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Abstract: Herpes simplex viruses (HSV1 and HSV2) establish latency in peripheral ganglia after
ocular or genital infection, and can reactivate to produce different patterns and frequencies of
recurrent disease. Previous studies showed that nerve growth factor (NGF) maintains HSV1 latency
in embryonic sympathetic and sensory neurons. However, adult sensory neurons are no longer
dependent on NGF for survival, some populations cease expression of NGF receptors postnatally,
and the viruses preferentially establish latency in different populations of sensory neurons responsive
to other neurotrophic factors (NTFs). Thus, NGF may not maintain latency in adult sensory neurons.
To identify NTFs important for maintaining HSV1 and HSV2 latency in adult neurons, we investigated
acute and latently-infected primary adult sensory trigeminal (TG) and sympathetic superior cervical
ganglia (SCG) after NTF removal. NGF and glial cell line-derived neurotrophic factor (GDNF)
deprivation induced HSV1 reactivation in adult sympathetic neurons. In adult sensory neurons,
however, neurturin (NTN) and GDNF deprivation induced HSV1 and HSV2 reactivation, respectively,
while NGF deprivation had no effects. Furthermore, HSV1 and HSV2 preferentially reactivated from
neurons expressing GFRα2 and GFRα1, the high affinity receptors for NTN and GDNF, respectively.
Thus, NTN and GDNF play a critical role in selective maintenance of HSV1 and HSV2 latency in
primary adult sensory neurons.

Keywords: herpes simplex virus; HSV1; HSV2; primary neurons; neurotrophic factors;
latency; reactivation

1. Introduction

Following infection and replication in the epithelium, herpes simplex viruses 1 and 2 (HSV1 and
HSV2) gain entry into sensory and autonomic neurons innervating the site of infection [1–4]. In some
neuronal populations, the viruses replicate and kill the neurons. In other types of neurons, the viruses
do not replicate and instead establish latency, from which they can periodically reactivate to cause
recurrent disease. Each virus has shown a preference for latent infection in specific populations of
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neurons, which differ between HSV1 and HSV2 [5–7]. Approximately half of HSV1 latent sites are
detected in a population of sensory neurons identified as Fe-A5+ neurons, but few latent sites are
detected in neurons recognized by the monoclonal antibody KH10 (KH10+) or isolectin GS-IB4 (IB4+),
due to selective HSV1 replication in KH10/IB4+ neurons, which kills them [5,7]. In contrast, HSV2
preferentially establishes latency in KH10/IB4+ neurons and selectively replicates in Fe-A5+ neurons,
resulting in Fe-A5+ neuronal cell death and minimal latent sites detectable in Fe-A5+ neurons [6,8].
Thus, HSV1 and HSV2 preferentially replicate and establish latency in different populations of sensory
neurons (Table 1) [6,7,9,10]. However, these preferred sites of latency only account for about half of
the latent sites and it is not clear whether the viruses reactivate from these populations, raising the
question as to which types of neurons support both latency and reactivation. Numerous studies have
shown that both viral and neuronal factors play a role in regulating lytic vs. latent infection. How the
mechanisms differ for HSV1 and HSV2, promoting either lytic infection or establishment of latency in
different populations of neurons, remain unclear.

Table 1. HSV1 and HSV2 behavior in different murine neuronal populations.

HSV1 HSV2

Replication KH10/IB4+ Fe-A5+
Latency

Fe-A5+ neurons 43.3% 1 4.2% 1

KH10/IB4+ neurons 4.6% 1 47.2% 1

Other neurons 52.1% 48.6%
Reactivation

Fe-A5+ neurons ?? No 2

KH10/IB4+ neurons No 2 ??
Other neurons Unknown type Unknown type

1 Average of percentages compiled from all wildtype viruses published [6,7,10]. 2 Most die during lytic infection so
few neurons harbor latent HSV from which the viruses can reactivate.

Sensory trigeminal (TG) and dorsal root ganglia (DRG) are comprised of a heterogeneous
population of neurons. Each subpopulation is characterized by a distinct pattern of peripheral
and central projections, as well as distinct neurotrophin requirements during development [11].
While sympathetic ganglia consist of a more homogeneous population of neurons with respect
to neurotrophin requirements, receptor diversity is apparent and axonal projections differ
substantially [12–14]. Approximately 80% of sensory neurons and all sympathetic neurons require
nerve growth factor (NGF) for survival, differentiation and axonal targeting during embryonic
development [15]. NGF continues to regulate sympathetic neuron morphology and survival into
adulthood [16]. NGF is also required for sensitivity to sensory stimuli and neuron-specific gene
expression in certain mature sensory neuronal populations [17]. However, about half of the small
sensory neurons in the TG and DRG downregulate NGF receptors (TrkA) during the first three
weeks after birth and are no longer regulated by NGF in maturity. These neurons, most of which are
labeled by the lectin IB4, switch their dependence to glial cell line-derived neurotrophic factor (GDNF)
postnatally [15]. The GDNF family ligands, including GDNF and neurturin (NTN), signal though
a multicomponent receptor complex consisting of the ligand-binding glycosylphosphatidylinositol
(GPI)-anchored coreceptors and the signaling component receptor tyrosine kinase RET [18]. GDNF
and NTN preferentially bind and signal through GFR alpha 1 and GFR alpha 2 (GFRα1 and GFRα2),
respectively, but can also bind the other receptor with lower affinity [18]. Ligand binding results
in activation of multiple signaling pathways, including extracellular signal-related kinase/cAMP
response element binding protein (ERK/CREB), phosphatidylinositol 3-kinase (PI3K)/AKT, p38
mitogen activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK), promoting cell survival,
differentiation, and neuronal regulation [18]. Fe-A5+ neurons, in which HSV1 preferentially establishes
latency, are a subset of TrkA+ NGF-responsive neurons [19]. In contrast, IB4+ neurons express RET in
maturity, suggesting that the neurons in which HSV2 preferentially establishes latency are responsive
to GDNF family neurotrophic factors, rather than NGF [15].
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Viral reactivation occurs when the relationship changes between the host neuron and the latent
HSV episome in response to a variety of environmental triggers, such as exposure to UV light, fever,
stress, and nerve trauma [20,21]. Previous studies with HSV1 in embryonic and neonatal sympathetic
and sensory neurons showed that withdrawal of NGF was sufficient to cause reactivation of the
virus, leading to the conclusion that NGF was important for maintaining HSV1 in a latent state, and
furthermore, that the strength and duration of signaling through the TrkA receptor tyrosine kinase
(RTK)/Akt pathway controls HSV1 latency in cultured SCG neurons [22–24]. However, adult sensory
neurons are no longer dependent on NGF for survival, although this neurotrophin continues to support
the function of some sensory neurons in adulthood [25]. Additionally, HSV1 and HSV2 preferentially
establish latency in different populations of neurons, suggesting that different factors may maintain
latency in different types of neurons [6]. Furthermore, HSV2 preferentially establishes latency in IB4+
neurons, which switch their dependence from NGF to GDNF during postnatal development [15,26],
suggesting that NGF may not be responsible for maintaining HSV2 latency. Finally, establishment of
HSV1 and HSV2 latency in Fe-A5+ and KH10/IB4+ neurons only accounts for about half of the latent
sites, and it is not clear whether the viruses reactivate from these neurons, suggesting the existence of
a third population of sensory neurons that support reactivation from latency.

Using adult primary neuronal cultures from sensory and sympathetic murine ganglia, we
investigated HSV1 and HSV2 latency dependence on neurotrophic factor signaling in mature,
differentiated neurons. We determined that different neurotrophic factors have different impacts
on HSV1 and HSV2 replication in adult sensory neurons. NGF contributes to the maintenance of
HSV1 latency in primary adult sympathetic neurons, correlating with previous studies in embryonic
sympathetic neurons [22,27], but not in primary adult sensory neurons. HSV1 and HSV2 are
maintained in a latent state in their respective neuronal populations by different neurotrophic factors.

2. Results

2.1. NGF and GDNF Deprivation Induces Reactivation in Sympathetic Neurons

Previous studies showed that NGF deprivation efficiently induced HSV1 reactivation from
cultured sympathetic neurons derived from embryonic mouse superior cervical ganglia (SCG) [22,24].
Although these neurons were dissected from embryos, neurons continue to mature in vitro and were
of postnatal age when infected and when reactivation was triggered. Although sympathetic neurons
become much less dependent on NGF for survival as they mature in culture or in vivo, they remain
dependent on NGF for normal neuronal morphology and metabolic function [28]. Therefore, we
sought to determine if NGF deprivation induced reactivation of HSV1 and HSV2 in cultured mouse
sympathetic neurons derived from adult mice. After establishment of experimental latency with
acyclovir (ACV) for seven days, withdrawal of NGF and addition of anti-NGF antibodies to fully
deplete NGF in the media induced HSV1 reactivation in the cultured adult sympathetic neurons,
compared to cultures maintained with NGF, GDNF, and NTN, as shown by a significant increase
in viral DNA (Figure 1, p = 0.005). Since sympathetic neurons can also be maintained with other
neurotrophic factors, we also deprived latently infected adult sympathetic neurons of either GDNF
or NTN. While GDNF withdrawal induced reactivation of HSV1 comparably to NGF deprivation
(p = 0.01), NTN deprivation had no effect on HSV1 (Figure 1). In contrast, none of the neurotrophic
factors efficiently induced reactivation of HSV2 (Figure 1). There were no significant differences
between control neurons maintained in all three NTFs, with and without ACV removal.

2.2. NTN Deprivation Enhances HSV1 and HSV2 Acute Viral DNA Replication in Adult Sensory Neurons

HSV1 and HSV2 preferentially establish latent infection in different types of sensory neurons,
as a result of their inability to lytically infect those specific types of neurons (which typically results in
cellular death) [5,9]. Therefore, neurotrophic factors may modulate productive infection in specific
types of sensory neurons, leading to preferential establishment of latent infection from which the
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viruses can later reactivate. To assess neurotrophic factor (NTF) effects on acute replication of HSV1
and HSV2 in adult sensory neurons, we deprived cultured TG neurons of either NGF, GDNF, or NTN
during acute infection for 24 h. Loss of NGF or GDNF signaling increased the detected number of HSV1
viral genome copies 2 fold (p = 0.031) and 3.5 fold (p = 0.007), respectively, compared to infected control
neurons maintained with all three neurotrophic factors (Figure 2), but had no effect on HSV2 replication.
In contrast, NTN deprivation during acute infection increased both HSV1 and HSV2 replication 10-fold,
compared to infected controls (Figure 2, p = 0.039 and 0.034, respectively). Although GDNF and NTN
signal through their preferred GDNF family receptors alpha 1 and 2 (GFRα1 and GFRα2), respectively,
they can also signal through the other receptor with lower affinity. In addition, NGF, GDNF, and NTN
fulfill some complementary functions in adult sensory neurons. Therefore, we also deprived infected
neurons of two neurotrophic factors simultaneously. Deprivation of both NGF and GDNF enhanced
HSV1 replication comparable to deprivation of either NGF or GDNF alone, but had no effect on HSV2
(Figure 2, p = 0.003). Similarly, deprivation of both GDNF and NTN enhanced HSV1 replication, but
not HSV2 (Figure 2, p < 0.001). In contrast, deprivation of both NGF and NTN enhanced both HSV1
and HSV2 replication (Figure 2, p = 0.004 and 0.009, respectively). Thus, disruption of any of the three
neurotrophins during acute infection is able to enhance HSV1 replication, but the presence of NTN
produces an inhibitory effect on HSV1 replication during acute infection. The presence of NTN also
inhibits acute replication of HSV2, although simultaneous disruption of both NTN and GDNF appears
to produce an interaction that negates this effect.
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Figure 1. Effect of neurotrophic factor (NTF) deprivation on HSV reactivation in adult SCG neurons.
Nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) deprivation induced
reactivation of HSV1, but not HSV2, shown by significantly increased viral DNA copies 24 h after
removal of individual NTFs and addition of their respective neutralizing antibodies after 7 days of
acyclovir (ACV)-induced latency, compared to control neurons maintained in all three neurotrophic
factors (p = 0.005 and 0.01).
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Figure 2. Effect of NTF deprivation on acute viral replication in adult murine sensory neurons.
Deprivation of NGF, GDNF, or NTN, either individually or in combinations, significantly increased
HSV1 replication in adult sensory trigeminal (TG) neuronal cultures (p = 0.031, 0.007, 0.039, 0.003,
0.004, <0.001), compared to control neurons maintained in NGF, GDNF, and NTN, shown by increased
viral DNA loads quantified by qPCR. In contrast, only NTN deprivation and NGF/NTN deprivation
significantly enhanced HSV2 replication in adult sensory TG neuronal cultures (p = 0.034, 0.009).
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2.3. HSV1 and HSV2 Reactivation Is Induced in Adult Sensory Neurons by Deprivation of Different
Neurotrophic Factors

To determine if deprivation of NGF, GDNF, or NTN induces reactivation of HSV1 and HSV2
in adult sensory neurons, we established experimental latency in the presence of ACV and all three
neurotrophic factors for seven days. Removal of ACV alone from control neurons did not produce
a significant increase in viral DNA compared to those with ACV remaining in the media, showing
that the cultures were latently infected. After withdrawal of ACV and individual neurotrophic factors,
NTN withdrawal induced HSV1 reactivation, shown by significantly increased viral DNA (Figure 3,
p = 0.034). Furthermore, deprivation of NTN in combination with GDNF deprivation also induced
HSV1 reactivation (p = 0.012), although other combinations did not reactivate HSV1. Deprivation
of both NGF and GDNF had no effect, suggesting that the continued presence of NTN in the media
suppressed HSV1 reactivation. When NTN and NGF were both withdrawn, the presence of GDNF
in the media appeared to provide a suppressive effect on HSV1 reactivation, suggesting that GDNF
may partially compensate for the loss of NTN. Thus, NTN maintains HSV1 latency, although GDNF
can partially compensate for loss of NTN signaling. In contrast, GDNF deprivation induced HSV2
reactivation in primary adult sensory neurons, either alone or in combination with NGF or NTN
deprivation (Figure 3, p = 0.042, 0.040, 0.015), showing that GDNF signaling is a requirement to
maintain HSV2 latency in adult sensory neurons.
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Figure 3. Effect of NTF deprivation on reactivation in adult sensory neurons. Deprivation of NTN
induced reactivation of HSV1, either alone (p = 0.034) or in combination with GDNF deprivation
(p = 0.012), compared to control neurons maintained in all three NTFs, shown by significantly increased
HSV copy numbers 24 h after withdrawal of NTFs and addition of antibodies. There was no significant
difference between NTN- and GDNF-/NTN- for HSV1. Deprivation of GDNF induced reactivation of
HSV2, either alone (p = 0.042) or in combination with NGF (p = 0.040) or NTN (p = 0.015) deprivation,
compared to controls.

2.4. HSV1 and HSV2 Reactivate from Different Populations of Neurons

Our results show that HSV1 reactivation can be induced by loss of NTN signaling, while HSV2
reactivation is induced by loss of GDNF signaling in adult mouse sensory neurons. Based on the
combinatorial deprivations however, it is possible that interactions may be occurring downstream of
receptor binding, if receptors are present on the same neurons, or that different neuronal populations
may have variable levels of sensitivity to the NTFs. We found that approximately one third of
adult sensory TG neurons express GFRα1, the high affinity receptor for GDNF (37.7%), or GFRα2,
the high affinity receptor for NTN (32.1%) (Figure 4A). The remaining third does not express
either GFR. IB4+ neurons represented 37.2% of the TG neurons and of these, 68.9% expressed
GFRα1 and 26.3% expressed GFRα2. TrkA+ neurons represented 42.8% of the cultured neurons;
GFRα1 was detected in 17.9% of TrkA+ neurons but only 2.8% expressed GFRα2 detectable by
immunofluorescence. We identified 19.1% of the cultured TG neurons as Fe-A5+ neurons, which are a
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subset of TrkA+ neurons. However, few of these neurons expressed detectable GFRα1 (2.5%) or GFRα2
(0.6%) (Figure 4A). Since GDNF and NTN preferentially signal through GFRα1 and GFRα2, respectively,
but can also cross over to signal through the other receptor with lower affinity, we sought to determine if
HSV1 and HSV2 reactivate from the GFRα1 or GFRα2 positive sensory neurons. Following removal
of ACV and all three NTFs from neurons latently infected with HSV1-VP26-RFP and HSV2-VP26-GFP,
which express red fluorescent protein (RFP) and green fluorescent protein (GFP) during productive
infection, HSV1 and HSV2 reactivated preferentially in different sensory neurons (Figure 4B). Although
16.9% of HSV1 reactivations were detected in GFRα1+ neurons, 62.4% occurred in GFRα2+ neurons,
expressing the NTN high affinity receptor (Figure 4B). In contrast, 60.0% of HSV2 reactivations occurred
in GFRα1+ neurons, expressing the GDNF high affinity receptor, while only 8.2% of HSV2 reactivations
were detected in GFRα2+ neurons (Figure 4B). Nearly two-thirds of HSV1 reactivations, observed as
RFP expression in neuronal nuclei, co-localized with GFRα2 immunofluorescence (Figure 4D) rather
than with GFRα1 (Figure 4C), while the opposite was observed for HSV2, observed as a GFP expression
in GFRα1+ neurons (Figure 4E) instead of GFRα2+ neurons (Figure 4F).Pathogens 2017, 6, 5 7 of 14 
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Figure 4. GFRα1 and GFRα2 receptor expression. (A) Approximately 1/3 of sensory TG neurons
express GFRα1 (37.7%) and GFRα2 (32.1%), while the remaining neurons do not express either GFR
(30.2%). 68.9% of IB4+ neurons express GFRα1 and 26.3% express GFRα2. 17.9% of TrkA+ neurons
express GFRα1 but only 2.8% express GFRα2. GFRα1 was detected in 2.5% of Fe-A5+ neurons, which
are a subset of TrkA+ neurons, but GFRα2 was detected on less than 1% of these neurons; (B) HSV1
and HSV2 reactivate from different subpopulations of neurons, with HSV1 reactivating preferentially
from GFRα2+ neurons and HSV2 reactivating preferentially from GFRα1+ neurons, the high affinity
receptors for NTN and GDNF, respectively; (C–F) Representative images of reactivating HSV1 and
HSV2, observed as RFP and GFP expression in neuronal nuclei, co-localizing with GFRα2 and GFRα1
immunofluorescence, respectively.

3. Discussion

Previous studies showed that HSV1 and HSV2 reactivated in response to NGF deprivation
in embryonic cultured sympathetic and sensory neurons [22–24]. Our results support and extend
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the previous reports, showing that NGF deprivation, and also GDNF deprivation, induces HSV1
reactivation in adult sympathetic neurons. In addition, we show that neurotrophic factor deprivation
does not reactivate HSV2 in adult sympathetic neurons, suggesting that alternative mechanisms may
induce HSV2 reactivation in these neurons. However, in adult sensory neurons, NTN and GDNF,
rather than NGF, are important in the maintenance of HSV1 and HSV2 latency.

During postnatal development, a portion of sensory neurons downregulates expression of the
high-affinity NGF receptor TrkA and begins expressing GDNF family receptors (GFRs), effectively
switching their dependence from NGF to glial family neurotrophic factors, including GDNF and
NTN. Although 80% of embryonic neurons in rodent and human DRG express the NGF receptor
TrkA, half of these neurons downregulate TrkA postnatally and by adulthood, only 40%–50% of adult
rat and human DRG neurons express TrkA and remain responsive to NGF [15,29,30]. Those that
downregulate TrkA can be labeled by the lectin IB4, begin postnatal expression of GFRs along with the
associated signaling tyrosine kinase Ret, and lose their responsiveness to NGF. HSV1 preferentially
establishes latency in Fe-A5+ neurons, which are a subset of TrkA+ sensory neurons responsive to
NGF, while HSV2 preferentially establishes latency in KH10/IB4+ neurons, dependent on GDNF
family neurotrophic factors [6,7]. However, these populations harbor only about half of the latent
HSV1 and HSV2 reservoirs. The remaining half are distributed among several different populations
of sensory neurons, including those that express GFRs and are responsive to GDNF and/or NTN.
Because the IB4+ populations downregulate TrkA expression to undetectable levels and are no longer
responsive to NGF [15,26,29], we reasoned that NGF was unlikely to be responsible for maintaining
viral latency within these IB4+ adult neurons. By depriving our infected neuronal cultures of individual
neurotrophic factors, we identified NTN-responsive neurons as an important population of neurons
for HSV1 latency and reactivation, and further identified GDNF-responsive neurons as important for
HSV2 latency and reactivation. Thus, adult sensory neurons responsive to NTN and GDNF are the
clinically relevant sensory neuronal populations from which HSV1 and HSV2, respectively, reactivate
to cause recurrent disease in response to loss of neurotrophic factor support. Previous studies have
reported that sensory neurons express either GFRα1 (GDNF receptor) or GFRα2 (NTN receptor) in
adult mouse TG and DRG, as well as adult human DRG [30–34], suggesting that HSV1 and HSV2
reactivate from different populations of sensory neurons. A previous study also reported the existence
of a subgroup of adult mouse IB4+ neurons that co-express both GFRα1 and GFRα2, as well as a small
population of neurons (3%) that co-express TrkA and GFRα2 [34], which we also found. Given the
apparent interaction when we deprived our HSV1-infected neurons of combinations of NTFs, we
cannot rule out the possibility that more than one NTF may impact a portion of neurons that co-express
more than one NTF receptor.

Embryonic and neonatal sympathetic and sensory neurons are dependent on NGF for survival.
Therefore, NGF deprivation was initially thought to induce reactivation through apoptotic signaling.
However, embryonic sympathetic neurons continue to mature in vitro, losing their dependence on NGF
for survival after about three weeks in culture [28], and prevention of apoptosis with a pan-caspase
inhibitor did not prevent HSV1 reactivation following NGF withdrawal [22]. Thus, reactivation
does not occur simply through a “death” signal in the host neuron. Additional studies showed that
NGF deprivation led to cessation of signaling through the tyrosine kinase TrkA and the PI3-K/Akt
pathway, demonstrating the importance of continuous downstream signaling events to maintain
HSV1 in a latent state [22]. Even transient disruption of the PI3-K/Akt pathway results in loss
of downstream mTORC1 activity and subsequent HSV1 reactivation [35], demonstrating an active
role in neuronal signaling events to maintain the latent state. GDNF and NTN activation of their
preferred receptors, GFRα1 and GFRα2, result in a similar downstream signaling cascade, activating
the RET tyrosine kinase and PI3-K/Akt pathway, as well as STATs, PLCγ/PKC/ERK, JNK/JUN, and
β-catenin/TCF-4 pathways, all of which have been implicated in some aspect of HSV1 maintenance
within cells. Activation of JNK, which can occur through various neuronal stressors including NGF
deprivation and axotomy, was recently shown to be a requirement for triggering phase I of HSV1
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reactivation, prior to changes in histone conformation or viral protein synthesis [36]. Additional
factors have been reported to be requirements for full reactivation, including but not limited to cellular
histone demethylases [37,38] and the viral transactivator VP16 [39]. Although further studies are
necessary to identify the specific pathway through which NTN and GDNF maintain HSV1 and HSV2
in a latent state in sensory neurons, it is possible that the same signaling pathways identified for
maintenance of HSV1 latency in embryonic neurons are also responsible for maintenance of latency
in adult neurons. However, since latency is established in a diverse, heterogeneous population of
adult neurons, different neurotrophic factors are required to maintain the signaling events within each
neuronal subpopulation. Thus, signaling pathways may be similar or identical, but because the adult
neuronal populations are responsive to different environmental signals, successful maintenance of
HSV1 and HSV2 latency in their respective neuronal hosts requires different neurotrophic factors.
Alternatively, different pathways may lead to reactivation in different types of neurons, which could
account for the complex array of reported mechanisms and factors that control latency and reactivation.
GDNF deprivation activates an alternative pathway in sympathetic neurons, compared to NGF
deprivation [40], demonstrating that two different neurotrophic factors acting on the same neuron
may also produce different responses within that cell. Latency is a dynamic state [41] and clearly a
complex relationship between the host neuron and the virus. Given the recent characterization of the
heterogeneity of discrete sensory neuronal populations by single-cell transcriptomics [42], we now
have new tools available to more clearly define the specific types of neurons in which HSV1 and HSV2
establish latency and decipher events that lead to reactivation.

Loss of NGF or NTN signaling can occur during nerve injury, such as peripheral epithelial damage
related to a sunburn or micro-abrasions, depriving the axon terminal of target-derived neurotrophic
factors expressed in the epithelium. Loss of NGF or NTN signaling would induce HSV1 reactivation in
NGF-responsive sympathetic neurons or NTN-responsive sensory neurons. GDNF, which maintains
HSV2 latency in adult sensory neurons, is expressed in testes, ovaries, kidneys, and at lower levels
in skin, identifying it as a target-derived neurotrophic factor, as well [43]. However, GDNF is also
expressed by some peptidergic neurons within the sensory ganglia, transported anterograde to the
central axon terminal, and released into the central nervous system where it can modulate nociceptor
and interneuron signaling [44]. Therefore, disruption of GDNF signaling could potentially occur at
the central axon terminal or at the peripheral terminal in the pelvic organs or epithelium, resulting
in HSV2 reactivation in GDNF-responsive neurons. Different expression patterns of NTN in the skin
and GDNF in pelvic organs, combined with establishment of HSV1 and HSV2 latency in specific
populations of neurons responsive to these neurotrophic factors, could therefore be responsible for
different reactivation and recurrent disease patterns for HSV1 and HSV2. While studies have shown
that treatment with an anti-NGF antibody can induce reactivation in vivo and in explanted sensory
ganglia, a combination of NTF effects is likely occurring. Treatment with anti-NGF antibody in rabbits
resulted in viral shedding in tears [45]. Our results showing that NGF deprivation and treatment
with anti-NGF antibody reactivates HSV1 from sympathetic neurons but not sensory neurons in vitro
suggests that the administration of anti-NGF antibody in vivo may have induced HSV1 reactivation
in the SCG, which innervates the lacrimal glands. Anti-NGF antibody treatment was also found to
induce reactivation in explanted sensory ganglia [46]. Removal of the ganglia from latently infected
mice results in loss of not only NGF support, but also other target derived NTFs, including GDNF and
NTN. Our results show that HSV1 reactivation occurred from sensory neurons in response to NTN
deprivation, not NGF deprivation, but NGF deprivation enhanced acute viral replication. Therefore, it
is possible that NTN deprivation after axotomy of the latently-infected ganglia induced reactivation
from NTN-responsive neurons and the presence of the anti-NGF antibody further enhanced replication
following reactivation and viral spread to other neuronal subtypes in the intact explanted ganglion.
The acceleration of viral mRNA accumulation in response to anti-NGF antibody in the media was
detected 15–18 h post-explant [46], which would allow time for a full cycle of viral replication in
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neurons that rapidly respond to the reactivation stimulus (axotomy and loss of NTN support) and
release of viral progeny, which could spread to other neurons or satellite glial cells.

Our results, combined with results from previous studies [22,23], show that loss of NGF signaling
can induce reactivation of HSV1 from sympathetic neurons, regardless of their level of maturation.
While GDNF does not fully support HSV1 latency in embryonic sympathetic neurons [22], loss
of GDNF signaling in adult sympathetic neurons is just as effective at reactivating HSV1 as loss
of NGF signaling. Even though adult sympathetic neurons are responsive to NGF and GDNF
deprivation, resulting in reactivation of HSV1, the same stimuli fail to reactivate HSV2 in these
neurons, demonstrating profound differences between HSV1 and HSV2 reactivation mechanisms.
In contrast to embryonic sensory neurons, NGF deprivation has minimal impact on either HSV1 or
HSV2 reactivation in adult sensory neurons. HSV1 and HSV2 reactivate from different populations of
sensory neurons responsive to NTN and GDNF, respectively. Our results, combined with results from
previous studies [5–7,9], support a model in which different populations of neurons support three
different outcomes of HSV1 and HSV2 infection, and these neuronal populations differ for HSV1 and
HSV2 (Figure 5). In IB4+ neurons, HSV1 replicates and kills the majority of these neurons that it enters;
in Fe-A5+ neurons (a subset of NGF-responsive TrkA+ neurons), HSV1 preferentially establishes 50% of
its latent sites but appears to be incapable of reactivating, so Fe-A5+ neurons represent a silent dead end
for HSV1; in GFRα2+ neurons, HSV1 establishes latency but is competent for reactivation in response
to loss of NTN signaling. Although many of the GFRα2+ neurons are within the IB4+ population,
TrkA-/IB4- and some TrkA+ neurons also express GFRα2 (our results and [42]), suggesting a distinct
neuronal population that supports HSV1 reactivation. In contrast, HSV2 replicates in Fe-A5+ neurons,
preferentially establishes latency in IB4+ neurons, but is reactivation competent in GFRα1+ neurons
in response to loss of GDNF signaling. Approximately 40% of adult sensory neurons are GFRα1+
(our results and [34]) many of which are within the IB4+ population, but GFRα1 is also expressed
by some TrkA+ neurons, so it remains to be determined if reactivation occurs from IB4+/GFRα1+
or IB4-/GFRα1+ neurons. Therefore, appropriate neuronal populations must be considered to fully
understand how HSV1 and HSV2 establish latency, and how the relationship changes between the
host neuron and the latent HSV episome, resulting in viral reactivation and recurrent disease.
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Figure 5. Model of neuron-specific outcome of infection with HSV1 and HSV2. HSV1 preferentially
establishes latency in Fe-A5+ neurons but does not reactivate, replicates in KH10/IB4+ neurons and
kills them, and reactivates from latency in GFRα2+ neurons in response to loss of NTN signaling. HSV2
replicates in Fe-A5+ neurons, preferentially establishes latency in KH10/IB4+ neurons but does not
reactivate, and reactivates from latency in GFRα1+ neurons in response to loss of GDNF signaling.
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4. Materials and Methods

4.1. Virus Strains

HSV-1 strain 17+ was originally transferred from John Hay (SUNY Buffalo, Buffalo, NY, USA)
and HSV-2 strain 333 from Gary Hayward (Johns Hopkins, Baltimore, MD, USA) to the Krause lab
(FDA, Bethesda, MD, USA). Viruses were propagated in Vero cells (ATCC) and first passage stocks
were transferred to the Margolis lab (UCSF, San Francisco, CA, USA). Viruses were propagated in Vero
cells and first passage stocks were transferred to the Bertke lab (Virginia Tech, Blacksburg, VA, USA).
Viruses were propagated in Vero cells and titrated in quadruplicate by plaque assay in Vero cells. Stock
viruses were diluted in DMEM for inoculations.

4.2. Quantitation of HSV Viral Load and Gene Expression

Viral DNA was extracted from cultured neurons with Trisure reagent (Bioline), according
to the manufacturer’s instructions. Quantitative PCR was performed on a Viia7 realtime PCR
machine (Applied Biosystems), using iTaq universal probe mix (Biorad) and ZEN primer/probe
sets (IDT) specific for HSV-1 or HSV-2 thymidine kinase (TK) gene: HSV-1 TK forward 5′-AA
AACCACCACCACGCAACT-3′, reverse 5′-TCATCGGCTCGGGTACGTA-3′, probe 5′-TGGGTT
CGCGCGACGATATCG-3′; HSV-2 TK forward 5′-taatgaccagcgcccagat-3′, reverse 5′-CGATATGAGG
AGCCAAAACG-3′, probe 5′-ACAATGAGCACGCCTTATGCGGC-3′ [47,48]. All assays were
normalized to 18s rRNA (Applied Biosystems) and reported as quantity of viral genome copies
in 200 ng of total DNA.

4.3. In Vitro Infection

Trigeminal (TG) and superior cervical (SCG) ganglia were removed from 6 week old Swiss
Webster mice and cultured on Matrigel-coated 8-well Lab-Tek II chamber slides (ThermoScientific),
as previously described [5]. Briefly, ganglia were digested in papain, collagenase and dispase
(Worthington), followed by mechanical trituration with a pipette. TG were passed through an OptiPrep
(BD Biosciences) gradient to enrich for neurons; SCG were plated without the gradient step, since they
contain minimal axonal debris in the cell suspension. Cells were washed and plated in Neurobasal A
medium supplemented with 2% SM1 supplement (StemCell), 1% penicillin-streptomycin, L-glutamine,
neurotrophic factors (NGF, GDNF, NTN, from PeproTech), and mitotic inhibitors (Life Technologies).
Four days after plating, media was removed, neurons were inoculated with HSV-1 (strain 17+) or HSV-2
(strain 333), viruses were allowed to adsorb for one hour, and complete Neuro media (Neurobasal A,
SM1, L-glutamine and neurotrophic factors, with no mitotic inhibitors) was added. Acute cultures were
treated with specific neurotrophic factor-deprived media and their respective antibodies, and DNA
was isolated 24 h post inoculation by qPCR. This time period was selected to allow for a complete viral
growth cycle from those neurons that are rapidly responsive to the loss of NTFs, without providing a
substantial delay for non-specific secondary or off-target effects to impact the viruses. TG (n = 11).

4.4. In Vitro Reactivation

Four days after plating, neurons were inoculated as described for in vitro infection. After the
one hour adsorption period, cultures were treated with 300 µM acyclovir (ACV) in complete Neuro
media to establish experimental latency in neuronal cultures. Seven days later, media was removed
and replaced with fresh media, omitting ACV and specific neurotrophic factors and including the
respective antibodies. DNA was isolated 24 h post-treatment for qPCR. TG (n = 19), SCG (n = 3).

4.5. Immunofluorescence

Neuronal cultures were fixed with 2% paraformaldehyde and immunostained for HSV
antigens with polyclonal antisera (Dako). Cultures were also stained for neuronal markers TrkA
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(specific antibody, 1:250, Abcam), GFRα1 (specific antibody, 1:200, Abcam), GFRα2 (specific antibody,
1:250, Abcam), and IB4 (FITC or rhodamine conjugate, 1:500, Vector). Neurons were counted to
determine the percentage of HSV-positive neurons for each neuronal marker or of total neurons.
Infections were repeated three times in duplicate.
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