. They are
incorporated back into the liver through the interaction of APOE [22]. Alternatively, they
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are again hydrolyzed by hepatic lipase, whereby IDLs are transformed into LDLs, depleted
of TGs and high in cholesterol. These particles transport cholesterol to peripheral tissues or
the liver via APOB100 interactions with LDL receptors [23].

On the other hand, APOAI is the primary apolipoprotein of HDL particles [24]. It is
again synthesized in the liver and intestine and is involved in forming these molecules
through the esterification of cholesterol and phospholipids. During this process, the HDL
molecules progressively lose part of their cholesterol load until they return to the hepatocyte
or enterocyte, where they replenish their cholesterol stores [25].

5. Lipoprotein Profile Assessment

Dyslipidemia is a quantitative or qualitative alteration in circulating lipoproteins in
plasma, notably an increase in the concentration of low-density lipoprotein cholesterol
(LDL-cholesterol) [26]. However, episodes of atherothrombotic pathology are still observed
in patients with normal or low cholesterol levels and without other known cardiovascular
risk factors [27]. This suggests that there are other lipid alterations, beyond LDL cholesterol
levels, that also increase cardiovascular risk [28]. The atherogenic potential of lipoproteins
should be hence defined not just by their quantity but by their characteristics, including
their number, size, and composition. Therefore, analyzing these aspects of lipoproteins
provides a more comprehensive assessment of a patient’s lipid profile, offering insights
beyond traditional cholesterol measurements [29,30].

As previously explained, lipoprotein particles differ from each other in terms of their
free cholesterol and TG content. The relationship between density and size is inverse, with
the smallest particles having the highest density [31].

These differences in the composition of the same class of particles influence the
atherosclerotic process. Healthy vascular endothelium can be freely traversed by par-
ticles with diameters of less than 70 nm. These particles, especially smaller LDL particles,
can be retained and are the origin of the atherogenic process [32].

It has also been observed that HDL particles can undergo modifications that change
their structure and composition, thereby altering their function. For example, in diseases
such as type II diabetes (T2DM), chronic kidney disease, sarcoidosis, and inflammatory
processes, HDL particles lose their protective function and acquire an atherogenic effect [33].

The size of LDL lipoproteins is variable and depends on their core’s lipid content,
which determines the particles’ density. This variability, which can be influenced by various
alterations in lipoprotein metabolism, can lead to a discrepancy between the serum LDL
cholesterol concentration and the number of circulating LDL particles [34]. Thus, many LDL
particles may be associated with a normal LDL cholesterol concentration. This situation is
known as c-LDL/p-LDL mismatch.

In these cases, different studies have found that particle number measurement is a
better indicator than LDL concentration for assessing cardiovascular risk [35]. The prognostic
ability of LDL particle number has been evaluated in different studies. For example, in the
Framingham cohort, it was shown that an LDL particle concentration below the 25th percentile
was a more reliable predictor of cardiovascular risk than an equivalent serum LDL cholesterol
concentration [36]. Studies have even shown that treatment based on LDL particle number
targets improves clinical outcomes over that based on LDL cholesterol concentration [37,38].

6. Alterations in Lipid Metabolism Associated with HCV Infection

The most important complications associated with chronic HCV infection are liver
cirrhosis and liver cancer. However, there are many extrahepatic manifestations that cause
high morbidity and mortality [39]. Most are immunological or lymphoproliferative in
origin, but alterations in the lipid profile have also been identified, leading to metabolic
and cardiovascular complications [40]. The lipid profile’s modifications related to HCV
infection and treatment are shown in Figure 2.
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Figure 2. Summary of the main effects of HCV and its treatment on a patient’s lipid metabolism.
When a patient has HCV infection, the main organ affected is the liver (1). Infection causes some
changes in lipid metabolism, especially a decrease in the number of VLDL and LDL particles (2).
After treatment with DAA (3), the infection is cured. Due to the combination of liver healing and the
direct effect of antivirals, there are changes in lipoparticles. There is an increase in serum LDL, HDL,
and triglyceride particles (4). In addition, improved liver function reduces the triglyceride content
of HDL particles (5). HDL particles can now better mobilize lipids from tissues, which can reduce
pancreatic steatosis and thus improve insulin resistance (6).

It is very striking that some studies have even been able to link the development
of hepatocarcinoma with an alteration in oncogenesis. Moreover, this phenomenon is
much more marked in HCV-infected patients than in HBV-infected patients. Some of the
mediators involved could be AKT2, SREBP1c, and PPARγ. Also, some regulatory enzymes
such as ACC and FAS may be involved [41].

Chronic HCV infection results in low levels of VLDL and LDL. Despite this apparently
beneficial change, these patients have an increased development of atherosclerosis, leading
to an increased cardiovascular risk [42]. This occurs independently of other risk factors,
such as the development of T2DM or the presence of hepatic steatosis. Interestingly, HCV
eradication leads to an increase in serum cholesterol and LDL levels, creating a combination
of circumstances that may exacerbate the risk of atherosclerosis injury [43].

Another finding observed in patients with chronic HCV infection is the existence
of abnormal lipoproteins, including VLDL particles enriched with TG, which increase
atherogenic risk. These particles disappear after successful HCV treatment and cure.

However, it appears that the extent of this interaction is related to certain host polymor-
phisms and hepatitis C virus genotypes. Both factors are highly variable [44,45]. Evidence
highlights that genotype 3 of the hepatitis C virus, accounting for 20–30% of infections,
is particularly associated with the development of hepatic steatosis, exhibiting a more
pronounced degree of steatosis in patients, even those without obesity, compared to other
genotypes. This association extends to a direct correlation between viral load and steato-
sis severity, exclusively in genotype 3, a phenomenon not observed in other genotypes.
Moreover, genotype 3 is linked to several adverse disease progression outcomes, such as
increased treatment resistance and a higher risk of developing HCC [46].

The underlying mechanisms, though not fully understood, suggest that genotype 3
impacts key metabolic pathways involving microsomal triglyceride transfer protein (MTTP),
sterol regulatory element-binding protein 1c (SREBP-1c), and peroxisome proliferator-
activated receptor alpha (PPAR-α) [47]. This insight emphasizes the need for a genotype-
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specific approach in managing HCV infections, considering the unique challenges posed
by genotype 3.

6.1. Diabetes Mellitus and Insulin Resistance

The development of T2DM is one of the most common HCV-related complications [48].
This relationship stems from a complex interplay between insulin resistance, hepatic
steatosis, and inflammatory processes [49]. HCV-core transcription leads to an increased
expression of TNF-alpha and thus to the induction of insulin resistance. This explains why
the prevalence of T2DM is higher in patients with HCV liver disease compared to other
etiologies of liver disease [50].

The development of T2DM can occur at any stage of liver disease, even with low
degrees of fibrosis [51]. However, it is more prevalent in patients with advanced fibrosis or
even liver cirrhosis [52]. As previously described, a genotype-dependent factor must be
considered. Patients with genotype 3 have a higher risk of developing insulin resistance
and diabetes. On the other hand, patients with genotype 1 would be more likely to improve
their carbohydrate metabolism after a viral cure compared to genotypes 2 and 3 [53].

The development of T2DM correlates directly with the severity of liver fibrosis. Al-
though it can occur in patients with mild fibrosis, the highest incidence is observed in those
with liver cirrhosis. In addition, patients with HCV-associated T2DM have an increased
risk of developing HCC. Regarding the relationship between T2DM and HCV treatment,
early interferon treatment showed a worse response in patients with T2DM and HCV [54].
A decrease in the risk of de novo T2DM has been observed in several studies with the
newer treatments, direct-acting analogues (DAAs) [55,56].

DAAs prevent the future onset of T2DM and improve glucose metabolism in patients
who achieve sustained viral response (SVR). During follow-up, a decrease in glycated
hemoglobin and an improvement in insulin resistance-related parameters have been observed.
However, their long-term duration after achieving SVR needs to be better established [57].

6.2. Cardiovascular Diseases

HCV infection confers increased cardiovascular morbidity and mortality [58]. Early
studies showed a relationship between HCV seropositivity and reduced carotid artery
intima/media ratio. Subsequently, HCV was also found to cause an increased expression
of pro-atherogenic cytokines [59,60].

Cardiovascular involvement appears to predominate in HCV patients compared to
patients with other similar conditions, such as hepatitis B virus (HBV) [61]. This indicates
that the cardiovascular risk is not solely due to liver damage but is an inherent effect of
HCV itself.

In studies with large cohorts of patients with very long follow-up periods, it became
evident that those patients who received antiviral treatment and achieved HCV eradication
had lower mortality rates than those patients who did not receive treatment, not only due
to hepatic but also extrahepatic causes, especially cardiovascular. Other studies showed
improved myocardial perfusion in those patients who had SVR [62].

Another aspect to consider in the relationship between cardiovascular disease and
hepatitis C is the interaction between their respective treatments. Antihypertensive drugs
and statins are among the most frequently used simultaneously in patients receiving direct-
acting antivirals. About 10% of patients took a statin before starting antiviral treatment [63].
Therefore, it is particularly important to consider interactions between these drugs [64].
Not all statins interact in the same way with all antivirals, although the most common
complication is the development of myopathies and the need to lower the dose. Specific
combinations, such as glecaprevir/pibrentasvir with atorvastatin, lovastatin, or simvastatin,
as well as ledipasvir/sofosbuvir with rosuvastatin are formally contraindicated [65].
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7. Metabolic Changes Related to Treatment with Direct-Acting Antivirals

Treatment with DAAs leads to changes in lipid metabolism. Serum total cholesterol
and LDL-cholesterol levels rise, possibly increasing the risk of atherosclerotic lesions [66,67].

However, the results of studies assessing this point are sometimes contradictory. Some
show increased HDL-cholesterol levels that are not seen in other studies. One study even
described a decrease in HDL levels [68]. Regarding changes in TG, inconsistent results
have also been reported: decreases, minimal or absent changes, or even increases in serum
levels. The main clinical studies can be found summarized in Table 1.

These contradictory results may be explained by the heterogeneity of the studies,
which were conducted in disparate genotypic populations, using different treatment reg-
imens and different proportions of patients with liver cirrhosis [69,70]. Some studies
included HIV-co-infected patients with an HIV-positive population of up to 60%. Follow-
up times also varied widely between studies, ranging from 4 to 48 weeks. In addition,
only two studies presented long-term prospective follow-up, Shimizu et al. and Gonzalez-
Colominas et al. However, these two studies presented populations with liver involvement
that goes beyond simple HCV infection: 50% of patients in the Gonzalez-Colominas study
had liver cirrhosis and all patients in the Shimizu study had hepatic steatosis [71,72].

Critical questions about lipid changes post-DAA treatment include whether the initial
changes persist over time and the effects on patients with early-stage liver disease, a group
significantly understudied.

More recently, and especially after the generalization of DAAs drugs, lipid profile
alterations have been described after HCV eradication [70]. In a study tracking HCV
patients treated with DAAs for two years, total cholesterol and LDL cholesterol levels
rose progressively, by an average of 15% and 22%, respectively. This led to a higher risk
of cardiovascular events. An increase in LDL-C of more than 40% emerged as the sole
predictive factor, suggesting it could be a warning sign for potential cardiovascular events
in the HCV-eradicated population [73–75].

Total cholesterol and LDL-C increased earlier after DAA initiation, while TG and
HDL-C increased slowly after the end of therapy [76]. This is consistent with the finding
that rapidly elevated total cholesterol and LDL-C levels may correlate with rapid viral
clearance due to potent DAA therapy. In addition, elevated lipid levels were not transient,
but persisted years after the end of treatment. Age and smoking were factors associated
with pronounced lipid changes after viral eradication. Patients with a history of untreated
dyslipidemia had elevated lipid levels in the post-RVS state. All the above factors were
also risk factors for cardiovascular/cerebrovascular events [77].

However, increases in HDL and TG levels remain controversial, with no apparent
relationship established. Studies comparing the change in cholesterol levels before and
shortly after DAA treatment and studies with a long follow-up period are scarce.

In recent studies, it has been discovered that the analysis of lipoparticle metabolism is
more complex than initially thought and that not only the quantity but also the quality of
lipoparticles determines the cardiovascular risk of patients [77]. Our results describe how HCV-
dependent lipid abnormalities are associated with insulin resistance and how DAA therapy
can reverse this association. These findings suggest that monitoring the HDL-TG profile could
predict changes in glucose tolerance and insulin resistance post-HCV clearance [78].



Pathogens 2024, 13, 278 8 of 14

Table 1. Principal clinical studies evaluating modifications in lipid profile after HCV treatment.

Study Year N Design Follow-Up Drug Genotype Cirrhosis Total
Cholesterol HDL LDL TG Other

Chida T [79] 2018 70 Retrospective 4 weeks DCL + ASV 1b NA ↑↑ ↑ ↑↑ NA

Endo [80] 2014–2016 276 Retrospective 24 weeks DCV + ASV SOF +
LDV SOF/LDV 1b NA ↑↑ ↑ ↑↑ NA

Inoue [67] 2018 216 Prospective
post Hoc 48 weeks DCV + ASV

SOF/RBV 1b y 2 NA ↑↑ ↑ = =

Meissner [66] 2015 54 Retrospective 24 weeks SOF/RBV 1 NA NA NA ↑↑ ↓

Chaudhury [81] 2011–2017 251 Prospective
Ad hoc 28 months NA 1 NA NA NA ↑↑ ↓ 30% HIV

Sun [70] 2018 24 Prospective ND EBV/GPV
LDV/SOF 1 NA ↑ NA NA ↓

Townsend [82] 2016 90 Prospective
post Hoc 24 weeks LDV/SOF

SOF/LDV 1 NA NA NA ↑↑ NA 60% HIV

Morales [69] 2014–2016 52 Retrospective 6 months SOF IFN LDV
SIM/RBV All 24% ↑↑ ↓ ↑↑ ↓

Beig [83] 1998–2016 132 Retrospective 48 weeks DAA without IFN All No ↑↑ NA ↑↑ NA Transplanted

Carvalho [84] 2018 178 Prospective ND DAA without IFN
or RBV All NA ↑↑ NA ↑↑ ↓

Gitto [76] 2015 100 Prospective 24 weeks DAA + RBV All 80% ↑↑ NA NA NA

Mauss [68] 2017 520 Prospective ND DAA All NA ↑↑ NA ↑↑ =

El Sagheer [85] 2018 80 Retrospective ND SIM/SOF 4 >50% ↑↑ ↑ ↑↑ ↓
Gonzalez Colominas [86] 2019 226 Prospective 48 weeks DAA All 50% ↑↑ ↑ ↑↑ NA

Doyle [87] 2015–2016 24 Prospective 24 weeks OBV/DSV All NA ↑↑ ↑ NA ↑
Evaluation of

APOA, APOB and
APOE, HOMA-IR

Ichikawa [88] 2014–2016 39 Prospective 24 weeks DCV/ASV 1b NA ↑↑ = ↑↑ =

Shimizu [89] 2012–2016 70 Retrospective 48 weeks All 1 y 2 NA = ↑ ↑↑ = All patients with
steatosis

Cheng [90] 2017 102 Prospective 12 weeks All All (1b 80%) 75% ↑↑ = ↑↑ ↑
Jain [91] 2017 50 Prospective 12 weeks SOF/DCV NC NA ↑↑ = ↑↑ =

Petta [92] 2018 182 Prospective 48 weeks All All 66% ↑↑ NA NA NA

Casas-Deza [78] 2019 177 Prospective 48 weeks All All 10% ↑↑ ↑ ↑↑ ↑
ASV: Asunaprevir; DAA: direct acting antiviral; DCV: Daclatasvir; DSV: Dasabuvir; EBV: Elbasvir; GPV: Grazoprevir; IFN: Interferon; LDV: Ledipasvir; NA: not available; ND: No data;
OBV: Ombitasvir; RBV: Ribavirin; SOF: Sofosbuvir; SIM: Simeprevir; TG: triglycerides; ↑: slow increase; ↑↑: rapid increase; ↓: slow decrease; =: no changes.
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Further, it has been found that post-treatment, the TG content in HDL particles de-
creases, signifying improved lipoparticle quality and enhanced cholesterol clearance from
tissues. This reduction in hepatic and pancreatic fat could partly account for the observed
improvement in insulin resistance [93].

Various LDL-C reduction thresholds (70, 100, and 155 to 190 mg/dL) are recommended
to lower the risk of atherosclerotic cardiovascular disease (ACVD) [94]. These recommen-
dations consider factors like initial LDL-C levels, age, ethnicity, and the estimated future
risk of cardiovascular disease. Current evidence regarding the management of patients
with dyslipidemia seems to favor the “lower is better” concept [75]. Due to lower lipid
profiles prior to anti-HCV therapy, deteriorating lipid profiles are often overlooked in
the post-HCVR era; 7.3% of patients without concurrent lipid-lowering therapy prior to
antivirals were started on lipid-lowering drugs during the follow-up period. In this study,
after excluding patients who took lipid-lowering drugs both before and after anti-HCV
therapy, the proportion of patients with LDL > 100 mg/dL increased from 37.5% before
treatment to 56.9% after anti-HCV therapy, while the proportion of patients with LDL
levels >155 mg/dL increased from 2% before treatment to 7.2% after antiviral therapy [95].

A significantly higher proportion of patients justified the use of lipid-lowering drugs to
reduce the risk of vascular events in the post-antiviral treatment era. However, it is believed
that lipid-lowering therapy may be significantly underutilized in this population [95].

It has been suggested that HCV eradication reduces the risk of cerebrovascular events.
In a recent study, 731 of 17,103 treated patients who achieved SVR experienced cardiovas-
cular events during the follow-up period (19.1 per 1000 person-years) [76,96]. A 13% risk
reduction was observed in patients with coronary heart disease receiving interferon- or
AAD-based regimens compared to the untreated cohort. However, another large cohort
study of 160,875 subjects revealed that the benefit of HCV eradication was only found
to reduce the risk of stroke, but not coronary heart disease, compared to the untreated
cohort [78,97].

Notably, most of the patients who developed cardiovascular disease after HCV treat-
ment had no obvious risk factors prior to antiviral therapy [23,98].

Other studies have shown that DAAs improve carotid thickening, but carotid plaques
did not change in the same cohort [94,99]. Meanwhile, a recent study has shown dyslipi-
demia and a short-term increase in aortic stiffness in patients with advanced fibrosis after
DAA treatment. Overall, the improvement in vascular events in the post-SVR state must
be judged on an individual basis, considering lipid dynamics.

However, most existing studies after the advent of DAAs have a relatively short
follow-up period, and there are no HCV-uninfected controls. In addition, the number of
patients with vascular events is also limited, making it difficult to draw conclusions. This
situation underscores the necessity for future studies to investigate whether the potential
increase in LDL cholesterol levels following DAA treatment could be counterbalanced by
a decrease in systemic inflammation among patients who achieve a SVR. Such research
is paramount for clarifying the risk of developing cardio-cerebrovascular diseases in this
patient population.

In conclusion, after achieving SVR through DAA treatment, monitoring for both hep-
atic and extrahepatic outcomes is crucial, given the known lipid changes and their potential
impact on cardiovascular health. While current guidelines suggest discharging patients
without advanced liver disease post-SVR [95,100], the observed increases in total and LDL
cholesterol post-treatment highlight the need for ongoing vigilance against vascular events
and cardio-cerebrovascular diseases. Recent findings of improved lipoprotein quality and
decreased TGs post-HCV cure, potentially reducing insulin resistance and cardiovascular
risk, underline the importance of extended follow-up and larger studies to understand
these long-term effects fully.
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