Supplementary Material for

Effects of EGFR Inhibitor on *Helicobacter pylori* Induced Gastric Epithelial Pathology *in Vivo*

Figure S1. Sequence alignment of Mongolian gerbil Adam17, Egfr and Hb-egf. (A) Alignment of 213 bp portion Adam17 cDNA sequence for the Mongolian gerbil, mouse, rat, Chinese hamster and human. Those nucleotides in other species which are similar to those in the Mongolian gerbil are typed in stars, while those different are typed in letters. The degree of nucleotide identity observed between Mongolian gerbil and other species were 95% for mouse (Accession No. 9945314), 95% for rat (Accession No. 9945329), 95% for Chinese hamster (Accession No. AF380348) and 94% for human (Accession No. 14722411); (B) Alignment of 216 bp portion Egfr cDNA sequence for the Mongolian gerbil, mouse, rat, Chinese hamster and human. Those nucleotides in other species which are similar to those in the Mongolian gerbil are typed in stars, while those different are typed in letters. The degree of nucleotide identity observed between Mongolian gerbil and other species was 92% for mouse (Accession No. AF275367), 91% for rat (Accession No. M37394), and 80% for human (Accession No. X00588); (C) Alignment of 200 bp portion (Hb-egf) cDNA sequence for the Mongolian gerbil, mouse, rat, Chinese hamster and human. Those nucleotides in other species which are similar to those in the Mongolian gerbil are typed in stars, while those different are typed in letters. The degree of nucleotide identity observed between Mongolian gerbil and other species was 93% for mouse (Accession No. 6754177), 93% for rat (Accession No. L05489), 90% for Chinese hamster (Accession No. AF069753) and 79% for human (Accession No. M60278). Nucleotides identical to those in the Mongolian gerbil are indicated by *; Numbers in the right hand column are the nucleotide position assigned in each of the respective database entries. Primer sites for qPCR in bold.

A. Adam17 sequence

CGTACGTCGATGCAGAGCAAAAGAACTTATTTTTGAGG AAAGGGAAGCCC	50	Gerbil		
*****************************G********	1887	Mouse		
*T************************************	2128	Rat		
C***T*********************************	1872	C.hamster		
*C**T*********************************	2051	Human		
TGTACAGTAGGGTTTTGTGATATGAATGGAAAATGTGAAAAACGAGTACA	100	Gerbil		
******************C**C*******C*****G******	1937	Mouse		
***********	2178	Rat		
********************C****C**C*********	1922	C.hamster		
**************************************	2101	Human		
GGATGTAATTGAGCGATTTTGGGATTTCATTGACCAGCTGAGCATCA ACA	150	Gerbil		
C************	1987	Mouse		
C******G************************	2223	Rat		
***************************************	1972	C.hamster		
**************************************	2151	Human		
CTTTCGGAAAGTTTTTGGCAGACAACATCGTTGGGTCTGTTCTGGTTTTC	200	Gerbil		
****T**G******C******T*****************	2037	Mouse		
****T**G******C************************	2273	Rat		
****T**G******************************	2022	C.hamster		
****T*********************************	2201	Human		
TCCTTGATATTTT	213	Gerbil		
* * * * * * * * * * * *	2050	Mouse		
******	2286	Rat		
*****	2035	C.hamster		
******	2014	Human		
B. Egfr sequence				
TGGCTGGCTATGTGCTCATTGCCCTCAACACTGTGGAGAGGATCCCTCTG	GAGAA	CCTGC 60 Gerbil		
****C*******C*************************	* * * * *	***** 536 Mouse		
*************T********G****C***********	* * * * *	***** 466 Rat		
		renerated and a distribution		

* * *	*****T****C***************************	499	Human
AAI	ATCATCAG GGGAAATGCTCTGTACGAAAACAC CTATGCCTTAGCCGTCCTGTCCAACT	120	Gerbil
G	*******************T**T***************	596	Mouse
G	********************C************C******	526	Rat
*G3	**************************************	559	Human
ACC	GGGGCAAACAGAACTGGGCTCAGGGAACTGCCTATGCGGAACTTAC AGGAAATCCTGA	180	Gerbil

Figure S1. Cont.

C. Hb-egf sequence

GTGTTGTCTGCGTTGGTGACCGGTGAGAGTCTGGAGCGGCT TCGGAGAGG	50	Gerbil
***************************************	356	Mouse
***************************************	126	Rat
**************************************	102	C.hamster
TC*CG*CAC***************************	356	Human
TCTGGCGGCAGCAACCAGCAACCCTGACCCTCCTACTGGATCCACACACC	100	Gerbil
*****C********************************	406	Mouse
*****C********************************	176	Rat
**************************************	152	C.hamster
G**A**T**T*G*********G******C****C****T****GG***	406	Human
AGCTGTTACCCACGGGAGGCGATCGCACTCAGGAAGTCCAGGACTTGGAT	150	Gerbil
*****C****************T****TG*****GG********	456	Mouse
*****C***********CT****G*****G*****G********	226	Rat
*****C********************************	202	C.hamster
*****C*****CTA******GC**GGAC*G*A*****GT*****C*A	456	Human
AAGACAGACCTGGACATTTTCAGAGTTGCTTTCTCCTCCAAGCCACAAG	200 (Gerbil
GG*****T***A**C*****A*******************	506 1	Mouse
GG***C**T*****C*****A*******************	276 1	Rat
G*****T*C****C*************************	252 (C.hamster
G**G****T*****C****G****CA****A**********	406 I	Human