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Abstract: Listeria monocytogenes (Lm) infection induces robust CD8 T cell responses, which play a
critical role in resolving Lm during primary infection and provide protective immunity to re-infections.
Comprehensive studies have been conducted to delineate the CD8 T cell response after Lm infection.
In this review, the generation of the CD8 T cell response to Lm infection will be discussed. The role
of dendritic cell subsets in acquiring and presenting Lm antigens to CD8 T cells and the events that
occur during T cell priming and activation will be addressed. CD8 T cell expansion, differentiation
and contraction as well as the signals that regulate these processes during Lm infection will be
explored. Finally, the formation of memory CD8 T cell subsets in the circulation and in the intestine
will be analyzed. Recently, the study of CD8 T cell responses to Lm infection has begun to shift focus
from the intravenous infection model to a natural oral infection model as the humanized mouse
and murinized Lm have become readily available. Recent findings in the generation of CD8 T cell
responses to oral infection using murinized Lm will be explored throughout the review. Finally,
CD8 T cell-mediated protective immunity against Lm infection and the use of Lm as a vaccine vector
for cancer immunotherapy will be highlighted. Overall, this review will provide detailed knowledge
on the biology of CD8 T cell responses after Lm infection that may shed light on improving rational
vaccine design.

Keywords: Listeria monocytogenes; CD8 T cells; dendritic cells; T cell activation; expansion;
differentiation; contraction; and memory formation; resident memory T cells; CD8 T cell-mediated
protective immunity; vaccine; cancer immunotherapy

1. Introduction

Listeria monocytogenes (Lm) is a Gram-positive, facultatively anaerobic intracellular bacterium
that can cause listeriosis. It is a foodborne pathogen and primarily affects pregnant women,
immunocompromised individuals, the young, and the elderly but may also adversely affect otherwise
healthy individuals during outbreaks. Lm infection of pregnant women can lead to infection of the
fetus and result in fetal resorption, miscarriage or stillbirth, significantly contributing to the high
mortality rate of Lm infections. Premature delivery and vertical transmission to the newborn are
also serious complications associated with infection during pregnancy. Infections of susceptible
populations may result in sepsis, meningitis, and encephalitis, which could be lethal. However,
infections of otherwise healthy individuals typically lead to gastroenteritis. While rare, exposure to
outbreak levels of Lm in healthy individuals could also be fatal. In the United States, according to the
Centers for Disease Control and Prevention and a recent report conducted by United States Department
of Agriculture, Lm is the third leading cause of deaths resulting from foodborne diseases and costs
approximately 2.6 billion dollars annually, ranking it the third most among foodborne diseases in
economic burden [1-3]. Lm infects humans by invading the intestinal epithelium after consumption of
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contaminated food. The bacterial surface protein internalin A (InlA) promotes the invasion of human
intestinal epithelium by binding to E-cadherin (Ecad), an adhesion molecule expressed by intestinal
epithelial cells [4]. However, InlA does not recognize murine Ecad, and Lm fails to invade mouse
intestines efficiently [5], limiting the use of mice as a model for oral Lm infection of humans. Therefore,
the understanding of Lm pathogenesis and the immune response to Lm infection has predominantly
been obtained after intravenous (i.v.) infection of mice. As such, this review will primarily summarize
the knowledge originating from studies performed in i.v. Lm infection models. The more recent
generation of transgenic mice expressing a human Ecad or a humanized murine-Ecad and a murinized
Lm strain containing mutations in the InlA protein that allow efficient invasion of murine intestines
that may be coupled with a natural feeding infection provides more relevant mouse models for oral
Lm infection or vaccination of humans [6—10]. Thus, this review will also discuss knowledge gained
from oral Lm infection using these mouse models when available.

Innate inflammatory responses are critical for host defense against Lm infection. A hierarchical
recruitment and activation of innate immune cells such as dendritic cells (DC) and inflammatory
monocytes to the foci of infection coupled with interleukin (IL)-12, IL-18, interferon (IFN)-y and tumor
necrosis factor (TNF)-« production are essential for the early control of Lm infection [11]. However,
sterilizing immunity to Lm infection requires T cells [12-14]. CD8 T cells, along with CD4 T cells and
vd T cells collaborate to provide optimal protection against Lm infection [9,13-15]. Extensive research
has been carried out in the past three decades to broaden our understanding of T cell responses to Lm
infection. Lm is also a model pathogen to study T cell biology in general because of its ability to induce
robust T cell responses that are readily tractable during all phases of the adaptive response [16,17].
This review will focus on the CD8 T cell response to Lm infection, which can be characterized by
four phases: (1) priming and activation; (2) clonal expansion and differentiation; (3) contraction;
and (4) memory formation (Figure 1). Details of each phase of the CD8 T cell response to Lm infection
will be discussed. Specifically, the role of dendritic cell subsets in acquiring and presenting Lm antigens
to CD8 T cells and events that occur during CD8 T cell priming and activation will be addressed.
Signals that regulate CD8 T cell expansion, differentiation and contraction during Lm infection will be
explored. The formation of memory CD8 T cell subsets in the circulation and in the intestine will be
analyzed. Additionally, the comparison of the CD8 T cell response after i.v. versus oral Lm infection
will be included. Finally, CD8 T cell-mediated protective immunity against Lm infection and the use of
Lm as a vaccine vector for cancer immunotherapy will be highlighted.

Priming/Activation Expansion/Differentiation Contration Memory

Spleen

Intestine

uonelBIN

Figure 1. Schematic for the CD8 T cell response to Lm infection. The CD8 T cell response to Listeria
monocytogenes (Lm) infection can be characterized by several major phases: (1) priming and activation;
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(2) clonal expansion and differentiation; (3) contraction; and (4) memory. Dendritic cells (DC) acquire
Lm and present antigen to naive CD8 T cells to activate them. Activated CD8 T cells subsequently
undergo clonal expansion and differentiation. CD8 T cells first differentiate into early effector cells
(EEC), which may become short-lived effector cells (SLEC) or memory precursor effector cells (MPEC).
Following the peak of clonal expansion and pathogen clearance, the majority of effector CD8 T cells
die during contraction. The remaining effector cells survive to form a long-lived memory population
that can provide protection to subsequent challenges. During expansion and differentiation, effector
CD8 T cells migrate to the intestine where they form resident memory CD8 T cells. Effector CD8 T cells
differentiate mostly into SLEC in the spleen, while they are skewed towards EEC and MPEC in the
intestine. The magnitude and differentiation pattern of effector CD8 T cells in the intestine differ after
intravenous (i.v.) and oral Lm infection.

2. Listeria Monocytogenes (Lm) Acquisition and Presentation by Dendritic Cells (DC)

After i.v. infection, Lm directly enters the blood circulation and rapidly arrives in the marginal
zone of the spleen, where it is taken up by macrophage receptor with collagenous structure (MARCO)*
marginal zone macrophages (MZM) and CD169* marginal metallophilic macrophages (MMM) [18-20].
These macrophages are thought to be crucial for the early control of Lm infection as shown by studies
using low dose clodronate liposomes to deplete both macrophage subsets [18]. A recent study using
transgenic mice expressing human diphtheria toxin receptor under the control of the Cd169 promoter
to selectively deplete CD169" MMM demonstrated that they are the primary line of defense against
Lm infection [20]. In the absence of CD169* MMM, Lm spreads to the red pulp of the spleen, where
it rapidly replicates leading to systemic dissemination [20]. CD169" MMM initially contain Lm in
the marginal zone, and Lm is subsequently transported to the T cell zone of the white pulp [21,22].
Several sophisticated studies have shown that basic leucine zipper ATF-like transcription factor 3
(Batf3)-dependent CD8«* DC are responsible for shuttling Lm to T cell zones of the white pulp [22-24].
The translocation of Lm to the T cell zone is a prerequisite for the establishment of a productive
infection and the initiation of antigen presentation to CD8 T cells [22-24]. Lm appears to be targeted
to Batf3-dependent CD8«" DC by its association with platelets that is dependent on complement
C3 and platelet receptor glycoprotein membrane complex Ib (GPIb) [25]. However, a recent study
identified a new pathway in which Lm may be targeted to Batf3-dependent CD8«* DC early after
i.v. infection. CD169* MMM were visualized acquiring Lm in the marginal zone and trans-infecting
Batf3-dependent CD8«x* DC to initiate Lm transit to the T cell zone [20]. Thus, in the absence of CD169*
MMM, Batf3-dependent CD8«* DC failed to transport Lm to the T cell zone [20]. Whether platelet
association directly targets Lm to Batf3-dependent CD8o* DC or indirectly through CD169* MMMs
remains to be elucidated. In the absence of Batf3-dependent CD8«x* DC, Lm was unable to establish
a productive infection in the T cell zone as they were confined to the marginal zone and rapidly
cleared by macrophages [20,24]. As such, CD8 T cell responses were also significantly impaired [24].
This impairment could be rescued by increasing infectious dose or adoptive transfer of Lm-infected
bone marrow-derived macrophages [23,24], suggesting that Batf3-independent DC are also capable of
priming CD8 T cell responses to i.v. Lm infection. However, under normal physiological conditions,
Batf3-dependent CD8«* DC appear to play a central role in the activation of CD8 T cells, which has
also been corroborated by in vitro studies showing that CD8«*™ DC are more effective than CD11b*
DC at eliciting CD8 T cell responses to Lm [26]. In addition to their role in transporting Lm to the T
cell zone and activating CD8 T cells, a new study demonstrated that Batf3-dependent CD8o* DC are
a vital source of IL-18, which subsequently licenses Natural Killer (NK) cells to produce IL-10 [27].
As NK cell-derived IL-10 promotes susceptibility to Lm infection [28], this new study provides an
additional mechanism that contributes to the resistance of mice deficient in Batf3-dependent CD8oc*
DC to Lm infection.

After oral infection, Lm invades the gut epithelium and disseminates to the draining mesenteric
lymph nodes (MLN), a primary site of T cell priming in response to intestinal pathogens. Whether L
disseminates to the MLN extracellularly or intracellularly remains to be elucidated. While mechanistic
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in vivo insights of Lm dissemination is lacking, intracellular localization and replication appears
essential for Lm dissemination to the MLN [29], suggesting that Lm may disseminate to the MLN
intracellularly. Both intestinal CD103* DC and C-X3-C motif chemokine receptor 1 (CX3CR1)*
mononuclear phagocytes (MP) can sample antigens from the lumen and migrate to the MLN in
a C-C motif chemokine receptor (CCR)7-dependent manner [30-34]. CX3CR1* MP are located close to
the intestinal epithelium while CD103* DC reside deeper in the lamina propria (LP) [33]. CX3CR1*
MP have been reported to capture luminal bacteria by extending transepithelial dendrites into the
lumen [30]. CD103" DC can be recruited to the intestinal epithelium in response to enteropathogen
infection and can also capture luminal bacteria using transepithelial dendrites [32]. CD103* DC may
also acquire low molecular weight soluble luminal antigen from small intestine goblet cells through
goblet cell-associated antigen passages [34]. A collaboration between CX3CR1* MP and CD103* DC
has also been reported, where CX3CR1" MP initially acquire luminal antigens for transfer to CD103*
DC [35]. Lm appears to preferentially target luminally accessible Ecad on goblet cells and utilizes
the transcytosis pathway to gain access to the lamina propria [36], implying that CD103* DC may
play a direct role in the acquisition of Lm and the transportation of Lm to the MLN. CD103* DC can
efficiently generate CCR9" a4 37 gut-tropic effector CD8 T cells after oral administration of antigen [37].
However, CD103* DC consist of two distinct subsets, interferon regulatory factor (IRF)8-dependent
CD11b~ CD103* DC and IRF4-dependent CD11b* CD103* DC [38-40]. Whether CD11b~ CD103* DC,
CD11b* CD103" DC, or both are important for carriage of Lm to MLN and subsequent T cell priming
is unresolved. IRF4-dependent CD11b* CD103" DC play a critical role in driving mucosal T helper
(Th)17 responses [40], while IRF8-dependent CD11b~ CD103* DC induce a Th1 response [41]. Lm can
induce either Thl or Th17 responses dependent on the route of infection. While i.v. Lm infection
induces Thl cells, intranasal Lm infection induces Th17 cells [42]. Our recent study demonstrated
that a Thl response is primarily induced after oral Lm infection [15], suggesting the involvement of
CD11b~ CD103* DC but not CD11b* CD103* DC in the induction of T cell responses after oral Lm
infection. However, further work needs to determine whether the acquisition and transit of Lm is
uncoupled from T cell priming, in which case one DC subset may acquire and transport Lm to the
MLN and another DC subset may prime T cells and generate gut-tropic effector CD8 T cells after oral
Lm infection.

3. T Cell Priming and Activation

Circulating naive CD8 T cells enter secondary lymphoid organs where they quickly survey DC
before forming prolonged stable conjugates with DC presenting their cognate antigens [43]. During i.v.
Lm infection, antigen-specific CD8 T cells form clusters with DC at the borders of the T and B cell
zones in the spleen [44]. Immunological synapses are organized at the interfaces of T cells and DC with
apparent polarization of T cell receptor (TCR) and CD8 co-receptor, indicating the initiation of T cell
activation. Antigen-specific CD8 T cells increase size, downregulate CD62L, and upregulate CD11a,
programmed cell death protein 1 (PD-1) and CD69 [44]. Following priming and activation by DC,
antigen-specific CD8 T cells migrate to the T cell zones, where they undergo extensive proliferation
before exiting the white pulp via bridging channels for entry into the red pulp and exit from the
spleen. For i.v. Lm infection, antigen-specific CD8 T cell responses peak around 7-8 days post infection
(dpi) [45,46]. Presumably, during oral infection with mouse-adapted Lm, CD8 T cells in the MLN
undergo a similar process including initial priming and activation by DC followed by vigorous
proliferation in the T cell zones and rapid egress from the MLN. While Lm enter the spleen within
minutes after i.v. infection, Lm access to the MLN from the gut is delayed. Accordingly, antigen-specific
CDS8 T cell responses peak at around 8-9 dpi after oral Lm infection [47,48].

CD8 T cell priming and activation by DC is a crucial step that ensures the generation of
functional effector T cells critical for pathogen clearance by eliminating intracellular reservoirs
of infected cells. During i.v. infection, efficient CD8 T cell priming and activation occur after
infection with live Lm but not administration of heat-killed Lm (HKLm) [49,50]. Following HKLm
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administration, CD8 T cells undergo poor proliferation and fail to upregulate activation markers
such as CD69 and PD-1 [49,50]. These CD8 T cells also exhibit limited cytolytic activity and impaired
cytokine production [49,50]. As a result, immunization with HKLm does not induce protective
immunity [49,51-53]. Multiple mechanisms may account for inefficient CD8 T cell induction after
HKLm administration. CD169" MMM in the marginal zone of the spleen appear to be the primary
cellular niche for Lm early after i.v. infection [20]. DC may directly phagocytose Lm in the marginal
zone or indirectly acquire Lm from CD169* MMM [19,20]. The latter requires recruitment of DC to
infected CD169* MMM, which is dependent on Lm invasion of the cytosol [20]. HKLm fails to escape
the phagolysosome and is unable to access the cytosol [54]. Therefore, DC may not acquire sufficient
antigen after HKLm administration, impairing their ability to induce a robust CD8 T cell response.
In addition, while live Lm is rapidly transported to the T cell zone by DC [22-24], HKLm remains in the
marginal zone [55], suggesting that DC are unable to carry HKLm to the T cell zone to activate T cells
after HKLm administration. Indeed, CD8 T cell-DC cluster formation was not observed after HKLm
administration [50]. Finally, HKLm infection induced low levels of the costimulatory molecules CD80
and CD86 on DC [55], and this was independent of the amount of Lm uptake by DC suggesting an
intrinsic defect associated with HKLm [54]. CD28-mediated signals delivered by DC expressed CD80
and CD86 are important for CD8 T cell activation and expansion after Lm infection [56]. Furthermore,
HKLm fails to induce IFN-o/ 3 production from DC [54]. IFN- production from live Lm-infected
DC induces CD69 expression on CD8 T cells and promotes CD8 T cell proliferation after antigen
stimulation [54]. These studies suggest that HKLm is unable to induce fully activated DC that can
efficiently prime CD8 T cells. Collectively, these studies indicate that CD8 T cell priming and activation
by DC after i.v. Lm infection is a multifaceted process involving DC acquisition of Lm that is capable of
phagolysosomal escape followed by adequate DC maturation and efficient migration to the T cell zone.

The acquisition of Lm by DC is distinct after i.v. and oral infection. Compared to splenic DC,
LP DC in steady state express higher levels of CD86, suggesting that they are more mature during
homeostasis [57] and may have a lower activation threshold. Moreover, LP DC constitutively express
CCR?7 and readily migrate to the MLN upon antigen uptake [57]. Compared to splenic DC, LP DC
selectively induce gut-homing receptor o437 and CCR9 expression on CD8 T cells [37], which has
a profound impact on the tropism of CD8 T cells. However, whether CD8 T cells are primed and
activated differently by DC after oral Lm infection and how that will impact their expansion, contraction,
differentiation and memory formation are not well understood.

4. T Cell Expansion, Differentiation and Contraction

Naive antigen-specific CD8 T cells, present at very low frequencies (~80-1200 cells per mouse),
undergo rapid and massive clonal expansion and development of effector functions after priming and
activation by DC. A large population of effector cells are mobilized into the blood and migrate to sites
of infection to eliminate intracellular pathogens by inducing cytolysis of infected cells. Effector CD8 T
cells also produce potent anti-pathogen cytokines to aid in the resolution of infection [58,59]. Following
the peak of clonal expansion and pathogen clearance, antigen-specific effector CD8 T cells undergo
extensive contraction, during which most effector cells (90-95%) rapidly die through apoptosis
restoring homeostasis of the immune system. The remaining effector cells survive to form a long-lived
self-renewing memory population that can provide life-long protection against reinfection [60]. Effector
CD8 T cells that are fated to die during contraction and those that possess memory potential can be
identified based on the dichotomous expression of killer cell lectin-like receptor G1 (KLRG-1) and
IL-7Rx (CD127) [61-65]. Naive CD8 T cells express CD127 but not KLRG-1 [61,62,64—-66]. Within
the first few days after antigen encounter, CD8 T cells downregulate CD127 and form a plastic
population of CD127~ KLRG-1" early effector cells (EEC) [46,67]. EEC can upregulate KLRG1 to
differentiate into CD127~ KLRG-1" short-lived effector cells (SLEC) or reexpress CD127 to differentiate
into CD127* KLRG-1~ memory precursor effector cells (MPEC). SLEC are terminally differentiated
and undergo apoptosis during immune contraction, while MPEC have long-lived potential and survive
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into self-maintaining memory cells. In some circumstances, a subset of cells expressing both KLRG-1
and CD127 develop, but their developmental pathway and immunological role are less clear [46,68].

Antigen-specific CD8 T cell expansion and contraction after i.v. Lm infection is instructed during
priming [69,70]. However, manipulation of the infection to influence the amount and duration of
antigen and inflammation by using antibiotic treatment, attenuated strains or different doses of Lm
can greatly impact these processes. Increasing the infectious dose can increase antigen-specific CD8 T
cell expansion and the magnitude of the peak response, but it does not appear to affect the onset or
early kinetics of contraction [70]. Shortening the length of infection by antibiotic treatment early after
infection decreases the magnitude of antigen-specific CD8 T cell expansion [69-72]. However, the onset
of T cell contraction seems to be predominately influenced by the peak of bacterial burden or antigenic
load but not the length of infection [72]. Infection with a highly attenuated actin assembly-inducing
protein (ActA)-deficient Lm that is not able to spread from cell to cell intracellularly leads to a quicker
peak of bacterial load and an accelerated antigen-specific CD8 T cell response with earlier onset
of contraction [72]. Continuous treatment of animals with antibiotics before and throughout the
infection also significantly impairs the expansion of antigen-specific CD8 T cells [71,73]. Intriguingly,
antigen-specific CD8 T cells generated in these antibiotic treated animals do not undergo contraction,
leading to a normal and functional memory population despite a substantially reduced effector
response. The lack of contraction is thought to be associated with decreased inflammation caused by
continuous antibiotic treatment. In such environments, antigen-specific CD8 T cells do not upregulate
KLRG-1 to differentiate into SLEC. Instead, they upregulate CD127 and become MPEC that survive
and form memory. These studies demonstrate that the inflammatory environment regulates T cell
memory differentiation.

CD8 T cell memory differentiation is a continuous process; however, fate decisions occur early
during the effector phase at the EEC stage and are largely dictated by the nature of the pathogen and
environmental conditions they induce [46,74,75]. After i.v. Lm infection, EEC predominately give
rise to SLEC in the spleen, leading to a dominant SLEC population (~75%) with few EEC (~10%)
and MPEC (~5%) [46,74,75]. In comparison, after i.v. vesicular stomatitis virus (VSV) infection,
some EEC stay undifferentiated and those that differentiate form both SLEC and MPEC in the spleen,
resulting in roughly comparable populations of EEC (~35%), SLEC (~35%) and MPEC (~25%) [46,74,75].
The differentiation pattern seen in i.v. VSV infection has also been observed in intranasal influenza A
virus infection and vaccinia virus infection via skin scarification [74]. This distinct pathogen-induced
differentiation pattern was observed at both the population and single-cell levels [46,74,75]. Moreover,
both i.v. and oral Lm infection induced a similar pattern in the spleen with a heavily skewed
SLEC population, suggesting that the differentiation pattern of EEC appears pathogen driven [75].
Interestingly, while EEC appear committed to either a SLEC or MPEC fate during priming, they retain
plasticity to respond to changing environmental cues [74]. For example, EEC from Lm-infected mice
mainly differentiated into SLEC when transferred into naive mice. However, transfer of Lm-elicited
EEC into a mouse infected with VSV expressing the same cognate antigen resulted in a differentiation
pattern resembling that observed after VSV infection. Thus, EEC display some level of superficial
commitment to a specific lineage based on early signals while maintaining a degree of plasticity to
respond appropriately to changing inflammatory cues. This can be further observed in vivo at the
single cell level [75]. Unique clones of naive CD8 T cells that differentiate into effector CD8 T cells
with bias to a single developmental pathway can be heavily skewed towards a different development
pathway by tissue-specific environments. At the peak of the CD8 T cell response after oral Lm infection,
effector CD8 T cells that arose from a single naive T cell comprised mostly SLEC in the spleen but were
heavily skewed towards MPEC and EEC once they migrated into the intestinal epithelium despite
being progeny of an identical parent [48,75]. Thus, differentiation patterns can be heavily influenced
by the distinct local environments of nonlymphoid tissues.

Pathogen-induced inflammation, when coupled with antigen, critically regulates SLEC and
MPEC differentiation [74,76]. Reduced inflammation favors MPEC differentiation, whereas increased
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inflammation promotes SLEC differentiation [64,71]. Lv. Lm or VSV infection induce distinct
inflammatory environments leading to unique differentiation patterns of their effector populations [46].
L.v. Lm infection elicits IL-12, IFN- and IFN-y, while VSV infection fails to induce these cytokines.
IL-12 signaling promotes antigen-specific CD8 T cell expansion and SLEC differentiation in i.v. Lm
infection and CD8 T cells lacking IL-12 receptor have impaired expansion and fail to differentiate
into SLEC [46,77]. Mechanistically, IL-12 induces the transcription factor T-bet, which is necessary
and sufficient to drive SLEC differentiation [64,78]. IFN-y signaling can also promote SLEC
differentiation following i.v. Lm infection. Antigen-specific CD8 T cells in IFN-y deficient mice have
increased CD127 expression [71]. However, IFN-y does not induce SLEC differentiation directly [76].
Instead, it influences SLEC differentiation indirectly by promoting IL-12 production [76]. Type I
interferon signaling has also been shown to promote antigen-specific CD8 T cell expansion and SLEC
differentiation after i.v. Lm infection. CD8 T cells lacking type I interferon receptor fail to undergo
robust expansion and cannot efficiently generate SLEC [46]. CD8 T cells lacking both IL-12 receptor
and type I interferon receptor have a more profound defect in expansion and SLEC differentiation [46],
suggesting that IL-12 and type I interferon play non-redundant roles in driving effector T cell expansion
and SLEC differentiation. Overall, i.v. Lm infection favors SLEC differentiation by inducing an
environment that promotes SLEC formation.

During i.v. Lm infection, both SLEC and MPEC undergo contraction; however, SLEC contract
approximately 10 times more than MPEC [79]. The survival of MPEC is primarily dependent
on IL-7, but IL-15 may also contribute to MPEC survival in some contexts [61,62,79]. Both IL-7
and IL-15 promotes cell survival in part by upregulating the expression of the anti-apoptotic
molecule Bcl-2 [61,62,80,81], although these cytokines are not interchangeable. While administration of
exogenous IL-7 or IL-15 during the contraction phase promotes the survival of MPEC [79], the presence
of IL-7 but not IL-15 appears necessary, as MPEC fail to survive in the absence of IL-7 but they survive
similarly in the presence or absence of IL-15 [61,62,64]. Thus, while IL-15 may promote MPEC survival,
IL-7 is necessary for MPEC survival. The expression of CD127 allows MPEC to survive and form
long-lived memory cells in the presence of IL-7; however, it is not sufficient to instruct memory
formation as forced CD127 expression on SLEC does not save them from death [82,83]. As SLEC do
not express CD127, their survival during contraction is predominantly dependent on IL-15 [64,79-81].
In the absence of IL-15, SLEC contract more rapidly, indicating IL-15 promotes some level of SLEC
survival during contraction [64,80,81]. However, the ability to sense IL-15 is not sufficient for their
long-term survival as SLEC still contract ~20-fold after i.v. Lm infection [79]. The massive contraction
of SLEC is induced by transforming growth factor-p (TGF-$3), which is upregulated after i.v. Lm
infection and selectively promotes the apoptosis of SLEC during clonal expansion and contraction
by dampening B-cell lymphoma (Bcl)-2 expression [81]. While both SLEC and MPEC express TGF-f3
receptor, IL-7 but not IL-15 seems to be able to overcome the apoptotic effect induced by TGF-3. Thus,
TGF-f3 and IL-15 exert opposite roles in controlling the fate of SLEC after i.v. Lm infection.

Oral Lm infection induces similar kinetics of T cell expansion and contraction and a similar
differentiation pattern in the spleen as i.v. infection, with the exception that antigen-specific CD8 T
cells peak one day later after oral infection [45-48,75]. However, as discussed above the differentiation
pattern can be profoundly impacted by the tissue-specific environment [75]. While antigen-specific
CD8 T cells are largely SLEC in the spleen after oral Lm infection, the population rapidly shifts to MPEC
in the intestine [48]. It appears SLEC undergo accelerated apoptosis in response to TGF-f3 signaling in
the intestine, leading to the rapid accumulation of MPEC. This suggests that antigen-specific CD8 T
cells in the intestine are more susceptible to TGF-p-induced apoptosis or that TGF-f signaling is more
abundant in the intestine. Future studies are required to elucidate the detailed mechanisms involved
in intestinal CD8 T cell differentiation.
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5. T Cell Memory Formation

After pathogen clearance, MPEC that survive the contraction phase give rise to long-lived memory
cells. Memory CD8 T cells are heterogenous and have been traditionally divided into central memory T
(Tcm) cells and effector memory T (Tgp) cells based on their migratory patterns [84]. Ty cells express
lymph node homing receptors CD62L and CCR7 and circulate between the bloodstream and secondary
lymphoid organs. Tgp cells lack these receptors and circulate through the bloodstream, permissive
non-lymphoid tissues and secondary lymphoid organs. L.v. Lm infection induces rapid generation of
CD62L* T cells [85]. CD62L™ cells emerge in a subset of MPEC at the peak of the T cell response
and gradually increase over time [85]. The entire antigen-specific CD8 T cell population gradually
shifts from CD62L~ Ty cells to CD62L* Tcyy cells. A linear Tgy — Tew differentiation pathway
had been proposed, in which Tgy cells are transitional and give rise to Tcy cells [86]. However,
this does not appear to be the dominant pathway under normal physiological conditions [87]. CD62L™~
TgMm cells generated under abnormally elevated precursor frequencies are not fully committed and
capable of re-expressing CD62L and converting to CD62L* Tcys cells. However, under physiological
conditions with low precursor frequencies of naive antigen-specific CD8 T cells, or in adoptive
transfer systems where small numbers of naive TCR transgenic CD8 T cells are used, CD62L™ Tgy
and CD62L* Ty cells appear as distinct and stable lineages that develop independently without
interconversion [87]. The gradual shift of the antigen-specific memory CD8 T cell population from
CD62L"~ Tgym cells to CD62L* Ty cells occurs due to a higher proliferative capacity of CD62L* T
cells leading to their preferential accumulation over time [59,85,87]. Overall, CD62L expression and
Tem/Tem lineage commitment is largely influenced by the initial frequency of naive antigen-specific
CD8 T cells [59,87,88]. Tem/ Tcwm lineage decision occurs during the primary immune response [87].
It is generally believed that weak stimulation favors the generation of CD62L* Tcy cells, while
strong stimulation is required for CD62L~ Tgy cell generation. Indeed, limiting antigen availability
and/or inflammation during i.v. Lm infection by blocking antigen presentation or shortening the
infection promotes CD62L* Tcy cell development [85,89]. Both Tgy and Tey cells are capable of
proliferating, producing cytokines such as IFN-y and TNF-« and acquiring cytotoxicity upon antigenic
stimulation, although Ty cells have greater proliferative capacity and can produce IL-2 [86]. However,
their protective capacity for challenge infections is greatly dependent on the characteristics of both the
pathogen (i.e., site where the pathogen replicates and activation of T cells occurs) and memory subset
(i.e., proliferative capacity and migratory preference) [90,91]. In i.v. Lm challenge infection, both Tgy
and T¢y cells mount recall responses and contribute to protective immunity, with Tgy cells providing
superior protection [90,92,93].

The identification of tissue-resident memory T (Try) cells was a breakthrough in the field of
memory CD8 T cells [48,94-97] that substantially improved our understanding of memory CD8 T
cell subsets and their protective functions in tissues. Contrary to circulating Tgym and Tcy cells,
Trum cells represent a subset of memory T cells that are self-maintained in tissues without the need
for replenishment from the circulation. They are phenotypically, functionally, transcriptionally;,
and metabolically distinct from Tgy and Tep cells [98-101]. Tryv cells do not express CD62L and
CCR?7; instead, they express CD69, which provides a mechanism promoting their retention in
tissues [102,103]. CD69 physically interacts with sphingosine-1-phosphate receptor 1 (S1PR1) and
inhibits the SIPR1-mediated egress of CD8 Try cells from tissues [104,105]. Additionally, some Try
cells also express CD103, which binds Ecad expressed by epithelial cells in barrier tissues and plays an
important role in the retention of CD8 Try cells in barrier tissues [98,106,107]. CD8 Try cells have been
shown to play a critical role in protective immunity against infections and cancers [48,94,95,97,108-110].
They are pre-positioned in the tissue to respond immediately to pathogen re-encounter and mediate
protective immunity by direct lysis of infected cells or by activating innate immune cells and recruiting
circulating memory T cells through the release of cytokines IFN-y, IL-2 and TNF« [111-113]. Recent
studies using an oral infection model of Lim demonstrated the robust induction of antigen-specific CD8 T
cell responses in the intestine [47,48,114]. These intestinal antigen-specific CD8 T cells quickly adopted
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an MPEC phenotype and upregulated CD69 and CD103 expression, indicating rapid generation of
CD8 Trm cells in the intestine 9 days after oral Lm infection [48]. The expression of CD69 and CD103
was exclusively confined to MPEC, supporting the notion that CD8 Trys cells are derived from MPEC.
In this model, CD103 expression promoted the accumulation but not retention of antigen-specific CD8 T
cells in the intestinal epithelium [48]. As CD103 also binds Ecad expressed by intestinal epithelial cells,
it is possible that CD103 promotion of intestinal accumulation early after infection is due to the nature
of Ecad-mediated Lm entry into the intestinal epithelium, and this topic needs further exploration.
The rapid generation and maintenance of CD69* CD103* CD8 Tgy cells in the intestine after oral Lm
infection is critically regulated by TGF-f3 signaling. In the absence of TGF-f3 signaling, antigen-specific
CD8 T cells migrated to the intestine efficiently but failed to become CD69" CD103* CD8 Ty cells and
were not maintained in the intestine [48]. These intestinal CD8 Ty cells established early after primary
oral Lm infection provided optimal protection against secondary oral Lm infection [48]. Compared
to oral Lm infection, i.v. Lm infection induced a significantly smaller population of antigen-specific
CD8 T cells in the intestine and these CD8 T cells were inefficient at rapidly differentiating into CD69*
CD103* CD8 Tgy cells, suggesting that the route of infection greatly impacts memory CD8 T cell
responses in the intestine (our unpublished data). The migration of antigen-specific CD8 T cells to
the intestine is controlled by gut-homing receptors a4y and CCR9 [115,116]. CD8 T cells induced
after oral Lm infection likely express higher levels of 437 and CCR9 and migrate more efficiently to
the intestine than those induced after i.v. infection as LP DC but not splenic DC selectively instruct
CDS8 T cells to upregulate o437 and CCR9 expression [37], which could contribute to the difference
in the magnitude of antigen-specific CD8 T cell responses in the intestine after i.v. and oral infection.
However, how infection route regulates the differentiation of CD8 Try cells in the intestine is unclear.
Oral infection likely induces a distinct intestinal environment that may impact in situ differentiation
of Try cells. Overall, i.v. and oral Lm infection appears to induce distinct CD8 cell responses in the
intestine, which may greatly impact CD8 Try cell-mediated immunity. Future studies are required to
evaluate the mechanisms governing the induction of superior gastrointestinal CD8 T cell responses
after oral infection, which will improve our knowledge of mucosal T cell immunity and provide
valuable insights into vaccine design.

6. CD4 T Cell Help

The role of CD4 T cell help in regulating CD8 T cell responses has a long and often contradictory
history [117], which is well documented after i.v. Lm infection. Lack of CD4 T cell help has been
reported to impair the primary CD8 T cell response [118], the maintenance of memory CD8 T cells [119,
120], or the recall CD8 T cell response [118,121]. Alternatively, CD4 T cell help has also been reported
to be not critical for the primary CD8 T cell response [49,122], the maintenance of memory CD8 T
cells [122], or the recall CD8 T cell response [49,122]. Traditionally, CD4 T cells were envisioned to
provide help to CD8 T cells through multiple mechanisms such as activation of antigen presenting cells
through CD40L/CD40 interaction (indirect help) or the secretion of IL-2 (direct help). Recently, CD4 T
cell help has also been shown to facilitate migration of CD8 T cells into non-lymphoid tissues [123,124].
Whether CD4 T cell help to CD8 T cells during i.v. Lm infection is through CD40L/CD40 interaction
is also controversial. While some studies showed that the CD40L-CD40 pathway was not required
during the primary or recall CD8 T cell response [122,125,126], others showed that CD40L/CD40
interaction was required for the recall CD8 T cell response [63,118]. However, CD40L/CDA40 interaction
may provide help to CD8 T cells independently of CD4 T cells [118]. More recently, studies showed that
CD4 T cell help induced the expression of CD25 by antigen-specific CD8 T cells, which was required
for the optimal SLEC development and effector CD8 T cell expansion in response to IL-2 [127]. Studies
further showed that memory CD8 T cells generated in the absence of CD25-mediated signals were able
to mount a robust recall response [127], suggesting that CD4 T cell help and IL-2 signaling through
CD25 controls the expansion and differentiation of effector CD8 T cells during the primary response
but not the recall response.
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During oral Lm infection, CD4 T cell help appears to be more important for CD8 T cell response
in the intestinal tissues than the spleen and liver during primary response [47], suggesting that CD4 T
cells may regulate CD8 T cell responses in a tissue-specific manner. Furthermore, CD4 T cells likely
provide help to CD8 T cells through CD40L/CD40 interaction [47]. However, whether CD4 T cell help
also regulates the maintenance of memory CD8 T cells and the recall CD8 T cell response after oral Lm
infection is unclear.

7. CD8 T Cell-Mediated Protective Inmunity against Lm Infection

Once Lm enters the host cell, it is able to use its surface protein ActA to induce actin
polymerization and propel itself within the cell and spread to neighboring cells without exposure
to the extracellular environment [4]. By remaining intracellular through its lifecycle, Lm can avoid
humoral immunity. Thus, sterilizing immunity relies on inducing a robust cellular response [128].
CDS8 T cells collaborate with CD4 T cells and y8 T cells to provide optimal protection against Lm
infection [9,13-15]. The identification of CD8 epitopes from Lm-secreted proteins listeriolysin O
(LLO) and invasion-associated protein p60 and the finding that CD8 T cells specific to either of
these epitopes can provide protection against Lm infection led to the hypothesis that Lm-secreted
proteins may be the most relevant antigens to prime CD8 T cells and to induce protective immunity
against Lm infection [17,129-133]. Subsequent studies using recombinant Lm to express a secreted or
non-secreted form of epitope derived from lymphocytic choriomeningitis or recombinant Salmonella
typhimurium to express secreted or non-secreted forms of LLO and p60 suggested that both secreted
and non-secreted epitope or protein can induce primary and secondary antigen-specific CD8 T cell
responses [134-136]. However, these antigen-specific CD8 T cells provide protection against Lm
expressing the secreted antigen but not against Lm expressing a non-secreted form of the same
antigen [134-136]. Through ActA-mediated cell-to-cell spread, Lm can infect a variety of cells
including phagocytic and non-phagocytic cells. In infected phagocytic cells, both secreted and
non-secreted bacterial antigens can be presented on the cell surface, while in infected non-phagocytic
cells, only secreted bacterial antigens can be displayed on the cell surface for immune surveillance [135].
Therefore, although phagocytic cells can present non-secreted antigens to CD8 T cells to prime them,
CD8 T cells specific for non-secreted antigens do not recognize infected non-phagocytic cells and
are unable to control listeriosis [135]. As maternal Lm infection can cause serious fetal or neonatal
complications, developing prophylactic and therapeutic vaccines against listeriosis is an ongoing
interest [137-144]. When designing CD8 T cell-based vaccines against listeriosis, it is important to keep
it in mind that non-secreted antigens may not be relevant targets.

Effective control of Lm infection by memory CD8 T cells in the organ where Lm invades may
prevent further disseminating infection and limit more serious disease. Lm first invades the spleen
or liver after i.v. infection and the intestine after oral infection. These organs contain distinct
memory CD8 T cells with unique phenotypes, migratory properties, maintenance requirements,
and functions [107,114,145]. Generally, memory CD8 T cells in the intestine express CD69 and some of
them also express CD103, both of which are important mediators of tissue residency, while memory
CD8 T cells in the spleen lack these markers [107,146]. Memory CD8 T cells in the spleen can
circulate through lymphoid tissues or permissive non-lymphoid tissues dependent on their expression
of the lymphoid homing receptor CD62L [107,145]. Memory CD8 T cells in the spleen but not
intestine express CD122, IL-15 receptor beta, indicating distinct requirements of IL-15 for their
maintenance [107,145,147]. Moreover, memory CD8 T cells in the intestine express higher granzyme B
but lower IFN-y, TNF-o and IL-2 compared to memory CD8 T cells in the spleen [107,145], suggesting
functional tailoring to the unique tissue environment that may influence their contribution to protective
immunity. These phenotypic and functional characteristics seem to be intrinsic to organ-specific
environments, as CD8 T cells derived from a single naive cell acquire different phenotypes when they
enter the spleen or intestine [75]. However, the route of infection greatly impacts organ-specific memory
CD8 T cell responses. Memory CD8 T cells are enriched in the spleen after i.v. Lin infection while they
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are enriched in the intestine after oral infection (our unpublished data). CD8 Try cells provide superior
protection against pathogens invading the barrier tissues such as skin, female reproductive tract and
lung [94,95,97,148]. Based on this evidence, it is plausible that memory CD8 T cells generated by oral
Lm infection provides superior protection against Lm invading the intestine through contaminated food
as more CD8 Ty cells would be prepositioned at the location of invasion. Vice versa, it is likely that
memory CD8 T cells generated by i.v. Lm infection can protect better against Lm invading the spleen
as more memory CD8 T cells would be positioned in the spleen. Whether this same strategy would
protect a fetus or neonate is unclear as the route of exposure and even the mediator of fetal resorption
is less defined. For example, fetal exposure may occur through direct invasion of extracellular Lm via
interaction with placental accessible Ecad [149] or via a trojan horse model where intracellular carriage
by circulating immune cells mediates fetal exposure. Intriguingly, a recent study of pregnant mice
indicated that CD8 T cells are required for Lm-induced fetal resorption [150]. Depletion of CD8 T cells,
neutralization of T cell-derived IFN-y, or blockade of decidual CD8 T cell accumulation protected
against fetal wastage [150]. Thus, strategies aimed at preventing Lm invasion in the intestines may
be the best approach to limit fetal and neonatal complications associated with Lm infection during
pregnancy. Nevertheless, organ-specific CD8 T cell responses likely shape organ-specific protective
immunity. When designing vaccines against listeriosis or other infections and malignancies, it is
important to consider the potential benefits of organ-specific immunity.

8. Non-Classical H2-M3-Restricited CD8 T Cell Response

Although most studies focus on major histocompatibility complex (MHC) class Ia
(H2-K)-restricted CD8" T cells, another population of CD8* T cells that recognizes secreted
bacterial-derived N-formylated peptides presented by the nonclassical MHC class Ib molecule
H2-M3 responds to Lm infection and distinctly contributes to anti-Lm immunity [151-155]. Despite
the limited polymorphism of H2-M3 molecules, several distinct Lm-derived peptides containing
N-formyl-methionine have been shown to induce CD8" T cell responses [153-155], with fMIGWII
being the major immunodominant epitope during Lm infection [156]. H2-M3-restricted CD8* T cells
express promiscuous antigen receptors which enable them to broadly recognize N-formylated peptides
produced by Lm [157-159].

Lv. Lm infection results in the generation of both H2-K- and H2-M3-restricted CD8* T cells;
however, these populations differ in their expansion kinetics and memory potential. H2-M3-restricted
T cells rapidly and robustly expand in the spleen of infected animals, peaking 2 to 3 days before
and outnumbering Lm-specific H2-K-restricted CD8* T cells during primary infection [156,160,161].
H2-M3-restricted CD8 T cells were functional, displayed high cytotoxic activity and secreted high levels
of IFN-y [161]. Correspondingly, H2-M3-restricted CD8 T cells contribute to protection early during
primary Lm infection, at a time when Lm-specific H2-K-restricted CD8* T cells have not substantially
expanded [162]. Although both CD8 T cell populations establish phenotypically similar memory
populations and express activation markers upon secondary exposure to Lm [163], only H2-K-restricted
memory CD8 T cells dramatically expanded after reinfection [156,160,161]. However, the impaired
recall of H2-M3-resticted CD8 T cells appears to be an indirect consequence of the presence of
H2-K-restricted memory CD8 T cells. Indeed, an Lm challenge of mice previously immunized
with DCs coated with fMIGWII peptide triggered a vigorous expansion of H2-M3-restricted CD8 T
cells [164]. However, in this context, H2-M3-restricted memory CD8 T cells were incapable of providing
protective immunity to Lm challenge infection [164]. Thus, H2-M3-restricted CD8 T cells form a distinct
non-classical CD8 T cell population, whose primarily role is to provide protection early during primary
infection enabling sufficient time for the induction of long-term protective H2-K-restricted CD8 T cells.
Whether H2-M3-restricted CD8 T cells are induced after oral Lm infection has not been studied.
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9. Lm as a Vaccine Vector for Cancer Inmunotherapy

Lm has gained prominence as a potential vaccine vector for cancer immunotherapy for several
reasons [165,166]. First, Lm displays tumor-homing properties and specifically establishes tropism
in primary and metastatic tumors that may result in direct killing of tumor cells [166—-169]. Second,
Lm induces a strong innate inflammatory immune response that is key to the induction of potent
adaptive immunity and the efficacy of Lm as a cancer vaccine vector [11,165,166]. Third, Lm elicits
robust CD8 T cell responses. Lm is able to escape the phagolysosome to gain access to the cytosol
of professional antigen-presenting cells where it secretes antigens into the cytosol that are rapidly
degraded and efficiently delivered to the MHC class I pathway to activate CD8 T cells [170]. Moreover,
recent studies suggested that Lm-derived antigens are processed and presented with greater efficiency
compared to endogenously synthesized viral antigens [171], further supporting the use of Lm as a
vaccine vector to induce potent CD8 T cell responses. Fourth, Lm-elicited CD8 T cells can overcome
tolerance to tumor-associated antigens [172,173], providing the rationale for using Lm as a vaccine
vector for cancer immunotherapy. Fifth, Lm-based cancer vaccines have been shown to reduce the
number and the suppressive activity of regulatory T cells and myeloid-derived suppressor cells in the
tumor microenvironment [174-177], adding another layer of efficacy for Lm-based cancer vaccines.
Sixth, Lm vaccines may be repeatedly administered to increase efficacy as antibodies do not appear
sufficient to prevent boosting [9]. Finally, Lm is relatively easy to manipulate and a variety of attenuated
strains have been created, lessening safety concerns of Lm-based therapeutics [165,166]. Overall,
the above features make Lm one of the most promising vaccine vectors for cancer immunotherapy and
may also engender Lm-based vaccines to pathogens that have proven difficult to immunize against,
such as HIV [178]. Indeed, pre-clinical studies have proven the efficacy of Lm to induce powerful
anti-tumoral immunity against a broad range of tumor specific antigens [166,179]. Lm-based cancer
vaccines are now undergoing clinical trials for several cancers including pancreatic cancer, cervical
cancer, osteosarcoma, colorectal cancer, prostate cancer, lung cancer, and more [166,179-183]. However,
most of the pre-clinical studies and clinical trials have used i.v. delivery for Lm-based cancer vaccines
as our understanding of Lm-induced immunity has been mainly derived from i.v. infection of mice
and questions of whether highly attenuated Lm vaccines can be efficacious when administered orally.
Oral infection using mouse-adapted Lm demonstrated that resident memory CD8 T cells rapidly
accumulated in the intestinal mucosa and contributed to protection of a challenge infection [48].
Future studies are warranted to investigate the impact of infection route on CD8 T cell responses
in different tissues that could lead to more efficacious vaccine delivery modalities tailored to tumor
location. For example, an oral vaccine system may be better suited for protection against tumors that
require memory populations residing in gastrointestinal tissues for protection as would be the case
for pancreatic, small bowel, or colorectal cancers. On the other hand, i.v. immunization may be better
utilized for widely distributed cancers or cancers that have metastasized. Even more intriguing is the
notion that Lm can be repeatedly administered to boost immune function and this boosting can utilize
distinct routes of immunization to tailor the targeting of the immune response as appropriate.

10. Conclusions

Lm is a widely utilized pathogen to study T cell biology due to its ability to induce a potent
CD8 T cell response and the availability of immunological tools developed in the past decades. Thus,
this pathogen has contributed extensively to our general understanding of T cell biology during an
immune response. As Lm induces potent CD8 T cell responses and CD8 tumor-infiltrating lymphocytes
play a critical role in mediating anti-tumoral immunity [184-186], Lm has become a promising cancer
vaccine vector. Dissecting each phase of the CD8 T cell response to Lm infection will broaden our
understanding of T cell biology in general and contribute to rational vaccine designs. Future studies to
understand how the immunization route regulates organ-specific CD8 T cell responses and how these
organ-specific CD8 T cell responses may contribute to enhanced protective immunity may further
improve T cell-based vaccine development.
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cells; dpi—days post infection; Ecad—E-cadherin; EEC—early effector cells; HKLm—heat-killed Lm;
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KLRG-1—Xkiller cell lectin-like receptor G1; LLO—listeriolysin O; Lm—Listeria monocytogenes; LP—lamina propria;
MARCO-—macrophage receptor with collagenous structure;, MMM-—marginal metallophilic macrophages;
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