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Abstract: Oral candidiasis is particularly evident, not only in cancer patients receiving 

chemotherapy, but also in elderly people with xerostomy. In general, Candida is an 

opportunistic pathogen, causing infections in immunocompromised people and, in some 

cases, when the natural microbiota is altered. Chitosan, a natural derivative of chitin, is a 

polysaccharide that has been proven to possess a broad spectrum of antimicrobial activity 

that encompasses action against fungi, yeast and bacteria. While recent studies have revealed 

a significant antibiofilm activity upon several microorganisms, including C. albicans, little 

is known regarding the impact of chitosan upon the adhesive process or mature biofilms. 

With that in mind, the purpose of this work was to evaluate, in vitro, the capability of 

chitosan to inhibit C. albicans growth and biofilm formation. The results obtained showed 

that chitosan is capable of inhibiting C. albicans planktonic growth (HMW, 1 mg/mL; LMW, 

3 mg/mL). Regarding biofilm growth, chitosan inhibited C. albicans adhesion (ca. 95%), 

biofilm formation (percentages above 90%) and reduced mature biofilms by ca. 65% and 

dual species biofilms (C. albicans and S. mutans) by ca. 70%. These results display the 

potential of this molecule to be used as an effective anti-Candida agent capable of acting 

upon C. albicans infections. 
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1. Introduction 

Since the 1970s, there has been an increase in candidiasis incidence, mostly due to the use of plastic 

permanent catheters, antibiotics and immunosuppressive drugs [1]. These Candida-derived infections 

may occur in the skin, mucous membranes (such as the mouth and vagina) and in the viscera, with the 

main etiological agent being Candida albicans [1,2]. Among the various human fungal pathogens,  

C. albicans accounts for the majority of systemic infections in immunocompromised patients, with 

overall mortality rates ranging from 29% to 76% [2–6]. This opportunistic fungi causes great problems, 

as it is resistant to most antimicrobial compounds, namely amphotericin-B, which is considered the 

standard for the treatment of systemic mycoses. Despite still being considered the drug of choice against 

C. albicans, these antifungal agents are being increasingly reported as inefficient with numerous cases 

of resistances, particularly to fluconazole, being observed [1–4]. This problem has led to the search for 

alternative drugs and compounds to be used in the treatment and management of C. albicans infections. 

Chitin is the primary structural component of the shells of crustaceans, arthropods and the fungal cell 

wall and is obtained mainly as a byproduct of the fishing industry. Partial deacetylation of chitin leads 

to chitosan, a polysaccharide composed of units of glucosamine (2-amino-2-deoxy-D-glucose) and  

N-acetyl glucosamine (2-acetamido-2-deoxy-D–glucose) linked by β(1→4) bonds. Chitosan is the only 

natural polysaccharide that presents a cationic character due to its amino groups, which, at low pH,  

are protonated and can interact with negatively-charged compounds, such as proteins, anionic 

polysaccharides (e.g., alginates, carraghenates, pectins), fatty acids, bile acids and phospholipids [7]. 

This behavior, along with its biocompatibility, biodegradability and lack of toxicity, has led to the usage 

of chitosan in diverse fields, such as technology, food, cosmetics, medicine, biotechnology, agriculture 

and the paper industry [8,9]. However, chitosan possesses some limitations, namely its insolubility in 

water, high viscosity and tendency to coagulate proteins at high pH [10–12]. 

Chitosan’s antimicrobial activity is well established against a variety of microorganisms, including 

fungi [10,13–15]. When considering chitosan antifungal activity, several authors have already shown 

that it is active upon yeasts, molds and dermatophytes [16–19]. While the antifungal activity of chitosan 

upon C. albicans is well established, the same cannot be said regarding the effect of chitosan upon  

C. albicans biofilm formation. Early reports [20–22] suggest that chitosan may be active upon  

C. albicans biofilms; however, the real effect of chitosan upon the different steps of C. albicans biofilms 

has not yet been fully explored. As such, the aim of this work was to fully assess chitosan’s potential as 

a means to prevent C. albicans-derived infections through the control of its growth, adhesion and  

biofilm formation. 
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2. Results and Discussion 

2.1. MIC Determination 

The MIC values, obtained by broth microdilution, for chitosan activity upon C. albicans were 

relatively low. In fact, HMW chitosan presented a MIC value of 1 mg/mL and LMW chitosan a MIC 

value of 3 mg/mL. The antifungal activity of chitosan upon C. albicans is well established, with several 

authors [16–19] presenting various MIC values for different chitosans against this yeast. Tayel, Moussa, 

El-Tras, Knittel, Opwis and Schollmeyer [2] previously reported a MIC of 1.25 mg/mL (32 kDa, 

deacetylation degree (DD) 86%). Qin et al. [23] reported an even lower MIC of 0.8 mg/mL (2.91 kDa, 

DD 86.4%), and Şenel et al. [24] reported a MIC of 10 mg/mL (1,000 kDa, DD 80%). Comparing these 

results with the ones obtained, it is possible to see that for LMW chitosan, the MIC value obtained was 

slightly superior to those previously reported [2,23], with this differences being probably due to the 

higher DD used in those assays. On the other hand, for HMW chitosan, the values here obtained were 

significantly lower than those reported by Şenel, İkinci, Kaş, Yousefi-Rad, Sargon and Hıncal [24]. From 

here, the ½ and the ¼ of the MIC were calculated to be used in the biofilm assays, as previously described 

by Cerca et al. [25]. 

2.2. Adherence to Coated Surfaces 

The effect of chitosan upon C. albicans adhesion to surfaces can be seen in Figure 1. The results 

obtained showed that both MW and the times tested were capable of producing adhesion inhibition 

percentages above 90%. In fact, the lowest inhibition percentage was obtained for LMW chitosan after 

only 30 s of exposure. When considering the differences between 30 s and 90 s of exposure, there were 

no significant statistical differences (p > 0.05) found, either for HMW or LMW chitosan. On the other 

hand, when considering the impact of the MW and the exposure time, some differences are ascertainable;  

90 s of exposure for HMW presented statistically significant (p < 0.05) higher inhibition values than 

both LMW assays; LMW, at 30 s of exposure, presented a significantly lower (p < 0.05) inhibition value 

than the one registered in both HMW assays. These results are in line with those previously reported by 

Carlson, Taffs, Davison and Stewart [20], who showed that chitosan reduced C. albicans adhesion up  

to 99%. 

2.3. Microtiter-Plate Test 

When considering the impact of chitosan upon C. albicans biofilm formation (Figure 2), here 

analyzed indirectly through biomass production, one can see that, as with the previous assay, the highest 

inhibition percentage (66.94%) was obtained for HMW chitosan (0.5 mg/mL) and the lowest inhibition 

percentage (37.97%) was obtained for LMW chitosan (0.75 mg/mL). When comparing the results 

obtained for the ½ and ¼ of the MIC of both MWs, no statistically significant (p > 0.05) differences 

were found when considering the effect of the MW upon chitosan’s activity. On the other hand, when 

considering the effect of the MW in conjunction with the concentration, one can see clear differences in 

behavior (Figure 2). In fact, 0.5 mg/mL of HMW chitosan presented significantly higher (p < 0.05) 

inhibition values than the remaining assays, while no significant (p > 0.05) differences were found 
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between the ¼ of the MIC for HMW (0.25 mg/mL) and ½ of the MIC for LMW (1.5 mg/mL). On the 

other hand, 0.75 mg/mL of LMW chitosan presented statistically significant (p < 0.05) lower inhibition 

percentages than the remaining assays. These results are in line with those registered by Martinez, Mihu, 

Tar, Cordero, Han, Friedman, Friedman and Nosanchuk [22], who reported that chitosan was capable of 

reducing C. albicans biofilm formation by a 2.5 factor, and by those of Cobrado et al. [26] and of 

Cobrado et al. [27], who showed that chitosan was capable of reducing C. albicans biomass production 

up to 90%. 

Figure 1. Inhibitory effect of chitosan upon C. albicans adhesion. Values obtained given as 

the percentage of adhesion inhibition. Different letters represent the statistically significant 

differences found (p < 0.05). All assays performed in triplicate. HMW, high molecular 

weight; LMW, low molecular weight. 

 

Figure 2. Effect of sub-MIC concentrations of chitosan (½ and ¼ of the MICs; values in 

mg/mL) upon C. albicans biofilm formation. Values obtained are given as the percentage of 

biofilm formation inhibition. Different letters represent the statistically significant 

differences found (p < 0.05). All assays were performed in triplicate. 
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2.4. Mature Biofilms Assays 

Regarding the effect of chitosan upon C. albicans mature biofilms, the results obtained can be seen 

in Figure 3. Once again, the highest inhibition percentage was obtained for HMW chitosan (51.77% for 

0.25 mg/mL), and the lowest inhibition was registered for LMW chitosan (45.37% for 1.5 mg/mL). 

Statistical analysis of the results showed that when considering the effect of the MW, there were 

statistically significant differences (p < 0.05) between HMW chitosan at 0.25 mg/mL and both LMW 

concentrations tested. Simultaneously, when considering the effect of the MW in conjunction with 

concentration (Figure 3), differences were also observed with 0.25 mg/mL HMW chitosan, presenting 

significantly (p < 0.05) higher inhibition values than the assays that utilized LMW chitosan. Between 

the remaining assays, no statistically significant (p > 0.05) differences were found. 

Figure 3. Effect of sub-MIC concentrations of chitosan (½ and ¼ of the MICs; values in 

mg/mL) upon C. albicans mature biofilms. Results are presented as biofilm reduction 

percentages. Different letters represent the statistically significant differences found  

(p < 0.05). All assays performed in triplicate. 

 

2.5. Dual-Species Biofilms 

Results obtained regarding the activity of chitosan upon C. albicans mature biofilms can be observed 

in Figure 4. Contrary to the pattern observed in previous assays, LMW chitosan presented the highest 

biofilm inhibition percentage (66.77% for 0.75 mg/mL) and HMW chitosan the lowest (55.10% for  

0.25 mg/mL). Statistical analysis of the results showed that the only statistically significant difference 

observed was for 0.25 mg/mL of HMW chitosan, which presented an inhibition value significantly lower 

than the inhibition values obtained in the remaining test conditions. When considering the differences in 

chitosan’s activity between single species C. albicans biofilm and dual species C. albicans and S. mutans 

biofilms (Figure 5), the statistical analysis shows that there are statistically significant differences  

(p < 0.05) in LMW chitosan’s activity between a single and a dual species population. On a closer look, 

LMW chitosan presents a statistically significant (p < 0.05) increase in activity between single species 

and dual species biofilms. This translates as an increase of biomass production inhibition of ca. 10%, for 

1.5 mg/mL, and of ca. 31%, for 0.75 mg/mL of chitosan, for LMW chitosan between populations. 

Despite the lack of previous results regarding the effect of chitosan upon C. albicans mature and dual 

species biofilms, the inhibitions here registered are quite interesting, especially when considering that 
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C. albicans biofilms produce an exopolymeric matrix that serves as a diffusion barrier to antimicrobials 

and that, under these conditions, Candida cells overexpress efflux pumps to enhance antifungal 

resistance [28]. This mechanism may be the reason why HMW chitosan possessed higher activity than 

LMW upon mature biofilms, as it is known that the latter must enter the cells in order to be active [15]. 

In the dual species biofilms, one cannot underestimate the importance of S. mutans, as it is known to be 

crucial to C. albicans colonization of the oral cavity, mainly due to providing adhesion sites and producing 

lactate that can be used as a carbon source by yeasts. This symbiosis has been well established in several 

studies, which have shown that there is a strong coadherence between these microorganisms [29]. 

Considering that, both S. mutans and C. albicans, have been described as being more sensitive to HMW 

chitosan [16–19,30], it is somewhat surprising that LMW chitosan presented higher inhibition percentages 

than HMW chitosan for the dual species biofilms. It is possible that an unknown mechanism, possibly 

located at the adhesins level, as hypothesized by Azcurra et al. [31], or at the cell to cell communication 

level, where the larger HMW molecules are incapable of acting, is responsible for the higher activity 

registered for LMW chitosan. 

Figure 4. Effect of sub-MIC concentrations of chitosan (½ and ¼ of the MICs; values in 

mg/mL) upon biofilms formed by C. albicans and S. mutans. Results presented as the 

percentage of biofilm formation inhibition. Different letters represent the statistically 

significant differences found (p < 0.05). All assays performed in triplicate. 

 

Figure 5. Comparison of the effect of sub-MIC concentrations of chitosan upon C. albicans 

single species and dual species biofilms. Results presented as the percentage of biofilm 

formation inhibition. Different letters represent the statistically significant differences found  

(p < 0.05). All assays performed in triplicate. 
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3. Experimental Section 

3.1. Sources of Chitosan and Microorganisms 

High and low molecular weight chitosan were obtained from Sigma-Aldrich (St. Louis, MO, USA). 

High molecular weight chitosan was characterized by a DD > 75% and a MW of 624 kDa. Low 

molecular weight chitosan was characterized by a DD between 75% and 85% and a MW of 107 kDa. 

Chitosan solutions were prepared in 1% (v/v) solution of glacial acetic acid 99% (Panreac, Barcelona, 

Spain). Chitosan was added to 1% acetic acid to the desired concentration. Afterwards, the solution was  

stirred overnight at 50 °C to promote complete dissolution of chitosan. The pH was adjusted with  

NaOH (Merck, Darmstad, Germany) to a final value of 5.6–5.8, and solutions were stored at  

refrigerated temperature. 

Candida albicans used in this study was obtained from the culture collection of the Göteburg 

University (CCUG) (Sweden) (CCUG 49242). Inocula were prepared in yeast malt broth (YMB) (Difco, 

Franklin Lakes, NJ, USA) and incubated at 37 °C for 24 h. Viable counts were performed in yeast malt 

agar (YMA) (Difco, Franklin Lakes, NJ, USA). 

3.2. Determination of Minimal Inhibitory Concentration 

Determination of the MIC was performed as described by Costa, Silva, Pina, Tavaria and  

Pintado [10]. Briefly, an inoculum of 0.5 in the MacFarland scale (1.5 × 108 CFU/mL) of C. albicans 

was prepared from overnight cultures and inoculated in YMB with chitosan concentrations ranging from 

0.1 mg/mL to 7 mg/mL. Two controls were simultaneously assessed: one with 0.1 mg/mL chitosan, but 

without inoculum, and another where chitosan was replaced by sterile water and with added inoculum. 

The MIC was determined by observing the lowest concentration of chitosan that inhibited microbial 

growth. All assays were performed in triplicate. 

3.3. Adherence 

The effect of chitosan on C. albicans adhesion to surfaces was performed as described by Costa, 

Silva, Tavaria and Pintado [30], tested using 24-well microplates. Briefly, 1 cm aluminum disks were 

dipped for 30 or 90 s in a well containing either 1% (v/v) HMW or LMW chitosan. Following that, the 

disks were rinsed with sterile water and submerged in a well containing inoculum for 60 s, after which 

disks were placed into wells containing the appropriate medium and incubated for 24 h at 37 °C. Two 

controls were simultaneously assessed. In the first one, disks were dipped in sterile water and then 

inoculated and incubated. In the second one, disks were dipped in the test solutions and, after rinsing in 

sterile water, were then incubated without inoculum. After 24 h, the disks were recovered, and after 

serial dilutions, viable counts were assessed by the drop method, as described by Miles et al. [32], in 

YMA. Plates were then incubated at 37 °C for 24 h under aerobic conditions. Results were given as 

inhibition percentages using the following formula: 

% I = 100 − (log CFU sample/log CFU control) × 100  

All assays were performed in duplicate. 
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3.4. Microtiter-Plate Test 

Biofilm quantification was carried out by adapting the protocol of Stepanovic et al. [33]. Briefly, in 

a flat bottom, 96-well microplate, wells were filled with 200 µL of test solutions with chitosan added at 

sub-MIC concentrations (½ and ¼ of the MIC) and inoculated at 1% (v/v). The plate was then incubated 

at 37 °C for 24 h in aerobiosis. All assays were performed in triplicate in the appropriate media 

supplemented with 5% sucrose. 

To visualize adhesion, the contents of each well were discarded and then washed 3 times with sterile 

deionized water in order to remove non-adherent cells. The remaining attached microorganisms were 

fixed with 200 µL of ethanol (Panreac, Barcelona, Spain) for 15 min. Ethanol was discarded, and the 

wells were air dried. After that, 200 µL of crystal violet solution were added to the wells for 5 min, the 

excess stain removed by rinsing the plate under tap water followed by air drying. Adherence was quantified 

by measuring the OD at 630 nm using a microplate reader (FLUOstar, OPTIMA, BGM Labtech). 

Optical density values from wells with liquid media, chitosan and no inoculum were used as negative 

controls, while OD from wells with liquid media, deionized water and inoculum were used as positive 

controls. Additionally, a control with 1% (v/v) acetic acid for each microorganism was used. 

Results for this test were given as the percentage of biofilm formation inhibition applying the  

following formula: 

% biofilm formation inhibition = 100 − (ODassay/ODcontrol) × 100  

3.5. Mature Biofilms Assay 

The assessment of chitosan’s effect on mature biofilms was performed through adaptation of the 

microplate protocol described by Stepanovic, Vukovic, Dakic, Savic and Svabic-Vlahovic [33]. Briefly, 

in a flat bottom 96-well microplate, wells were filled with 200 µL of medium, inoculated at 1% (v/v) 

and incubated 48 h at 37 °C. After 48 h, the medium was carefully aspirated, and the wells were rinsed 

with phosphate buffer. Following that, 200 µL of medium, with chitosan at sub-MIC concentrations, 

was added and incubated at 37 °C for 24 h. 

To visualize biofilms, the contents of each well were discarded and the wells washed 3 times with 

sterile deionized water in order to remove non-adherent cells. The remaining attached microorganisms 

were fixed with 200 µL of ethanol (Panreac, Barcelona, Spain) for 15 min. Ethanol was then discarded 

and the wells air dried. After that, 200 µL of crystal violet solution (Merck, Darmstadt, Germany) were 

added to the wells for 5 min. Excess stain was removed by rinsing the plate under tap water followed by 

air drying of the plate. 

Adherence was quantified by measuring the OD at 660 nm using a microplate reader. 

All experiments were done in triplicate for each microorganism. OD values from wells only with 

YMB were used as negative controls. A positive control with media and sterile deionized water was 

used. Additionally a control with 1% (v/v) acetic acid for each microorganism was used. 

Results for this test were given as the reduction of the present biofilm, applying the following formula: 

Mature biofilm inhibition percentage = 100 − (ODassay/ODcontrol) × 100  
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3.6. Dual-Species Biofilms 

Quantification of the effect of chitosan upon biofilms formed by two different microorganisms was 

performed as previously described by Costa, Silva, Tavaria and Pintado [30]. Briefly, a test solution, 

with chitosan at sub-MIC concentrations, was inoculated with C. albicans and Streptococcus mutans 

(CCUG 45091) (1:1) to achieve a 2% (v/v) inoculum concentration. Impact upon biofilm formation was 

evaluated using the biofilm microtiter plate assay as described above. Results were obtained as referred 

above, and all assays were done in triplicate. 

3.7. Statistical Treatment 

The statistical differences in the methods were evaluated using PASW Statistics v. 21.0.0.0  

(New York, NY, USA). The normality of the results’ distribution was evaluated through Shapiro–Wilk’s 

test. The differences were assessed using the one-way ANOVA test associated with Scheffe’s test (for 

normal distributions). The differences were considered significant at a 0.05 significance level. 

4. Conclusions 

In conclusion, chitosan showed remarkable potential as a possible anti-candidiasis agent, as it was 

active upon C. albicans in the planktonic state and, more importantly, upon its sessile growth, with 

significant activity upon the several phases—adhesion, formation, mature and co-aggregation—of 

biofilm establishment and growth. 
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