
pathogens

Review

Bioenergetics of Mycobacterium: An Emerging
Landscape for Drug Discovery

Iram Khan Iqbal †, Sapna Bajeli †, Ajit Kumar Akela and Ashwani Kumar * ID

Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India;
iramkhan@imtech.res.in (I.K.I.); sapnabajeli@imtech.res.in (S.B.); ajit.akela@imtech.res.in (A.K.A.)
* Correspondence: ashwanik@imtech.res.in
† These authors contributed equally to this work.

Received: 11 January 2018; Accepted: 31 January 2018; Published: 23 February 2018

Abstract: Mycobacterium tuberculosis (Mtb) exhibits remarkable metabolic flexibility that enables it
to survive a plethora of host environments during its life cycle. With the advent of bedaquiline
for treatment of multidrug-resistant tuberculosis, oxidative phosphorylation has been validated
as an important target and a vulnerable component of mycobacterial metabolism. Exploiting the
dependence of Mtb on oxidative phosphorylation for energy production, several components of this
pathway have been targeted for the development of new antimycobacterial agents. This includes
targeting NADH dehydrogenase by phenothiazine derivatives, menaquinone biosynthesis by
DG70 and other compounds, terminal oxidase by imidazopyridine amides and ATP synthase by
diarylquinolines. Importantly, oxidative phosphorylation also plays a critical role in the survival of
persisters. Thus, inhibitors of oxidative phosphorylation can synergize with frontline TB drugs to
shorten the course of treatment. In this review, we discuss the oxidative phosphorylation pathway
and development of its inhibitors in detail.

Keywords: Mycobacterium tuberculosis; bioenergetics; oxidative phosphorylation; antimycobacterials;
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1. Introduction

Tuberculosis (TB) remains a leading cause of death worldwide, with an estimated 1.3 million
mortalities in 2016. The synergy of human immunodeficiency virus (HIV)-TB co-infection has further
aggravated this as a major public health problem. TB treatment is riddled with the use of multiple
drugs for at least 6 months. Such lengthy treatment has resulted in the rise of multidrug resistant
(MDR) and extremely drug resistant (XDR) strains of Mycobacterium tuberculosis (Mtb). Treatment of
MDR TB requires administration of a multitude of second-line TB drugs for 18–24 months; this
leads to cure rates of 60–70%. Of even more concern, cure rates for XDR-TB range from 40–50%.
These low cure rates could be further confounded by other factors, such as co-infections and poor
nutrition. Given these observations, new drugs with novel mechanisms of action are urgently required.
Such innovative drugs could synergize with current treatment regimens to improve recovery rates and
shorten treatment times. Extensive research efforts have been made in this direction, and the U.S. Food
and Drug Administration has recently approved two new drugs. These drugs are bedaquiline (BDQ),
a diarylquinoline ATP synthase inhibitor, and delamanid, a nitro-dihydro-imidazooxazole derivative
that inhibits mycolic acid biosynthesis. Accelerated approval of these drugs has raised hope for a new
regimen that could improve the outcome of treatment and reduce daily dose burden.

The myth that targeting Mtb bioenergetics would be a poor therapeutic strategy due to the
presence of parallel and alternative metabolic pathways has been dispelled by the discovery of BDQ.
Given the success of this compound, several research groups have focused on targeting oxidative
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phosphorylation for the discovery of new drugs. It is important to note that, unlike many bacteria that
can utilize substrate-level phosphorylation for ATP synthesis and growth, Mtb relies upon oxidative
phosphorylation for its viability. During oxidative phosphorylation, electrons are harvested from
central metabolic pathways, and then fed into the electron transport chain (ETC) through reduction
of menaquinone. Later on, the quinones are re-oxidized by either the cytochrome bc1-aa3 complex or
by the cytochrome bd-type terminal oxidase. The transport of electrons between membrane-bound
primary dehydrogenase and terminal reductase is coupled to the generation of the proton motive force
(PMF). The energy generated as PMF from this process is utilized by ATP synthase in the production
of ATP. In this review, we have provided an overview of the machinery involved in oxidative
phosphorylation and the development of inhibitors (listed in Table 1) targeting the components
of oxidative phosphorylation.

2. Feeding the Electrons into the Electron Transport Chain: Reduction of Menaquinone

During the infection cycle, Mtb cells harvest reductive energy from host-derived carbohydrates
and fatty acids using NADH/NAD+ and/or FADH2/FAD redox pairs [1,2]. NAD+ acts as the primary
electron sink and is converted into NADH, which feeds electrons into the ETC through the NADH
dehydrogenase complex. Besides NADH dehydrogenase, a number of other primary dehydrogenases
pump electrons directly into the ETC, such as succinate dehydrogenase (SDH), proline dehydrogenase,
and L-lactate cytochrome c oxidoreductase. In this review, we have primarily focused on NADH
dehydrogenase and SDH.

2.1. NADH/Menaquinone Oxidoreductase

NADH/menaquinone oxidoreductases are the primary port of entry for electrons into
the ETC. There are three types of these oxidoreductases in bacteria: (i) the highly-complex,
multi-subunit-proton-pumping type I NADH dehydrogenase (NDH-1), (ii) a simple, single
subunit flavoenzyme-non-proton-pumping type II NADH dehydrogenase (NDH-2), and (iii) a
sodium-pumping NADH dehydrogenase (NQR) that is unique to bacteria [3]. In 2005, using a
genome mining approach, Weinstein et al. identified NDH-1 and NDH-2 in Mtb [4]. NDH-1 is
encoded by the NuoABCDEFGHIJKLMN operon and is predicted to be the energy efficient NADH
dehydrogenase that translocates protons, while transferring electrons to menaquinone to generate
PMF. Interestingly, genes encoding NDH-1 are not essential in Mtb [5], as exemplified by their loss
from Mycobacterium leprae through genome reductive evolution [4]. NDH-1 is downregulated by
acidic pH [6], nutrient starvation [7], and in murine lungs [8]. This expression profile suggests that
NDH-1 plays a minor role in Mtb respiration, and thus, is not a good target for the development of
antimycobacterials. This view is further strengthened by the observation that rotenone (an NDH-1
inhibitor) does not kill hypoxia-adapted Mtb cells [9]. However, recently developed reporter strains
for imaging cellular NADH/NAD+ levels [10] has demonstrated that exposure of aerobic Mtb cultures
to rotenone leads to accumulation of cellular NADH levels, suggesting a role for NDH-1 in the ETC
during aerobic conditions. Furthermore, infection of macrophages with an Mtb strain that has a
deletion of nuoG (which encodes an NDH-1 subunit) accelerates their apoptotic death. Moreover, this
mutant has reduced survival in a murine model of TB infection [11].

The non-proton pumping NDH-2 isoforms are encoded by ndh (Rv1854c) and ndhA (Rv0392c).
Both the two isoforms were found to be functional in biochemical assays. NDH-2 has a stringent
catalytic function, thereby minimizing leakage of electrons to oxygen during their transfer from
NADH to menaquinone. Importantly, Mtb NDH-2 utilizes only NADH, in contrast to NDH-2 of
Saccharomyces and Corynebacterium, which uses NAD(P)H [12]. Mtb NDH-2 transfers electrons to
the quinone pool by a ping-pong mechanism [13]. Sena et al. demonstrated that NDH-2 has two
distinct substrate binding sites (i.e., NADH and quinone). NDH-2 first interacts with NADH to
receive electrons, and then releases NAD+ before interacting with the quinone [14]. It is assumed that
the reduction of quinone/menaquinone is a rate-limiting step in the overall reaction [15]. Both the
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isoforms of NDH-2 are conserved in slow-growing mycobacterial species, with the exception of
M. leprae, in which ndhA is absent [4]. ndh is essential for Mtb survival [5], whereas ndhA disruption
using transposon mutagenesis is tolerated [16]. Importantly, disruption of NDH-2 through inhibitors,
such as phenothiazine analogues, leads to mycobacterial death in aerobic cultures and in animals [4].
In agreement with these findings, the NDH-2 inhibitor thioridazine (TZ) kills Mtb that are in a
hypoxia-induced non-replicating state [9]. ndh is also induced upon Mtb infection of macrophages [17].
Interestingly, mammalian mitochondrion lacks an NDH-2 orthologue, which provides a significant
therapeutic window. Earlier studies have also validated NDH-2 as a target to control Plasmodium
growth [18].

2.2. Inhibitors of NADH Dehydrogenase

The above cited literature strongly suggests that NDH-2 is an attractive target whose inhibition
would elicit a choke point in the mycobacterial respiratory chain. In an effort to discover
additional respiratory inhibitors, Harvey and colleagues found that phenothiazine analogues have
antimycobacterial activity and demonstrated that these compounds inhibit NDH-2 [4]. They also
demonstrated that classical inhibitors of NDH-1 (piericidinA, rotenone, and pyridaben) do not inhibit
Mtb respiration. Phenothiazines were also effective against MDR strains, suggesting a new mode of
action [19,20]. Trifluoperazine (TPZ), a phenothiazine analogue, can effectively inhibit Mtb growth,
and synergizes with rifampicin (RIF) to kill intracellular Mtb residing in macrophages [21,22]. A recent
report indicates that TPZ significantly inhibits ATP synthesis in M. leprae [23]. Phenothiazines
also inhibit efflux pumps and calcium-binding protein. Similar antimycobacterial activity (both in
drug-sensitive and drug-resistant strains) was observed with the NDH-2 specific inhibitor, thioridazine
(TZ), in Mtb-infected mice [24]. TZ has been used for 60 years to control psychosis and is considered
therapeutically safe. The drug targets NDH-2 to block the ETC of mycobacteria and is effective against
latent TB [13,25]. Given the critical role of NDH-2 and the potent activity of TPZ and TZ against Mtb
cells, high throughput screening (HTS) was performed with 11,000 compounds rationally selected
from a commercial library (Biofocus, DPI). This effort resulted in the identification of lead compound
42a (MTC420) that had a minimum inhibitory concentration (MIC) in the nanomolar range. This lead
compound is capable of killing drug-sensitive and -resistant strains of Mtb in aerobic and hypoxic
cultures. Furthermore, 42a also has favorable pharmacokinetic and toxicological profiles [26].

Clofazimine (CFZ) is derived from phenazines, and has potent anti-tuberculosis activity [27].
The drug effectively kills M. leprae, and is therefore used for the treatment of leprosy [28]. The main side
effect of this drug is skin pigmentation. Recently developed CFZ derivatives namely, B746 and B4157,
have increased anti-mycobacterial activity and elicit less pigmentation, and are therefore suitable for
testing for treatment of mycobacterial infection in animal models [29,30]. An eminent study from the
Harvey group demonstrated that the bactericidal action of CFZ depends upon its reduction by NDH-2.
The reduced form of CFZ is highly unstable, and spontaneously reacts with oxygen to generate reactive
oxygen species (ROS) that leads to the killing of mycobacterial cells [31]. This cycle of CFZ-mediated
ROS generation continues under aerobic conditions. Importantly, the NDH-1 present in mitochondrial
and bacterial respiratory chains does not reduce CFZ. Therefore, Gram-negative bacteria, including
Escherichia coli, Pseudomonas denitrificans, and P. aeruginosa do not produce bactericidal ROS upon
exposure to CFZ [32,33]. CFZ is also active against MDR TB strains, is metabolized slowly, and is
associated with a low frequency of resistance [34]. CFZ synergizes with BDQ and Q203 to rapidly kill
Mtb in vitro and inside macrophages [35].

Since NDH-2 is a respiratory choke point of Mtb, AstraZeneca (India) performed an HTS against
Mtb NDH-2 with 100,000 compounds. This effort identified quinolinyl pyrimidines as a new class
of NDH-2 inhibitors. A good correlation was observed between enzyme inhibition (nanomolar)
and anti-mycobacterial activity (micromolar) of quinolinyl pyrimidines [36]. These compounds are
non-toxic and have desirable absorption, distribution, metabolism, and excretion (ADME) profiles,
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making them suitable for further development. In line with these findings, compounds belonging to
7-phenyl benzoxaborole series exhibited potent anti-Mtb activity [37].

2.3. Succinate Dehydrogenase

The succinate dehydrogenase (SDH) or succinate/menaquinone oxidoreductase forms complex II
of the respiratory chain. Importantly, this enzyme complex is also an integral part of the tricarboxylic
acid (TCA) cycle. SDH links the respiratory chain with central metabolism [38]. The enzyme
oxidizes succinate to fumarate in the cytoplasm, and during this process, it simultaneously reduces
menaquinone to menaquinol in the membrane. This enzyme complex is comprised of four subunits:
SdhA, SdhB, SdhC, and SdhD. SdhA is a flavoprotein (flavin is bound here covalently, and not
as a cofactor) that catalyzes the conversion of succinate into fumarate. SdhB possesses three Fe–S
clusters that facilitate the transfer of electrons from succinate to menaquinone. The SdhC and SdhD
subunits anchor SdhA and SdhB to the membrane, facilitating the transfer of electrons from succinate
to menaquinone using haem. Notably, fumarate reductase (FRD) is a paralogue of SDH that can
catalyze the reverse reaction. FRD (encoded by the FrdA-Rv1556 operon) is primarily functional
in anaerobic conditions. Mtb utilizes menaquinone (MQH2 E′0 = −74 mV) to reduce fumarate in
the last step of the anaerobic ETC [39–41]. Interestingly, Mtb possesses two isoforms of SDH; Sdh1
(encoded by Rv0247c–Rv0249c) and Sdh2 (encoded by Rv3316–Rv3319). It is crucial to note that under
hypoxic conditions, Mtb cells utilize the reverse TCA cycle to accumulate and secrete succinate into
the culture medium [36,42]. The excretion of succinate has been associated with the upregulation of
genes involved in the reverse TCA cycle. Addition of succinate to the culture medium resulted in
membrane potential depolarization and cell death, suggesting that secretion of succinate is critical
for surviving hypoxic stress [42,43]. A role for SDH in this adaption had been predicted, since
inhibition of SDH function using 3-nitropropionate (3NP) results in decreased survival of Mtb [42].
Individual Sdh1 and Sdh2 deletion mutants were generated in order to dissect the role of both Sdh1
and Sdh2 during hypoxic adaptation. This revealed that survival of the Sdh1 mutant was impaired
in stationary phase, while the survival of the Sdh2 mutant was not affected [44]. The function of
Sdh1 as the catalytic center during aerobic conditions was demonstrated through the use of stable
isotope labelling and mass spectroscopy [44]. Sdh2 was not required for this activity during aerobic
conditions. Furthermore, depletion of Sdh1 resulted in increased levels of the reduced lipogenic
electron carrier, menaquinol, which was associated with an increased rate of respiration, suggesting
that SDH is a regulator of respiration [44]. Importantly, survival of the Sdh1 mutant was compromised
in the Mtb-infected C3HeB/FeJ mouse model system, which produces lesions similar to the hypoxic
granulomas found in humans upon Mtb infection [44]. These observations suggest that inhibition of
SDH can help in the elimination of hypoxia-induced persisters in the infected lungs. Sdh1 is, thus, a
potential drug target, however, stringent selectivity will be required to avoid a general inhibition of
mitochondrial respiration.

2.4. Menaquinone Biosynthesis and Inhibitors of Menaquinone Biosynthesis Pathway in Mtb

Ubiquinone (Q) and menaquinone (MK) are the primary lipid-soluble electron carriers that
transport electrons in the ETC [1]. In most Gram-positive bacteria and in mycobacteria, MK is the
primary electron carrier, while Gram-negative bacteria possess both Q and MK [45]. Mycobacterial
species, including Mtb, possess MK-9(H2) (hereafter MK) [46,47]. Besides playing the role as an electron
carrier, MK assists in the proper folding of secreted proteins through vitamin K epoxide reductase
or VKOR [48]. The ratio of oxidized to reduced MK is sensed by the DosRST system to control
mycobacterial metabolism [49,50]. Since MK is the only electron carrier in mycobacteria, and because
humans do not synthesize this vitamin, it is believed to be an excellent target for the development of
drugs against mycobacterial pathogens. MK is synthesized in bacteria through a classical pathway
and a second, alternate pathway. Both pathways begin with a chorismate molecule, which is then
metabolized to a different MK precursor, depending on whether the classical or alternate pathway is
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engaged. Although the alternate pathway is operational in evolutionarily related Streptomyces, it has
not been reported in mycobacteria. In regard to the classical pathway, chorismate is converted into
MK through a series of reactions carried out by enzymes encoded by the MenFDHCEBA cluster [5],
as summarized in Figure 1. Some of these enzymes are essential for mycobacterial growth [5,51]
suggesting that MK biosynthesis is a valid drug target.
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Figure 1. Mycobacterial menaquinone biosynthesis pathway and its inhibitors. (A–H)
represent chorismate, isochorismate, 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate,
O-succinylbenzoate, O-succinylbenzoyl-CoA, 1,4-dihydroxy-2-naphthoyl CoA, demethylmenaquinone,
and menaquinone respectively. Drugs that target the menaquinone biosynthesis enzymes are shown
by red flathead arrows.

Since cholesterol metabolism is important for mycobacterial survival within the host, the
effect of exposure of Ro 48-8071 (an inhibitor of cholesterol biosynthesis) on mycobacterial growth
was analyzed. This compound killed Mycobacterium bovis Bacillus Calmette Guerin (BCG) cells
at low micromolar concentrations [52]. Further metabolic labelling experiments identified MK
biosynthesis to be the target of Ro 48-8071. These findings were supported by the observation that
Ro 48-8071 was capable of reducing oxygen consumption during growth. Further scrutiny led to
the identification of MenA (Rv0534c) as the target of Ro 48-8071. The same group utilized a rational
drug design approach to target MenA. They screened around 100 molecules, and established that an
allylaminomethonone class of compounds are potent inhibitors of Mtb strains, including those which
are drug-resistant [53]. This class of MenA inhibitors was also highly effective against hypoxia-induced
drug-tolerant persisters [54]. Interestingly, aurachin RE, a new quinoline antibiotic isolated from
Rhodococcus erythropolis JCM 6824 is highly effective against Gram-positive bacteria [55]. The aurachin
RE molecules were modified to specifically target MenA, and validated as MenA inhibitors in functional
in vitro assays. These compounds were low micromolar inhibitors of aerobic growth and hypoxic
survival of Mtb [56]. Additionally, 7-methoxy-2-naphthol-based molecules have been utilized as lead
structures for the development of non-traditional inhibitors of MenA of Mtb [57]. These efforts led to
the development of bicyclic inhibitors that exert potent growth-suppressing activity against Mtb [57].
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High-density phenotypic profiling has identified menB (Rv0548c) as essential for mycobacterial
growth [58]. MenB catalyzes the formation of 1,4-dihydroxy-2-naphthoyl-CoA from o-succinylbenzoyl
CoA through a Claisen condensation reaction. Li and coworkers performed an HTS with more
than 100,000 compounds, which identified a few hundred leads. Subsequent elaboration yielded
multiple 1,4-benzoxazine compounds that were potent inhibitors of MenB activity, and consequently
blocked mycobacterial growth [59]. These leads were then utilized for the development of
4-oxo-4-chlorophenylbutenoyl methyl ester derivatives with potent mycobactericidal activity against
replicating and non-replicating Mtb [60].

MenE (Rv0542c) is the fifth enzyme in the MK biosynthesis pathway, and catalyzes the
formation of OSB-CoA from O-succinyl-1-benzoate (OSB) through two mechanistic steps. The first
is the ATP-dependent adenylation of OSB, and the second step is thioesterification with CoA.
Given the structural and functional similarity of MenE with adenylate-forming enzymes, it is a
promising target of acyl-AMP intermediates. Considering the mechanistic details, Tan and coworkers
employed OSB-AMP analogues to inhibit MenE in Mtb [61]. The IC50 of OSB-AMP analogues
MeOSB-AMS, MeOSB-AMSN, and MeOSB-AVSN for MenE are in the low micromolar range [61].
Further development of these analogues resulted in the identification of OSB-AMS with an IC50 for
MenE in the nanomolar range; these compounds are competitive inhibitors of the binding of ATP and
OSB [62]. Paradoxically, these inhibitors had poor mycobacterial growth inhibitory activity, perhaps
due to their instability, and the OSB-AMP analogues were, therefore, further modified. This resulted in
the development of OSB-AMS. Importantly, the difluoroindanediol analogue 11 of OSB-AMS was an
effective mycobactericidal compound [63].

In an effort to identify inhibitors of oxidative phosphorylation, Alland and coworkers created
a cell-based screen [64]. In this screen, the mWasabi reporter was fused to the promoter of the
cydAB operon (coding for part of cytochrome bd oxidase) to monitor inhibition of respiration in
the presence of 168 known inhibitors of mycobacterial growth. This led to the identification of DG70
as an inhibitor of bacterial respiration. DG70 is a biphenyl benzamide that kills both drug-sensitive
and -resistant Mtb cells [64]. Interestingly, this novel inhibitor is highly specific against Mtb, and
does not kill non-tuberculous mycobacteria (NTMs), Gram-positive, Gram-negative, or ESKAPE
(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, P. aeruginosa,
and Enterobacter) pathogens. Sequencing of two DG70-resistant spontaneous mutant strains suggested
the presence of a unique single nucleotide polymorphism (SNP) in menG. MenG (Rv0558, also
known as MenH) catalyzes the conversion of demethylmenaquinol to menaquinol. Importantly
MK4, an analogue of MK9, rescued the DG70-mediated killing of Mtb cells, thus validating that
MK biosynthesis is the target of DG70. Importantly, DG70 synergizes with BDQ, isoniazid (INH),
and PA824 to kill Mtb [64]. In summary, all these observations indicate that small molecule targeting
of MK biosynthesis (summarized in Figure 1) is a valid therapeutic strategy.

3. Oxidation of Menaquinone: A Tale of Two Terminal Oxidases

Mycobacteria possess a branched ETC. During aerobic respiration, electrons are fed into the
menaquinone(reduced/oxidized) pool of respiratory chains. Electrons are then transferred to oxygen
through two branches, each of which possesses a terminal oxidase. One is cytochrome bd-type
menaquinol oxidase (encoded by cydABDC), wherein electrons are transferred directly from MK
(reduced) to oxygen. The other branch runs through a supercomplex of menaquinol-cytochrome c
oxidoreductase or the bc1 complex and aa3 type cytochrome oxidase [1,65–67]. The bc1-aa3 branch
pumps protons out of the cell during transfer of electrons to oxygen, whereas the bd-type oxidase
does not pump protons, but has a higher affinity for oxygen [68]. It is assumed that similar to E. coli,
the two terminal oxidases of mycobacteria have different affinities for oxygen; however, this awaits
experimental validation.
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3.1. bc1-aa3 Pathway

The bc1 complex is a key component of the bc1-aa3 pathway, and is required for the bulk of the
electron transfer to oxygen during normoxia [69]. bc1 is encoded by the qcrCAB operon in Mtb. It
consists of redox groups comprising a 2Fe/2S centre, located on a Rieske protein (QcrA), two b-type
haems (low and high potential) located on a single polypeptide (QcrB), and the haem of cytochrome c1

(QcrC). QcrA of Mtb has three transmembrane helices and characteristic sequence motifs (CSHLGC
and CPCH) of 2Fe–2S Rieske iron-sulfur proteins, QcrB has a 120 amino acid extension at the
C-terminus, and the QcrC subunit consists of two haem binding motifs (CVSCH and CASCH) for
c-type cytochromes, suggesting a covalent di-haem (bcc) configuration [70]. According to Q-cycle
model, oxidation of quinol molecules occurs at the interface of cytochrome b and the 2Fe–2S cluster
carrying domain of the Rieske protein, which forms the catalytic center P at the positively charged
membrane side of the enzyme [71]. Each quinol molecule oxidizes at the center P, liberating two
electrons that move towards different acceptors. One electron proceeds to the iron-sulfur Rieske
protein, and is then transferred to cytochrome c, while the other moves to another quinone-binding
site on the opposite side of the membrane through haem molecules of variable redox potentials.
Complex III releases four protons for every two electrons transferred from menaquinol to cytochrome
c into the periplasmic side of the membrane [69].

The Mtb aa3-type cytochrome c oxidase is comprised of four subunits: CtaB (a cytochrome c
oxidase assembly factor), CtaD (cytochrome c oxidase subunit I containing haem a, a3, and copperB

(CuB), CtaC (cytochrome c oxidase subunit II containing copperA (CuA) and CtaE (subunit III). The aa3

cytochrome c oxidase of Mtb is encoded by ctaBCDE, which is dispersed over different locations of the
Mtb genome [72]. Interestingly, the ctaE gene is located immediately upstream of the qcrCAB operon.
The putative fourth subunit is encoded by ctaF (Rv2199c). This subunit is co-purified with other
subunits in Corynebacterium. Importantly, the deletion mutants display the phenotype similar to CtaC
mutant [73]. Four protons are taken up, while two protons are released into the periplasm for every
two electrons passing through complex IV [72]. There are three ctaD alleles in Mycobacterium smegmatis,
while only one in Mtb, indicating the presence of multiple isoforms of cytochrome c oxidase in
M. smegmatis [65]. The proton-pumping type (and energetically more efficient) bc1-aa3 branch of ETC is
essential for mycobacteria, as its deletion by homologous recombination is lethal [66]. This observation
indicates that the bc1-aa3 branch of ETC is an important drug target.

Unlike E. coli, which utilizes membrane-soluble cytochrome C for transferring electrons between
bc1 complex and aa3 cytochrome c oxidase, Mycobacterium, Corynebacterium glutamicum, and Rhodococcus
do not possess cytochrome C [70,74,75]. Importantly, in C. glutamicum, the QcrC contains an extra
binding site for another haem c that may function as a merged cytochrome C [76]. Moreover, subunit
II of the oxidase contains an additional 30 amino acids that could participate in the direct interaction
between complexes bc1 and aa3, to create a respiratory “supercomplex” [66], obviating the requirement
for free cytochrome c [74,76]. Indeed, in C. glutamicum, bc1 and aa3 are isolated as a complex that
is resistant to detergent treatment [73]. A similar scenario was predicted for mycobacteria [74],
and was validated following the isolation of a detergent-resistant supercomplex in M. smegmatis [77].
The interaction between the bc1 and aa3 complexes is guided by hydrophobic interactions, while ionic
interactions facilitate the alignment between the two complexes for efficient electron transfer from
menaquinol to oxygen [77]. Recently, overexpression of the Mtb complex III in M. smegmatis was shown
to yield a functional, stable, hybrid supercomplex in the presence of dodecyl maltoside detergent [78].
These observations strongly suggest that, in mycobacterial cells, the bc1 complex and aa3 cytochrome
c oxidase interact with each other to facilitate the flow of electrons from MK to oxygen, without the
requirement of cytochrome C.

3.2. Cytochrome bd-Oxidase

Cytochrome bd-type menaquinol oxidase (bd-oxidase) in Mtb is non-proton pumping, and is
therefore a less energetically efficient terminal oxidase. E. coli bd-oxidase is the prototypical member



Pathogens 2018, 7, 24 8 of 30

of this enzyme class and is encoded by two separate operons, cydAB and cydDC. This is contrary
to Mtb, in which all the genes are transcribed from a single cydABDC operon. cydAB encodes the
functional cytochromes, while the products of cydDC contribute to cytochrome bd assembly [79].
Furthermore, in E. coli mutants of cydDC, the periplasmic space is more oxidized than in the wild type
bacteria [79]. The function of cydDC in mycobacteria is largely unknown, but it plays an important
role in mycobacterial persistence in vivo. cydDC mutation reduces the ability of Mtb to survive
the transition from acute to chronic infection in mice [12]. Another report suggests that cydDC
supports mycobacterial persistence in INH-treated mice [13]. Compared to their wild type counterparts,
cytochrome bd mutants of E. coli are sensitive to stress induced by temperature alterations, nitric oxide,
H2O2, and iron (III) chelators. Additionally, they are unable to resume growth upon entering into the
stationary phase [80–83]. Importantly, the growth of cydA mutant M. smegmatis is normal at ambient
oxygen levels, but is severely impaired during hypoxia (0.5–1% air saturation). These mutants are
also sensitive to cyanide, and are outcompeted when co-cultured with wild type M. smegmatis in
its presence [65]. In E. coli, bd-oxidase has a higher affinity for oxygen, and is induced in response
to low oxygen tension [84]. Although the affinity of the Mtb bd-oxidase for oxygen has not been
determined, its expression is also induced during hypoxia [65]. The expression of cydAB is regulated
by a SenX3-RegX3 two-component system [85], which also acts as an oxygen-controlled replication
switch in Mtb [86]. It was recently demonstrated that Mtb cydAB mutants are sensitive to H2O2 and
antibiotic stress [87]. Importantly, drugs inhibiting mycobacterial respiration enhance the expression
of cydAB [88]. Interestingly in M. smegmatis, inactivation of bc1 complex results in the upregulation of
the bd-type terminal oxidase; however, the bc1 complex does not compensate for the loss of the bd-type
oxidase [87]. Genetic inactivation of cytochrome bd-oxidase in various pathogenic microorganisms like
Shigella flexneri, Brucella abortus, and Salmonella enterica serovar Typhimurium, impairs their intracellular
survival and virulence [89–91].



Pathogens 2018, 7, 24 9 of 30

Table 1. Summary of potential drug molecules with their respective targets, bactericidal properties,
and structures.

Drug Target Properties Structure

Thioridazine NDH-2 MIC90-8–15 µg/mL
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3.3. Supercomplex Inhibitors

The essentiality of Mtb cytochrome bc1, along with the large differences in structure and function
from its mammalian counterpart, makes it a good target for therapeutic intervention [78]. A variety of
antibiotics and chemical compounds have long been known to inhibit the bc1-aa3 complex. The aurachin
class of compounds contains quinone analogues, which are reported to inhibit a variety of cytochrome
oxidases [56,92,93]. Aurachin D is well-known among this class of compounds that inhibit E. coli
cytochrome bd-oxidase [92]. It inhibits oxygen consumption in M. smegmatis in a dose-dependent
manner [87]. These observations demonstrate the importance of cytochrome bd inhibitors as drug
molecules. Optimized derivatives of aurachin D, with better ability to penetrate the mycobacterial cell
wall, have a great potential as a new class of antitubercular drugs [87].

Similar to aurachin D, myxothiazol-based compounds, which are isolated from Myxococcus fulvus,
target mitochondrial cytochrome b. Myxothiazol interacts both with cytochrome b and an iron-sulfur
protein of the complex; this displaces quinone from the high-affinity binding site of the iron-sulfur
protein [94]. Importantly, myxothiazol inhibits the growth of Mycobacterium sp. GBF 3 at an MIC
value of 6.3 µg/mL [95], indicating that respiratory inhibitors can successfully target mycobacterial
species. Interestingly, myxothiazol does not kill Gram-negative or -positive bacteria, but does exhibit
strong antifungal activity [95]. A few other antifungal antibiotics, such as mucidin (from Basidiomycetes
Oudemansiella mucida) and strobilurin A (from Strobilurin stenacellus) also inhibit the bc1 complex
by binding to the same site as myxothiazol [96]. However, antimycin A (another antibiotic) binds
to a different location, inhibiting the oxidation of cytochrome b subunit [97]. A screen in search
of new antibiotics identified a novel compound, stigmatellin, from Stigmatella aurantiaca strain Sg
a15, that showed activity against various Gram-positive bacteria, yeasts, and filamentous fungi [98].
Subsequently, it was found to block mitochondrial electron transport by inhibiting the cytochrome bc1

complex as effectively as antimycin A and myxothiazol [99].
The capability of a number of small molecules to specifically target energy production in Mtb has

validated oxidative phosphorylation as a viable drug target. Since energy production through oxidative
phosphorylation plays an important role in Mtb survival during hypoxia-induced non-replicating
persistence [9,100], blockade of oxidative phosphorylation could be pursued, therapeutically, to kill
persisters. A number of small molecule inhibitors that specifically target the bc1-aa3 complex have been
identified. Several lines of evidence suggest that these inhibitors, which are structural analogues of
quinone, target the quinone binding catalytic domains of the bc1 complex [101]; prominent examples
are the imidazo[1,2-a]pyridines (IPs). Using HTS, IPs were identified as potent inhibitors of Mtb and
BCG [101]. Importantly, four IP inhibitors were shown to specifically target Mtb strains and BCG,
but were not able to kill a number of other Gram-positive and Gram-negative bacteria, or human
cell lines, including HepG2 and Neuro2A. Whole genome sequencing of the spontaneous resistant
mutants established that these IPs targeted QcrB. These findings were further supported by induction
of drug resistance upon overexpression of qcrB [101]. HTS of 100,997 compounds led to the discovery
of phenoxyalkylbenzimidazole (PAB) class of compounds showing activity against Mtb with MICs in
the nanomolar range, and low cytotoxicity against eukaryotic cells [102,103]. A recent study identified
the probable target of PABS to be the QcrB subunit of cytochrome bc1 oxidase, further confirming it to
be an important drug target [104].

An independent screen of more than 100,000 compounds to identify inhibitors of
macrophage-resident bacterial growth led to the isolation of two highly active IP compounds with
less toxicity than previous molecules of the same class. Further lead optimization resulted in
the development of IP Q203, which is specifically active against Mtb (MIC50 of 2.7 nM in broth
cultures and 0.28 nM for intracellular bacteria) [105]. Furthermore, whole genome sequencing of
spontaneously resistant mutants revealed the target of Q203 to be the cytochrome bc1 complex
(qcrB) (as depicted in Figure 2). Mutation of Thr313 to either alanine or isoleucine was specifically
involved in Q203 resistance [34]. Importantly, this compound was highly active against MDR
and XDR clinical isolates [106]. This leading drug candidate has recently progressed to Phase
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I clinical trials (trial identifier: NCT02858973) under a U.S. FDA Investigational New Drug
application. Notably, Q203 is synthesized through a one-pot reaction of 2-aminopyridines or
2-(or 4-)aminopyrimidines, respectively, with 1,2-bis(benzotriazolyl)-1,2-(dialkylamino)-ethanes [107].
These studies were followed by derivatization of imidazo[1,2-a]pyridine 3 carboxyamides into
imidazo[1,2-b]thiazole-5-carboxyamides. Structure–activity relationship (SAR)-based assays were
utilized for optimizing the imidazo[1,2-b]thiazole-5-carboxyamides to yield three lead compounds that
have potent antitubercular activity at low nanomolar concentrations. These compounds specifically
inhibit QcrB, and thus, block the growth of replicating Mtb and intracellular mycobacteria, and
display very low toxicity [108]. These compounds were also active against large numbers of
NTMs, including Mycobacterium avium in murine lungs [108,109]. In another parallel drug discovery
effort, an HTS campaign by Novartis Institute for Tropical Diseases identified several potential
hit molecules with potent activity against Mtb [110]. However, the presence of ester linkages
raised concerns over their metabolic instability [111]. Several compounds were thus optimized
for metabolic stability through pharmacokinetic studies in the mouse. These studies led to the
development of pyrrolo[3,4-c]pyridine-1,3(2H)-diones having an MIC90 in the micromolar range [111].
These compounds are hyperactive against cytochrome bd-oxidase mutants, suggesting that they target
the bc1-aa3 complex of the respiratory chain. The target for these molecules was identified as qcrB,
and a point mutation (Ala317Thr) in qcrB results in resistance to these compounds [111]. Importantly,
the target site is identical to that bound by Q203, suggesting that this site may be promiscuous for
molecules targeting the bc1 complex.

Interestingly, in an effort to build a strong pipeline for antimycobacterial drugs, a pool of 1280 FDA
approved drugs was screened for growth inhibition of Mtb residing in MRC-5 lung fibroblasts.
This screen resulted revealed that the gastric proton pump inhibitor lansoprazole (LPZ, Prevacid)
exerted potent activity against Mtb. Importantly, other proton pump inhibitors, such as omeprazole
and pantoprazole, were not able to inhibit Mtb growth. It was further demonstrated that LPZ is
rapidly converted to the potent antimycobacterial agent, lansoprazole sulfide (LPZS). Thus, LPZ
acts as a prodrug that is converted into LPZS within the host cell. As the conversion of LPZ into
LPZS is inefficient, a 22-fold higher drug dose was required to kill Mtb cells in broth cultures.
LPZS selectively kills Mtb; it is not toxic to closely related NTMs or Gram-positive and-negative
bacteria [112]. Target identification studies revealed that LPZS targets the cytochrome bc1 complex
(as depicted in Figure 2) of the respiratory chain, and conversion of leucine-176 to proline in qcrB
confers drug resistance. Furthermore, superimposition of the mutant mycobacterial protein structure
onto the published QcrB protein from R. sphaeroides [113] revealed that both L176P (a mutation leading
to LPZS resistance) and T313A (which confers IPA resistance) were localized to the same site, i.e., the P
site, at which ubiquinol oxidation occurs. However, L176P mutants remained susceptible to various
IPA, whereas T313A mutants were susceptible to LPZS, revealing different binding mechanisms for
each compound [112]. There are conflicting reports on the oral bioavailability of this drug. For example,
oral administration of the drug is reported to significantly reduce mycobacterial burden [112], whereas
others have shown that intraperitoneal injection of LPZS molecules, rather than the LPZ prodrug,
is required to acquire plasma and lung tissue concentrations of the active molecule sufficient to kill
Mtb [114]. Recently, the use of LPZ has been associated with reduced incidence of TB when compared
with the use of omeprazole or pantoprazole [115].
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mycobacterial cytotoxicity. Importantly, BDQ both alone or in combination with Q203, show similar 
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synergistic killing. The triple combination of CFZ, BDQ, and Q203 kills even faster, and results in 
complete sterility within 5 days. This combination of drugs is far more effective and rapid than the 
combination of first-line drugs INH and RIF in culture broths and in infected macrophages. BDQ 
and Q203 push the cell into reductive stress, during which NADH levels increase, and this 
potentiates the ROS-generating activity of CFZ, leading to mycobacterial killing [35]. These 
observations suggest that a combination of drugs targeting different components of the respiratory 
chain may help in the development of more effective therapeutic regimens. Targeting the bacterium 
at multiple steps of oxidative phosphorylation may be a better strategy for tackling drug-susceptible 
as well as MDR and XDR-TB. The role of efflux pumps in Mtb drug resistance is well established 
[118], and therefore, targeting them may help to resensitize Mtb to antibacterial agents. In support of 
this, verapamil (an efflux pump inhibitor) increases the potency of Q203 [119]. 

4. ATP Synthase 

During the transfer of electrons from NADH or succinate to a terminal electron acceptor (such 
as oxygen), protons are pumped out to generate PMF. ATP synthase can utilize PMF to generate 

Figure 2. Inhibition of cytochrome bc1 by LPZ and Q203. The sulfoxide reduction of LPZ converts it to
active LPZS, which can bind QcrB of cytochrome bc1 complex. Q203, an imidazopyridine amide, also
targets the QcrB subunit of cytochrome bc1 complex. Inhibition of QcrB forces the mycobacteria to use
energetically less efficient cytochrome bd oxidase, a decrease in proton motive force (PMF) and ATP
levels. Red flathead arrows indicate binding with subunit and inhibition of cytochrome bc1 complex.

The ATP synthase inhibitor BDQ and Q203 both result in an increase in mycobacterial oxygen
consumption rate (OCR) over a range of physiologically relevant oxygen concentrations [35]. It was
suggested that bacteria are compelled to utilize cytochrome bd-oxidase as the terminal oxidase upon
disruption of the flow of electrons through the bc1-aa3 pathway by Q203. This postulate is supported
by the observation that Q203 completely inhibits respiration in the cytochrome bd-oxidase knockout
mutant (cydKO), while the Q203 resistant SNP remains unaffected [35]. Furthermore, cydKO is
hypersusceptible to Q203 [116,117]. BDQ and Q203 are relatively slow acting drugs with regard to
mycobacterial cytotoxicity. Importantly, BDQ both alone or in combination with Q203, show similar
slow kill kinetics, but the combination of CFZ with either BDQ or Q203 results in increased OCR and
synergistic killing. The triple combination of CFZ, BDQ, and Q203 kills even faster, and results in
complete sterility within 5 days. This combination of drugs is far more effective and rapid than the
combination of first-line drugs INH and RIF in culture broths and in infected macrophages. BDQ and
Q203 push the cell into reductive stress, during which NADH levels increase, and this potentiates
the ROS-generating activity of CFZ, leading to mycobacterial killing [35]. These observations suggest
that a combination of drugs targeting different components of the respiratory chain may help in the
development of more effective therapeutic regimens. Targeting the bacterium at multiple steps of
oxidative phosphorylation may be a better strategy for tackling drug-susceptible as well as MDR
and XDR-TB. The role of efflux pumps in Mtb drug resistance is well established [118], and therefore,
targeting them may help to resensitize Mtb to antibacterial agents. In support of this, verapamil
(an efflux pump inhibitor) increases the potency of Q203 [119].

4. ATP Synthase

During the transfer of electrons from NADH or succinate to a terminal electron acceptor (such as
oxygen), protons are pumped out to generate PMF. ATP synthase can utilize PMF to generate ATP from
ADP and inorganic phosphate [120,121]. ATP synthase is highly conserved from bacteria to mammals;
it consists of a transmembrane Fo complex that is used for ion translocation, and a peripheral F1

complex that catalyzes ATP generation. The membrane-embedded Fo complex is made up of a, b, and
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c subunits that are present in a variable stoichiometry of ab2c8–15. On the other hand, the hydrophilic
F1 complex consists of 5 subunits in the stoichiometry α3β3γδε [122]. The proton movement is utilized
by the Fo subunit to generate rotation of the oligomeric c ring, and this rotation is coupled with the
rotation of the attached γ and ε subunits of the F1 complex [123–125].

During its infection cycle, mycobacteria must survive host-generated stress [126,127]. In order to
do so, Mtb utilizes its metabolic flexibility to maintain ATP homeostasis [1,128]. Regulated synthesis
of ATP through ATP synthase is critical for the survival of pathogens inside the host. This enzyme is
even more important in mycobacterial cells, since they require it for growth on fermentable carbon
sources [129]. It must be noted that Mtb downregulates its metabolic rate upon entering macrophages
or lung tissue [1,130], and primarily depends on lipids for energy [131]. ATP levels are also reduced
in the pathogen upon oxygen and nutrient deficit [9,132]. In the case of Streptococcus, ATP synthase
is downregulated during biofilm formation [133], which is believed to harbor dormant bacteria.
However, the level of ATP in biofilm-resident Mtb is not significantly different to that observed
in planktonic bacteria [134]. Also, single cell microscopy has revealed that antibiotic exposure
tremendously reduces the ATP levels in M. smegmatis cells [135]. ATP synthase in mycobacteria
is encoded by the atpBEFHAGDC operon (Rv1303–1312). The expression of this operon is tightly
regulated to match the cellular ATP requirements, and is therefore closely linked to the respiratory
chain activity. This operon is downregulated in hypoxic cultures and in murine lung tissue [8]. Recently,
a transcriptional regulator (blaI, Rv1846c) of the atp operon has been identified [136].

The subunit composition of mycobacterial ATP synthase and the mechanism of ATP generation
is similar to that of other bacteria, such as E. coli and humans (Figure 3A). However, there are subtle
differences in Mtb ATP synthase that contribute to its survival in humans [137]. These differences,
however, can be exploited for the development of Mtb-specific drugs. These differences include the
capability to catalyze the ATP biosynthesis at low PMF of ~100 mV [9] compared with ~200 mV of
E. coli [138], and the ability to block ATPase activity [139,140] in order to maintain an optimal level
of PMF, as seen in many other bacteria [141]. Mycobacterial ATP synthase has several structural
differences compared with the human orthologue. This includes a 36 amino acid C-terminal domain
extension of subunit α [142], which is not seen in any other prokaryotes or eukaryotes. Interestingly,
this extension is critical for the ability of mycobacterial ATP synthase to reduce ATPase activity. The Mtb
ATP synthase γ subunit possesses a unique loop (γ165–178) of 13 amino acids [143] that also inhibits
ATP hydrolysis-driven proton pumping [144]. Interestingly, due to the capability of ATP generation
at low PMF, Mtb ATP synthase was expected to have a large c ring with more than 10 monomers,
as seen in some alkaliphilic bacteria [145–147]. However, the crystal structure of the mycobacterial c
ring revealed that it contains 9 monomers [148]. This is the smallest bacterial c ring reported with a
H+/ATP ratio of 3.

Given the essentiality of ATP synthase for the survival of mycobacteria on fermentable
and non-fermentable carbon sources, and its subtle but peculiar structural differences from the
mitochondrial ATP synthase present in humans, this enzyme can be utilized as a potential drug
target. However, drugs like oligomycin and N,N′-dicyclohexylcarbodiimide (DCCD) (that target ATP
synthase) are non-selective, and also inhibit generation of ATP in mitochondria and bacteria [149,150],
suggesting the conserved nature of this enzyme. Nonetheless, the recent discovery of BDQ as a specific
inhibitor of mycobacterial ATP synthase has validated this enzyme complex as a drug target.

4.1. Bedaquiline

Several naturally occurring and synthetic ATP synthase inhibitors (such as DCCD) have been
described [151]. However, it was only in 2004 [152,153], that an ATP synthase-targeting lead
compound of the diarylquinoline class (R207910) was shown to have potent antimycobacterial activity.
Four decades after the development of rifabutin in 1975, a new class of antibiotic that specifically
targeted tuberculosis was developed by the Andries group [152]. This compound was later called
BDQ, or TMC207, and is sold under the brand name of Sirturo®.
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Figure 3. Schematic view of ATP synthase and its interaction with bedaquiline (BDQ). (A) Depicts the
top view of C-ring of ATP synthase Fo complex and comparison of C-rings of mitochondria (C10), E. coli
(C8) and mycobacteria (C9). (B) BDQ binds between the two c subunits of the C-ring. The interaction
of BDQ with C ring is illustrated in the zoomed region. BDQ specifically interacts with Glu65 (E65),
Phe69 (F69), Leu63 (L63), Asp32 (D32), and Ile70 (I70) of adjacent c subunits.

Importantly, this compound specifically inhibited the growth of mycobacterial species, and was
non-inhibitory to Gram-positive bacteria, such as Nocardia, and Gram-negative bacteria such as
E. coli. More importantly, this compound was able to kill MDR and XDR Mtb strains with MICs
in the range of 0.03–0.12 µg/mL. Interestingly, usage of 10× MIC for 12 days resulted in a 3-log
reduction of bacterial colony forming units (cfu). This killing was time dependent, rather than being
concentration dependent. The delayed onset of killing could be explained by the metabolic remodeling
of mycobacterial cells upon BDQ exposure. This includes upregulation of the dormancy regulon, ATP
synthase, isocitrate lyase, and cytochrome bd oxidase. Additionally, there was a downregulation of
DNA/protein biosynthesis and efflux pump expression, in order to conserve energy. The drug also
demonstrated significant in vivo activity in a murine model of TB infection. Importantly, its use
alone led to a similar reduction of mycobacterial load in the lungs as that of a combination of
frontline drugs (RIF + INH + pyrazinamide (PZA)). Moreover, its use in combination with these
drugs resulted in a 2-log greater reduction in mycobacterial load compared to the “no BDQ” group.
Importantly, BDQ also showed desirable pharmacokinetic properties [152]. Furthermore, use of
the Wayne model demonstrated that BDQ efficiently targets both replicating and non-replicating
mycobacteria [9]. The drug is posited to be more effective against non-replicating bacteria than those
that are actively replicating; this could be due to 5–10-fold lower ATP levels in the non-replicating
dormant bacteria [154]. The ability to kill non-replicating bacteria correlates with BDQ’s exceptionally
high bactericidal activity in mouse TB models [155–157], and also with the reduced time for sputum
culture conversion in TB patients [158,159].

In an effort to identify the target of BDQ, whole genome sequencing was performed. Mutations
in atpE, which codes for the Fo subunit of ATP synthase, were associated with drug resistance [152].
In another target identification effort, mycobacterial membrane extract was passed through a
column of BDQ-coated Sepharose beads. This approach also identified subunits of ATP synthase.
These experiments were followed by surface plasmon resonance assays, which demonstrated that atpE
binds to a BDQ analogue with a Kd of 500 nM [160]. The MIC50 in the case of human mitochondrial
ATP synthase was more than 20,000-fold higher than that of the bacterial enzyme, underscoring the
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high degree of selectivity afforded by BDQ [161]. A high-resolution crystal structure of mycobacterial
ATP synthase, with and without BDQ, has provided insights into the mechanism of BDQ binding,
and will also help in structure-based drug design [148]. It was suggested that one or more BDQ
molecules could specifically associate with ion binding site of ATP synthase in the c ring of the Fo

rotor. BDQ interacts with ~135 Å2 of the c ring of the Fo rotor consisting of nine residues (Gly62, Leu63,
Glu65, Ala66, Ala67, Tyr68, Phe69, Ile70, and Leu72) through van der Waals interactions (Figure 3B).
BDQ’s dimethylamino moiety extends into the ion-binding site of C-rings. The interaction is then
stabilized by an intermolecular H-bond between the dimethylamino group and Glu65 [148]. BDQ has
also been tested against NTM, M. abscessus, which affects cystic fibrosis patients [162], and against
M. avium and M. intracellulare [163]. Additionally, it was found to be active against M. abscessus in
a zebrafish model of infection [164]. Furthermore, BDQ was effective against M. leprae [165], but
bacteriostatic in the case of M. avium [166], and inactive in M. abscessus mouse infection [167,168].

Moreover, BDQ, when combined with other TB drugs, helped to reduce the time of
treatment [156,157,169]. A synergistic effect of BDQ and PZA was seen in a mouse model of TB [170].
BDQ was also synergistic with the cell wall synthesis inhibitor, SQ109, as it improved the killing
rate and lowered the MIC [171]. Another cell wall synthesis targeting compound, BTZ043, was
also found to be synergistic with BDQ in vitro [172]. BTZ043 is a benzothiazinone which inhibits
DprE1, an enzyme involved in arabinan biosynthesis [173]. The increased efficacy of BDQ, when
used in combination with cell wall biosynthesis inhibitors, could be due to its increased penetration.
Furthermore, clinical trials are ongoing for the combination therapy of BDQ with another recently
approved drug, delamanid [174]. BDQ results in prolonged QT interval, however, co-administration
of RIFor rifapentine with BDQ increases its clearance, likely due to their activity as CYP3A4 inducers,
which is involved in BDQ metabolism [175]. Thus, we infer that the currently approved BDQ–RIF
combination therapy should be re-evaluated. Furthermore, the addition of ketoconazole, a CYP3A4
inhibitor with BDQ increased the QT interval [176]. A study conducted in human hepatocytes to
understand the BDQ metabolism identified N-dealkylation, a novel metabolic pathway. In this study,
CYP3A4, CYP2C8, and CYP2C19 were shown to be involved in BDQ N-demethylation [177]. This kind
of study is important to understand and prevent BDQ associated adverse drug reactions.

The rate of generation of BDQ-resistant mutants is one in 108 bacteria. Certain mycobacteria,
including M. novocastrense, M. xenopi, and M. shimoidei, are naturally resistant to BDQ, due to
polymorphisms at the atpE locus [168,178]. BDQ resistance is also acquired, and is present in bacteria
with cross-resistance to CFZ. This cross-resistance is due to mutations in Rv0678, a transcriptional
repressor of the MmpL5 efflux pump [179–181]. BDQ is very effective against drug-susceptible MDR
and XDR-TB; however, due to its toxicity (attributed to the increased QT interval) and the development
of BDQ-resistant strains [182], its use is currently limited to MDR and XDR-TB patients.

4.2. Squaramides

After the discovery of BDQ, several studies have been conducted in order to identify novel
molecules that target the mycobacterial oxidative phosphorylation pathway [100,101,103,105]. In one
example, AstraZeneca employed a luminescence-based method in which inverted membrane vesicles
from mycobacteria were charged with NADH and formation of ATP was monitored. Following HTS
of 900,000 compounds, two lead classes, namely squaramide and imidazo [1,2-a] pyridine ethers (IPE),
were identified. Given their poor solubility, pharmacokinetics, and bacteriostatic nature, IPE were
deprioritized, and squaramides were further developed [183]. This resulted in the identification of 31f,
which exhibited potent antituberculosis activity (IC50 of 0.03 µM in proliferation assays). Similar to the
case with BDQ, docking studies and the generation of spontaneous mutants identified ATP synthase
as the target of squaramide. However, the mode of binding employed by squaramides is different to
that of BDQ. 31f is predicted to bind to the interface of ATP synthase subunits a and c. This prediction
was supported by the observation that the K179N mutation of subunit a and the D28N mutation of
subunit c of ATP synthase engendered resistance to 31f. Importantly, squaramides were also found to
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be active against single drug resistant clinical strains, including BDQ. Furthermore, squaramides show
a similar MIC for BDQ-resistant mutant strains and do not show cross-resistance, suggesting that they
interact with a different binding site. Lead compound 31f was also effective in a mouse model of acute
TB infection. Further studies are required to see whether squaramides can potentiate the activity of
current TB drugs, and whether they will be effective in a chronic TB infection model.

5. Uncouplers of Proton Motive Force: Pyrazinamide and SQ109

PMF generated by ETC plays a critical role in bacterial growth and survival. During hypoxic
growth, dissipation of PMF by uncouplers, such as valinomycin and nigericin, can cause death
in the hypoxic cultures [9]. The importance of PMF as a drug target is further validated by the
observation that efflux of a number of drugs from mycobacterial cells is dependent on PMF [184].
However, general uncouplers of PMF are not sufficiently selective to be used as antimycobacterial
agents, and the development of specific PMF uncouplers remains an area of interest. Importantly,
PZA, which is currently being used as a first-line anti-TB drug along with RIF and INH, can disrupt
the PMF in mycobacterial cells. Another lead compound, SQ109, also targets the PMF and oxidative
phosphorylation [185].

PZA was discovered in the early 1940s, and is effective in mouse models of TB [186] and in TB
patients [187]. Consequently, the drug is used as a frontline agent to treat TB. PZA is a prodrug that
requires acidic conditions [188] in order to be hydrolyzed by pyrazinamidase or nicotinamidase to
pyrazinoic acid (POA), the active form of the drug [189]. PZA-resistant mutants often have variations
in the pyrazinamidase gene, which is encoded by pcnA [190–192]. PZA is a multitarget drug that
dissipates the PMF, inhibits ATP synthesis [193], inhibits membrane transport [194], and also reduces
the activity of other proteins [195]. The first clue that PZA could dissipate PMF was the requirement of
acidic pH for its bactericidal activity [196]. PZA requires 4–5 fold higher concentration (850 µg/mL)
at pH 6.5 compared to pH 5.5 (200 µg/mL) [194]. The active form of the drug, POA, is a weak acid
that accumulates inside the cell in acidic conditions [196]. This weakly acidic property helps POA
(and the structurally unrelated benzoic acid) to disrupt the membrane potential of Mtb under acidic
conditions [194]. In line with this observation, PZA is more active against non-replicating dormant
bacteria, as compared to actively replicating bacteria [197] and old cultures [198]. These findings
are further supported by the fact that PMF uncouplers synergize with PZA in order to deplete ATP
depletion and enhance mycobacterial killing [194]. However, the exact mechanism by which PZA
dissipates the membrane potential remains unknown.

SQ109 is structurally related to the frontline TB drug ethambutol, and was developed by Sequella
Incorporation in collaboration with Laboratory of Host Defenses, NIH. It has successfully completed
phase 2 clinical trials, and is active against drug-susceptible MDR and XDR-TB [199]. Although in TB
patients, SQ109 monotherapy for 14 days did not reduce bacterial burden [200], a recent phase 2b-3
clinical study suggested an 80% increase in the culture conversion rate by addition of SQ109 to the
standard regimen [201]. Initially, SQ109 was reported to interfere with the assembly of mycolic acid in
the mycobacterial cell wall. This was attributed to its ability to target MmpL3, a membrane transporter
involved in uptake of trehalose monomycolate [202,203]. However, SQ109 is also active against other
organisms, including Helicobacter pylori [204], Trypanosoma cruzi [205], Neisseria gonorrhoeae, Candida
albicans [206], and P. falciparum [185]. Since these organisms lack a functional homolog of MmpL3, it is
highly likely that MmpL3 is not the primary target of SQ109. This hypothesis is further supported
by the absence of spontaneously resistant mutants, a phenomenon observed with many drugs that
inhibit multiple targets. Recently, Li et al., have demonstrated that SQ109 and its analogues inhibit MK
biosynthesis, and interfere with respiration and generation of PMF [185,205]. It acts as an uncoupler,
collapsing both ∆pH and ∆ψ, leading to a decrease in ATP synthesis [185]. Importantly, SQ109
synergizes with BDQ and CFZ, further suggesting that it affects oxidative phosphorylation [206].
Further studies are required to completely understand the complex mechanism by which SQ109
inhibits mycobacterial cell growth.
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6. Conclusions

Despite the presence of alternate respiratory complexes, oxidative phosphorylation is an excellent
target for the development of new antimycobacterial drugs (Figure 4). This statement is validated
by the presence of a number of its inhibitors in the current TB drug pipeline. Most notable among
these inhibitors are Q203 (an inhibitor of bc1-aa3 complex) that has entered clinical trials, and BDQ
(ATP synthase inhibitor) that has been approved for treatment of MDR TB. It is worth noting that
inhibitors of other components of oxidative phosphorylation, such TPZ&QPs (NDH-2 inhibitor),
Ro 48-8071 & DG70 (inhibitors of MK biosynthesis) and SQ109 (PMF disruptor) are potent blockers
of mycobacterial growth, in vitro and in vivo. We believe that co-inhibition of parallel respiratory
components could significantly shorten the duration of TB treatment. This belief is supported by the
enhanced susceptibility of cydAB deletion mutant to BDQ or accelerated killing of Mtb cells by the
combination of CFZ with BDQ or Q203. Such combinations shall be tested, in vivo, to further test
this hypothesis.
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Figure 4. Schematic representation of the mycobacterial electron transport chain and its
inhibitors. NADH derived via glycolysis and tricarboxylic acid (TCA) cycle feds electrons into
the electron transport chain by NADH dehydrogenase. The menaquinone (MK) pool can be
reduced by primary dehydrogenases such as NADH dehydrogenases (NDH1 and NDH2) and
via succinate dehydrogenase (SDH). Electrons from the menaquinone pool are accepted directly
by cytochrome bd-type terminal oxidase or via bc1-aa3 supercomplex. A proton motive force
(PMF) is generated during electron transport chain because of pumping of protons across the
membrane. This PMF is used by the ATP synthase to generate ATP. Drugs that target the
oxidative phosphorylation are shown by red flathead arrows. Abbreviations: CFZ, clofazimine;
TPZ, trifluoperazine; QPs, quinolinyl pyrimidines; Q203, imidazopyridine amide; LPZ, lansoprazole;
Ro 48-8071, (4-bromophenyl)[2-fluoro-4-[[6-(methyl-2-propenylamino)hexyl]oxy]phenyl]-methanone;
DG70, biphenyl amide; BDQ, bedaquiline; SQR, squaramide; SQ109, N-adamantan-2-yl-N-((E)-
3,7-dimethyl-octa-2,6-dienyl)-ethane-1,2-diamine; PYZ, pyrazinamide. Red arrows in the TCA cycle
depict the glyoxylate shunt.
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Abbreviations

3NP 3-Nitropropionate
ADP Adenosine diphosphate
ATP Adenosine triphosphate
BCG Bacillus Calmette Guerin
BDQ Bedaquiline
cfu Colony forming units
CFZ Clofazimine
CO2 Carbon dioxide
cydKO Cytochrome bd-oxidase knockout mutant
DCCD N,N′-dicyclohexylcarbodiimide
DprE1 Decaprenylphosphoryl-D-ribose oxidase
ETC Electron transport chain
FADH2 Reduced flavin adenine dinucleotide
FRD Fumarate reductase
H+ Proton
H2O Water
HIV Human immunodeficiency virus
HTS High throughput screening
INH Isoniazid
IP Imidazo[1,2-a]pyridines
LPZ Lansoprazole
LPZS Lansoprazole sulphide
MDR Multi drug resistant
MIC Minimum inhibitory concentration
MK Menaquinone
MKH2 Menaquinol
Mtb Mycobacterium tuberculosis
NAD+ Nicotinamide adenine dinucleotide
NADH Reduced nicotinamide adenine dinucleotide
NDH-1 Type I NADH dehydrogenase
NDH-2 Type II NADH dehydrogenase
NQR Sodium-pumping NADH dehydrogenase
NTMs Non-tuberculous mycobacteria
OCR Oxygen consumption rate
OSB O-succinyl-1-benzoate
PAB Phenoxyalkylbenzimidazole
Pi Inorganic phosphate
PMF Proton motive force
POA Pyrazinoic acid
PZA Pyrazinamide
Q Ubiquinone
RIF Rifampicin
ROS Reactive oxygen species
SAR Structure–activity relationship
SDH Succinate dehydrogenase
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SNP Single nucleotide polymorphism
TB Tuberculosis
TCA cycle Tricarboxylic acid cycle
TPZ Trifluoperazine
TZ Thioridazine
XDR Extremely drug resistant
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